
MATLAB®

Object-Oriented Programming

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Object-Oriented Programming
© COPYRIGHT 1984–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2008 Online only New for MATLAB 7.6 (Release 2008a)
October 2008 Online only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)
March 2017 Online only Revised for Version 9.2 (Release 2017a)
September 2017 Online only Revised for Version 9.3 (Release 2017b)
March 2018 Online only Revised for MATLAB 9.4 (Release 2018a)
September 2018 Online only Revised for Version 9.5 (Release 2018b)
March 2019 Online only Revised for MATLAB 9.6 (Release 2019a)
September 2019 Online only Revised for MATLAB 9.7 (Release 2019b)
March 2020 Online only Revised for MATLAB 9.8 (Release 2020a)
September 2020 Online only Revised for MATLAB 9.9 (Release 2020b)
March 2021 Online only Revised for MATLAB 9.10 (Release 2021a)

Using Object-Oriented Design in MATLAB
1

Why Use Object-Oriented Design . 1-2
Approaches to Writing MATLAB Programs . 1-2
When Should You Create Object-Oriented Programs 1-2

Handle Object Behavior . 1-7
What Is a Handle? . 1-7
Copies of Handles . 1-7
Handle Objects Modified in Functions . 1-8
Determine If an Object Is a Handle . 1-9
Deleted Handle Objects . 1-9

Basic Example
2

Create a Simple Class . 2-2
Design Class . 2-2
Create Object . 2-3
Access Properties . 2-3
Call Methods . 2-3
Add Constructor . 2-4
Vectorize Methods . 2-4
Overload Functions . 2-5
BasicClass Code Listing . 2-6

MATLAB Classes Overview
3

Role of Classes in MATLAB . 3-2
Classes . 3-2
Some Basic Relationships . 3-3

Developing Classes — Typical Workflow . 3-6
Formulating a Class . 3-6
Specifying Class Components . 3-7
BankAccount Class Implementation . 3-7
Formulating the AccountManager Class . 3-10
Implementing the AccountManager Class . 3-11
AccountManager Class Synopsis . 3-11

v

Contents

Using BankAccount Objects . 3-12

Representing Structured Data with Classes . 3-14
Objects as Data Structures . 3-14
Structure of the Data . 3-14
The TensileData Class . 3-15
Create an Instance and Assign Data . 3-15
Restrict Properties to Specific Values . 3-16
Simplifying the Interface with a Constructor . 3-16
Calculate Data on Demand . 3-17
Displaying TensileData Objects . 3-18
Method to Plot Stress vs. Strain . 3-18
TensileData Class Synopsis . 3-19

Implementing Linked Lists with Classes . 3-23
Class Definition Code . 3-23
dlnode Class Design . 3-23
Create Doubly Linked List . 3-24
Why a Handle Class for Linked Lists? . 3-25
dlnode Class Synopsis . 3-25
Specialize the dlnode Class . 3-34

Static Data
4

Static Data . 4-2
What Is Static Data . 4-2
Static Variable . 4-2
Static Data Object . 4-3
Constant Data . 4-4

Class Definition—Syntax Reference
5

Class Files and Folders . 5-2
Class Definition Files . 5-2
Options for Class Folders . 5-2
Options for Class Files . 5-2
Group Classes with Package Folders . 5-3

Class Components . 5-4
Class Building Blocks . 5-4
Class Definition Block . 5-4
Properties Block . 5-5
Methods Block . 5-5
Events Block . 5-5
A Complete Class . 5-6
Enumeration Classes . 5-6
Related Information . 5-7

vi Contents

Classdef Block . 5-8
How to Specify Attributes and Superclasses . 5-8
Class Attribute Syntax . 5-8
Superclass Syntax . 5-8
Local Functions in Class File . 5-9

Class Properties . 5-10
The Properties Block . 5-10
Access to Property Values . 5-11

Define Class Methods and Functions . 5-13
The Methods Block . 5-13
Method Calling Syntax . 5-13
Private Methods . 5-14
More Detailed Information on Methods . 5-14
Class-Related Functions . 5-14
How to Overload Functions and Operators . 5-15
Rules for Defining Methods in Separate Files . 5-15

Events and Listeners . 5-17
Define and Trigger Events . 5-17
Listen for Events . 5-17

Attribute Specification . 5-18
Attribute Syntax . 5-18
Attribute Descriptions . 5-18
Attribute Values . 5-18
Simpler Syntax for true/false Attributes . 5-19

Call Superclass Methods on Subclass Objects . 5-20
Superclass Relation to Subclass . 5-20
How to Call Superclass Methods . 5-20
How to Call Superclass Constructor . 5-20

Representative Class Code . 5-22
Class Calculates Area . 5-22
Description of Class Definition . 5-24

MATLAB Code Analyzer Warnings . 5-27
Syntax Warnings and Property Names . 5-27
Variable/Property Name Conflict Warnings . 5-27
Exception to Variable/Property Name Rule . 5-28

Objects In Conditional Statements . 5-29
Enable Use of Objects in Conditional Statements 5-29
How MATLAB Evaluates Switch Statements . 5-29
How to Define the eq Method . 5-30
Enumerations in Switch Statements . 5-32

Operations on Objects . 5-34
Object Operations . 5-34
Help on Objects . 5-35
Functions to Test Objects . 5-36
Functions to Query Class Components . 5-36

vii

Use of Editor and Debugger with Classes . 5-37
Write Class Code in the Editor . 5-37
How to Refer to Class Files . 5-37
How to Debug Class Files . 5-37

Automatic Updates for Modified Classes . 5-39
When MATLAB Loads Class Definitions . 5-39
Consequences of Automatic Update . 5-39
What Happens When Class Definitions Change . 5-40
Ensure Defining Folder Remains in Scope . 5-40
Actions That Do Not Trigger Updates . 5-41
Multiple Updates to Class Definitions . 5-41
Object Validity with Deleted Class File . 5-41
When Updates Are Not Possible . 5-41
Potential Consequences of Class Updates . 5-41
Interactions with the Debugger . 5-42
Updates to Class Attributes . 5-42
Updates to Property Definitions . 5-42
Updates to Method Definitions . 5-43
Updates to Event Definitions . 5-44

Compatibility with Previous Versions . 5-46
New Class-Definition Syntax Introduced with MATLAB Software Version 7.6

. 5-46
Changes to Class Constructors . 5-46
New Features Introduced with Version 7.6 . 5-47
Examples of Old and New . 5-47

Comparison of MATLAB and Other OO Languages 5-49
Some Differences from C++ and Java Code . 5-49
Object Modification . 5-50
Static Properties . 5-53
Common Object-Oriented Techniques . 5-53

Defining and Organizing Classes
6

User-Defined Classes . 6-2
What Is a Class Definition . 6-2
Attributes for Class Members . 6-2
Kinds of Classes . 6-2
Constructing Objects . 6-3
Class Hierarchies . 6-3
classdef Syntax . 6-3
Class Code . 6-3

Class Attributes . 6-5
Specifying Class Attributes . 6-5
Specifying Attributes . 6-7
Class-Specific Attributes . 6-7

viii Contents

Evaluation of Expressions in Class Definitions . 6-8
Why Use Expressions . 6-8
Where to Use Expressions in Class Definitions . 6-8
How MATLAB Evaluates Expressions . 6-10
When MATLAB Evaluates Expressions . 6-10
Expression Evaluation in Handle and Value Classes 6-10

Folders Containing Class Definitions . 6-13
Class Definitions on the Path . 6-13
Class and Path Folders . 6-13
Using Path Folders . 6-13
Using Class Folders . 6-14
Functions in Private Folders Within Class Folders 6-14
Class Precedence and MATLAB Path . 6-15
Changing Path to Update Class Definition . 6-16

Class Precedence . 6-18
Use of Class Precedence . 6-18
Why Mark Classes as Inferior . 6-18
InferiorClasses Attribute . 6-18

Packages Create Namespaces . 6-20
Package Folders . 6-20
Internal Packages . 6-20
Referencing Package Members Within Packages 6-21
Referencing Package Members from Outside the Package 6-21
Packages and the MATLAB Path . 6-22

Import Classes . 6-24
Syntax for Importing Classes . 6-24
Import Static Methods . 6-24
Import Package Functions . 6-24
Package Function and Class Method Name Conflict 6-25
Clearing Import List . 6-25

Value or Handle Class — Which to Use
7

Comparison of Handle and Value Classes . 7-2
Basic Difference . 7-2
Behavior of MATLAB Built-In Classes . 7-2
User-Defined Value Classes . 7-3
User-Defined Handle Classes . 7-4
Determining Equality of Objects . 7-6
Functionality Supported by Handle Classes . 7-7

Which Kind of Class to Use . 7-9
Examples of Value and Handle Classes . 7-9
When to Use Value Classes . 7-9
When to Use Handle Classes . 7-9

ix

The Handle Superclass . 7-11
Building on the Handle Class . 7-11
Handle Class Methods . 7-11
Event and Listener Methods . 7-11
Relational Methods . 7-12
Test Handle Validity . 7-12
When MATLAB Destroys Objects . 7-12

Handle Class Destructor . 7-13
Basic Knowledge . 7-13
Syntax of Handle Class Destructor Method . 7-13
Handle Object During delete Method Execution 7-14
Support Destruction of Partially Constructed Objects 7-15
When to Define a Destructor Method . 7-15
Destructors in Class Hierarchies . 7-16
Object Lifecycle . 7-16
Restrict Access to Object Delete Method . 7-17
Nondestructor Delete Methods . 7-18
External References to MATLAB Objects . 7-18

Find Handle Objects and Properties . 7-21
Find Handle Objects . 7-21
Find Handle Object Properties . 7-21

Implement Set/Get Interface for Properties . 7-22
The Standard Set/Get Interface . 7-22
Subclass Syntax . 7-22
Get Method Syntax . 7-22
Set Method Syntax . 7-23
Class Derived from matlab.mixin.SetGet . 7-23
Set Priority for Matching Partial Property Names 7-27

Implement Copy for Handle Classes . 7-30
Copy Method for Handle Classes . 7-30
Customize Copy Operation . 7-31
Copy Properties That Contain Handles . 7-32
Exclude Properties from Copy . 7-33

Properties — Storing Class Data
8

Ways to Use Properties . 8-2
What Are Properties . 8-2
Types of Properties . 8-2

Property Syntax . 8-4
Property Definition Block . 8-4
Access Property Values . 8-5
Inheritance of Properties . 8-5
Specify Property Attributes . 8-5

x Contents

Property Attributes . 8-6
Purpose of Property Attributes . 8-6
Specifying Property Attributes . 8-6
Table of Property Attributes . 8-6

Property Definition . 8-12
What You Can Define . 8-12
Initialize Property Values . 8-12
Property Default Values . 8-13
Initializing Properties to Handle Objects . 8-13
Assign Property Values in Constructor . 8-14
Property Attributes . 8-15
Methods to Set and Get Property Values . 8-15
Reference Object Properties Using Variables . 8-16

Mutable and Immutable Properties . 8-17
Set Access to Property Values . 8-17
Define Immutable Property . 8-17

Validate Property Values . 8-19
Property Validation in Class Definitions . 8-19
Sample Class Using Property Validation . 8-20
Order of Validation . 8-21
Abstract Property Validation . 8-22
Objects Not Updated When Changing Validation 8-22
Validation During Load Operation . 8-22

Property Class and Size Validation . 8-24
Property Class and Size . 8-24
Property Size Validation . 8-24
Property Class Validation . 8-25
Default Values Per Size and Class . 8-29

Property Validation Functions . 8-30
MATLAB Validation Functions . 8-30
Validate Property Using Functions . 8-32
Define Validation Functions . 8-35
Add Support for Validation Functions . 8-36

Metadata Interface to Property Validation . 8-38

Property Access Methods . 8-40
Properties Provide Access to Class Data . 8-40
Property Set and Get Methods . 8-40
Set and Get Method Execution and Property Events 8-42
Access Methods and Properties Containing Arrays 8-43
Access Methods and Arrays of Objects . 8-43
Modify Property Values with Access Methods . 8-43

Property Set Methods . 8-45
Overview of Property Access Methods . 8-45
Property Set Method Syntax . 8-45
Validate Property Set Value . 8-45
When Set Method Is Called . 8-46

xi

Property Get Methods . 8-48
Overview of Property Access Methods . 8-48
Property Get Method Syntax . 8-48
Calculate Value for Dependent Property . 8-48
Errors Not Returned from Get Method . 8-49
Get Method Behavior . 8-49

Set and Get Methods for Dependent Properties . 8-50
Calculate Dependent Property Value . 8-51
When to Use Set Methods with Dependent Properties 8-51
Private Set Access with Dependent Properties . 8-52

Properties Containing Objects . 8-53
Assigning Objects as Default Property Values . 8-53
Assigning to Read-Only Properties Containing Objects 8-53
Assignment Behavior . 8-53

Dynamic Properties — Adding Properties to an Instance 8-55
What Are Dynamic Properties . 8-55
Define Dynamic Properties . 8-55
List Object Dynamic Properties . 8-57

Set and Get Methods for Dynamic Properties . 8-59
Create Access Methods for Dynamic Properties 8-59
Shared Set and Get Methods . 8-60

Dynamic Property Events . 8-61
Dynamic Properties and Ordinary Property Events 8-61
Dynamic-Property Events . 8-61
Listen for a Specific Property Name . 8-62
PropertyAdded Event Callback Execution . 8-63
PropertyRemoved Event Callback Execution . 8-63
How to Find meta.DynamicProperty Objects . 8-63

Dynamic Properties and ConstructOnLoad . 8-65

Methods — Defining Class Operations
9

Methods in Class Design . 9-2
Class Methods . 9-2
Examples and Syntax . 9-2
Kinds of Methods . 9-2
Method Naming . 9-3

Method Attributes . 9-4
Purpose of Method Attributes . 9-4
Specifying Method Attributes . 9-4
Table of Method Attributes . 9-4

Ordinary Methods . 9-6
Ordinary Methods Operate on Objects . 9-6

xii Contents

Methods Inside classdef Block . 9-6
Method Files . 9-7

Methods in Separate Files . 9-8
Class Folders . 9-8
Define Method in Function File . 9-8
Specify Method Attributes in classdef File . 9-9
Methods You Must Define in the classdef File . 9-10

Method Invocation . 9-11
Determining Which Method Is Invoked . 9-11
Referencing Names with Expressions—Dynamic Reference 9-13
Index into Result of Method Call . 9-14
Controlling Access to Methods . 9-14
Invoking Superclass Methods in Subclass Methods 9-15
Invoking Built-In Functions . 9-15

Class Constructor Methods . 9-16
Purpose of Class Constructor Methods . 9-16
Basic Structure of Constructor Methods . 9-16
Guidelines for Constructors . 9-17
Default Constructor . 9-18
When to Define Constructors . 9-18
Related Information . 9-18
Initializing Objects in Constructor . 9-18
No Input Argument Constructor Requirement . 9-19
Subclass Constructors . 9-19
Implicit Call to Inherited Constructor . 9-21
Errors During Class Construction . 9-22
Output Object Suppressed . 9-22

Static Methods . 9-24
What Are Static Methods . 9-24
Why Define Static Methods . 9-24
Defining Static Methods . 9-24
Calling Static Methods . 9-24
Inheriting Static Methods . 9-25

Overload Functions in Class Definitions . 9-26
Why Overload Functions . 9-26
Implementing Overloaded MATLAB Functions . 9-26
Rules for Naming to Avoid Conflicts . 9-28

Class Support for Array-Creation Functions . 9-29
Extend Array-Creation Functions for Your Class 9-29
Which Syntax to Use . 9-30
Implement Support for Array-Creation Functions 9-30

Object Precedence in Method Invocation . 9-36
Object Precedence . 9-36
Defining Precedence . 9-36

Dominant Argument in Overloaded Graphics Functions 9-38
Graphics Object Precedence . 9-38
Dominant Argument . 9-38

xiii

Defining Class Precedence . 9-38
Calls to Inferior-Class Methods . 9-39

Class Methods for Graphics Callbacks . 9-41
Referencing the Method . 9-41
Syntax for Method Callbacks . 9-41
Use a Class Method for a Slider Callback . 9-42

Object Arrays
10

Construct Object Arrays . 10-2
Build Arrays in the Constructor . 10-2
Referencing Property Values in Object Arrays . 10-2

Initialize Object Arrays . 10-5
Calls to Constructor . 10-5
Initial Value of Object Properties . 10-6

Empty Arrays . 10-7
Creating Empty Arrays . 10-7
Assigning Values to an Empty Array . 10-7

Initialize Arrays of Handle Objects . 10-9
Related Information . 10-10

Accessing Dynamic Properties in Arrays . 10-11

Implicit Class Conversion . 10-13
Class Conversion Mechanism . 10-13
Concatenation . 10-13
Subscripted Assignment . 10-13

Concatenating Objects of Different Classes . 10-15
Basic Knowledge . 10-15
MATLAB Concatenation Rules . 10-15
Concatenating Objects . 10-15
Calling the Dominant-Class Constructor . 10-16
Converter Methods . 10-17

Designing Heterogeneous Class Hierarchies . 10-20
Creating Classes That Support Heterogeneous Arrays 10-20
MATLAB Arrays . 10-20
Heterogeneous Hierarchies . 10-20
Heterogeneous Arrays . 10-21
Heterogeneous Array Concepts . 10-21
Nature of Heterogeneous Arrays . 10-22
Unsupported Hierarchies . 10-24
Default Object . 10-25
Conversion During Assignment and Concatenation 10-26
Empty Arrays of Heterogeneous Abstract Classes 10-26

xiv Contents

Heterogeneous Array Constructors . 10-27
Building Arrays in Superclass Constructors . 10-27
When Errors Can Occur . 10-27
Initialize Array in Superclass Constructor . 10-27
Sample Implementation . 10-28
Potential Error . 10-30

Events — Sending and Responding to Messages
11

Overview Events and Listeners . 11-2
Why Use Events and Listeners . 11-2
Events and Listeners Basics . 11-2
Event Syntax . 11-2
Create Listener . 11-3

Define Custom Event Data . 11-5
Class Event Data Requirements . 11-5
Define and Trigger Event . 11-5
Define Event Data . 11-6
Create Listener for Overflow Event . 11-6

Observe Changes to Property Values . 11-8

Implement Property Set Listener . 11-10
PushButton Class Design . 11-10

Event and Listener Concepts . 11-12
The Event Model . 11-12
Limitations . 11-12
Default Event Data . 11-13
Events Only in Handle Classes . 11-13
Property-Set and Query Events . 11-13
Listeners . 11-14

Event Attributes . 11-15
Specify Event Attributes . 11-15

Events and Listeners Syntax . 11-17
Components to Implement . 11-17
Name Events . 11-17
Trigger Events . 11-17
Listen to Events . 11-18
Define Event-Specific Data . 11-20

Listener Lifecycle . 11-22
Control Listener Lifecycle . 11-22
Temporarily Deactivate Listeners . 11-22
Permanently Delete Listeners . 11-22

Listener Callback Syntax . 11-23
Specifying Listener Callbacks . 11-23

xv

Input Arguments for Callback Function . 11-23
Additional Arguments for Callback Function . 11-24

Callback Execution . 11-26
When Callbacks Execute . 11-26
Listener Order of Execution . 11-26
Callbacks That Call notify . 11-26
Manage Callback Errors . 11-26
Invoke Functions from Function Handles . 11-26

Determine If Event Has Listeners . 11-28
Do Listeners Exist for This Event? . 11-28
Why Test for Listeners . 11-28
Coding Patterns . 11-28
Listeners in Heterogeneous Arrays . 11-28

Listen for Changes to Property Values . 11-31
Create Property Listeners . 11-31
Property Event and Listener Classes . 11-32

Assignment When Property Value Is Unchanged 11-34
AbortSet When Value Does Not Change . 11-34
How MATLAB Compares Values . 11-34
When to Use AbortSet . 11-34
Implement AbortSet . 11-35
Using AbortSet with Property Validation . 11-36

Techniques for Using Events and Listeners . 11-38
Example Overview . 11-38
Techniques Demonstrated in This Example . 11-38
Summary of fcneval Class . 11-39
Summary of fcnview Class . 11-39
Methods Inherited from Handle Class . 11-40
Using the fcneval and fcnview Classes . 11-40
Implement UpdateGraph Event and Listener . 11-42
The PostSet Event Listener . 11-45
Enable and Disable Listeners . 11-46
@fcneval/fcneval.m Class Code . 11-47
@fcnview/fcnview.m Class Code . 11-48

How to Build on Other Classes
12

Hierarchies of Classes — Concepts . 12-2
Classification . 12-2
Develop the Abstraction . 12-2
Design of Class Hierarchies . 12-2
Super and Subclass Behavior . 12-3
Implementation and Interface Inheritance . 12-3

Subclass Syntax . 12-5
Subclass Definition Syntax . 12-5

xvi Contents

Subclass double . 12-5

Design Subclass Constructors . 12-7
Call Superclass Constructor Explicitly . 12-7
Call Superclass Constructor from Subclass . 12-7
Subclass Constructor Implementation . 12-8
Call Only Direct Superclass from Constructor . 12-9

Control Sequence of Constructor Calls . 12-11

Modify Inherited Methods . 12-13
When to Modify Superclass Methods . 12-13
Extend Superclass Methods . 12-13
Reimplement Superclass Process in Subclass . 12-14
Redefine Superclass Methods . 12-15
Implement Abstract Method in Subclass . 12-15

Modify Inherited Properties . 12-17
Superclass Property Modification . 12-17
Private Local Property Takes Precedence in Method 12-17

Subclassing Multiple Classes . 12-19
Specify Multiple Superclasses . 12-19
Class Member Compatibility . 12-19
Multiple Inheritance . 12-20

Specify Allowed Subclasses . 12-21
Basic Knowledge . 12-21
Why Control Allowed Subclasses . 12-21
Specify Allowed Subclasses . 12-21
Define Sealed Hierarchy of Classes . 12-22

Class Members Access . 12-24
Basic Knowledge . 12-24
Applications for Access Control Lists . 12-25
Specify Access to Class Members . 12-25
Properties with Access Lists . 12-26
Methods with Access Lists . 12-26
Abstract Methods with Access Lists . 12-29

Property Access List . 12-30

Method Access List . 12-31

Event Access List . 12-32

Handle Compatible Classes . 12-33
Basic Knowledge . 12-33
When to Use Handle Compatible Classes . 12-33
Handle Compatibility Rules . 12-33
Identify Handle Objects . 12-34

How to Define Handle-Compatible Classes . 12-35
What Is Handle Compatibility? . 12-35
Subclassing Handle-Compatible Classes . 12-37

xvii

Methods for Handle Compatible Classes . 12-39
Methods for Handle and Value Objects . 12-39
Modify Value Objects in Methods . 12-39

Handle-Compatible Classes and Heterogeneous Arrays 12-40
Heterogeneous Arrays . 12-40
Methods Must Be Sealed . 12-40
Template Technique . 12-40

Subclasses of MATLAB Built-In Types . 12-42
MATLAB Built-In Types . 12-42
Built-In Types You Can Subclass . 12-42
Why Subclass Built-In Types . 12-42
Which Functions Work with Subclasses of Built-In Types 12-43
Behavior of Built-In Functions with Subclass Objects 12-43
Built-In Subclasses That Define Properties . 12-44

Behavior of Inherited Built-In Methods . 12-45
Subclass double . 12-45
Built-In Data Value Methods . 12-46
Built-In Data Organization Methods . 12-46
Built-In Indexing Methods . 12-47
Built-In Concatenation Methods . 12-47

Subclasses of Built-In Types Without Properties 12-49
Specialized Numeric Types . 12-49
A Class to Manage uint8 Data . 12-49
Using the DocUint8 Class . 12-50

Subclasses of Built-In Types with Properties . 12-52
Specialized Numeric Types with Additional Data Storage 12-52
Subclasses with Properties . 12-52
Property Added . 12-52
Methods Implemented . 12-52
Class Definition Code . 12-53
Using ExtendDouble . 12-54
Concatenation of ExtendDouble Objects . 12-57

Use of size and numel with Classes . 12-59
size and numel . 12-59
Built-In Class Behavior . 12-59
Subclasses Inherit Behavior . 12-60
Classes Not Derived from Built-In Classes . 12-61
Change the Behavior of size or numel . 12-62
Overload numArgumentsFromSubscript Instead of numel 12-63

Representing Hardware with Classes . 12-64
Objective . 12-64
Why Derive from int32 . 12-64
Implementation . 12-64
Construct MuxCard Object . 12-65
Call Methods of int32 . 12-65

Determine Array Class . 12-67
Query the Class Name . 12-67

xviii Contents

Test for Array Class . 12-67
Test for Specific Types . 12-68
Test for Most Derived Class . 12-68

Abstract Classes and Class Members . 12-70
Abstract Classes . 12-70
Declare Classes as Abstract . 12-70
Determine If a Class Is Abstract . 12-72
Find Inherited Abstract Properties and Methods 12-72

Define an Interface Superclass . 12-74
Interfaces . 12-74
Interface Class Implementing Graphs . 12-74

Saving and Loading Objects
13

Save and Load Process for Objects . 13-2
Save and Load Objects . 13-2
What Information Is Saved? . 13-2
How Is the Property Data Loaded? . 13-2
Errors During Load . 13-3

Reduce MAT-File Size for Saved Objects . 13-4
Default Values . 13-4
Dependent Properties . 13-4
Transient Properties . 13-4
Avoid Saving Unwanted Variables . 13-4

Save Object Data to Recreate Graphics Objects . 13-5
What to Save . 13-5
Regenerate When Loading . 13-5
Change to a Stairstep Chart . 13-6

Improve Version Compatibility with Default Values 13-7
Version Compatibility . 13-7
Using a Default Property Value . 13-7

Avoid Property Initialization Order Dependency 13-9
Control Property Loading . 13-9
Dependent Property with Private Storage . 13-9
Property Value Computed from Other Properties 13-11

Modify the Save and Load Process . 13-12
When to Modify the Save and Load Process . 13-12
How to Modify the Save and Load Process . 13-12
Implementing saveobj and loadobj Methods . 13-12
Additional Considerations . 13-13

Basic saveobj and loadobj Pattern . 13-14
Using saveobj and loadobj . 13-14
Handle Load Problems . 13-15

xix

Maintain Class Compatibility . 13-17
Rename Property . 13-17
Update Property When Loading . 13-18
Maintaining Compatible Versions of a Class . 13-19
Version 2 of the PhoneBookEntry Class . 13-20

Initialize Objects When Loading . 13-22
Calling Constructor When Loading Objects . 13-22
Initializing Objects in the loadobj Method . 13-22

Save and Load Objects from Class Hierarchies . 13-24
Saving and Loading Subclass Objects . 13-24
Reconstruct the Subclass Object from a Saved struct 13-24

Restore Listeners . 13-26
Create Listener with loadobj . 13-26
Use Transient Property to Load Listener . 13-26
Using the BankAccount and AccountManager Classes 13-27

Enumerations
14

Named Values . 14-2
Kinds of Predefined Names . 14-2
Techniques for Defining Enumerations . 14-2

Define Enumeration Classes . 14-4
Enumeration Class . 14-4
Construct an Enumeration Member . 14-4
Convert to Superclass Value . 14-4
Define Methods in Enumeration Classes . 14-5
Define Properties in Enumeration Classes . 14-6
Enumeration Class Constructor Calling Sequence 14-7

Refer to Enumerations . 14-9
Instances of Enumeration Classes . 14-9
Conversion of Characters to Enumerations . 14-10
Enumeration Arrays . 14-12

Enumerations for Property Values . 14-14
Syntax for Property/Enumeration Definition . 14-14
Example of Restricted Property . 14-14

Operations on Enumerations . 14-16
Operations Supported by Enumerations . 14-16
Example Enumeration Class . 14-16
Default Methods . 14-16
Convert Enumeration Members to Strings or char Vectors 14-17
Convert Enumeration Arrays to String Arrays or Cell Arrays of char Vectors

. 14-17
Relational Operations with Enumerations, Strings, and char Vectors . . . 14-18
Enumerations in switch Statements . 14-19

xx Contents

Enumeration Set Membership . 14-20
Enumeration Text Comparison Methods . 14-21
Get Information About Enumerations . 14-21
Testing for an Enumeration . 14-22

Hide Enumeration Members . 14-23
Hide Pure Enumerations . 14-24
Find Hidden Enumeration Members . 14-24

Enumeration Class Restrictions . 14-26

Enumerations Derived from Built-In Classes . 14-27
Subclassing Built-In Classes . 14-27
Derive Enumeration Class from Numeric Class 14-27
How to Alias Enumeration Names . 14-28
Superclass Constructor Returns Underlying Value 14-29
Default Converter . 14-30

Mutable Handle vs. Immutable Value Enumeration Members 14-32
Select Handle- or Value-Based Enumerations . 14-32
Value-Based Enumeration Classes . 14-32
Handle-Based Enumeration Classes . 14-33
Represent State with Enumerations . 14-35

Enumerations That Encapsulate Data . 14-37
Enumeration Classes with Properties . 14-37
Store Data in Properties . 14-37

Save and Load Enumerations . 14-40
Basic Knowledge . 14-40
Built-In and Value-Based Enumeration Classes 14-40
Simple and Handle-Based Enumeration Classes 14-40
Causes: Load as struct Instead of Object . 14-40

Constant Properties
15

Define Class Properties with Constant Values . 15-2
Defining Named Constants . 15-2
Constant Property Assigned a Handle Object . 15-3
Constant Property Assigned Any Object . 15-4
Constant Properties — No Support for Get Events 15-5

Information from Class Metadata
16

Class Metadata . 16-2
What Is Class Metadata? . 16-2
The meta Package . 16-2

xxi

Metaclass Objects . 16-3
Metaclass Object Lifecycle . 16-3

Class Introspection with Metadata . 16-5
Using Class Metadata . 16-5
Inspect the EmployeeData Class . 16-5
Metaclass EnumeratedValues Property . 16-7

Find Objects with Specific Values . 16-9
Find Handle Objects . 16-9
Find by Attribute Settings . 16-10

Get Information About Properties . 16-12
The meta.property Object . 16-12
How to Find Properties with Specific Attributes 16-14

Find Default Values in Property Metadata . 16-17
Default Values . 16-17
meta.property Data . 16-17

Specialize Object Behavior
17

Methods That Modify Default Behavior . 17-2
How to Customize Class Behavior . 17-2
Which Methods Control Which Behaviors . 17-2
Overload Functions and Override Methods . 17-3

Number of Arguments for subsref and subsasgn 17-5
How MATLAB Determines Number of Arguments 17-5
Syntax for subsref, and subsasgn Methods . 17-6

Modify nargout and nargin for Indexing Methods 17-7
When to Modify Number of Arguments . 17-7
How to Modify Number of Arguments . 17-7

Concatenation Methods . 17-9
Default Concatenation . 17-9
Methods to Overload . 17-9

Object Converters . 17-10
Why Implement Converters . 17-10
Converters for Package Classes . 17-10
Converters and Subscripted Assignment . 17-11
Converter for Heterogeneous Arrays . 17-11

Object Array Indexing . 17-12
Default Indexed Reference and Assignment . 17-12
What You Can Modify . 17-13
When to Modify Indexing Behavior . 17-13
Built-In subsref and subsasgn Called in Methods 17-14
Avoid Overriding Access Attributes . 17-15

xxii Contents

Code Patterns for subsref and subsasgn Methods 17-17
Customize Indexed Reference and Assignment 17-17
Syntax for subsref and subsasgn Methods . 17-17
Indexing Structure Describes Indexing Expressions 17-17
Values of the Indexing Structure . 17-18
Typical Patterns for Indexing Methods . 17-19

Indexed Reference . 17-23
How Indexed Reference Works . 17-23
Compound Indexed References . 17-24

Indexed Assignment . 17-25
How Indexed Assignment Works . 17-25
Indexed Assignment to Objects . 17-26
Compound Indexed Assignments . 17-27

end as Object Index . 17-28
Define end Indexing for an Object . 17-28
The end Method . 17-28

Objects in Index Expressions . 17-30
Objects Indexes . 17-30
Ways to Implement Objects as Indices . 17-30
subsindex Implementation . 17-30

Class with Modified Indexing . 17-32
How to Modify Class Indexing . 17-32
Class Description . 17-32
Specialize Subscripted Reference — subsref . 17-33
Specialize Subscripted Assignment — subsasgn 17-34
Implement Addition for Object Data — double and plus 17-35
MyDataClass.m . 17-36

Operator Overloading . 17-38
Why Overload Operators . 17-38
How to Define Operators . 17-38
Sample Implementation — Addable Objects . 17-39
MATLAB Operators and Associated Functions . 17-40

Customizing Object Display
18

Custom Display Interface . 18-2
Command Window Display . 18-2
Default Object Display . 18-2
CustomDisplay Class . 18-3
Methods for Customizing Object Display . 18-3

How CustomDisplay Works . 18-7
Steps to Display an Object . 18-7
Methods Called for a Given Object State . 18-7

xxiii

Role of size Function in Custom Displays . 18-9
How size Is Used . 18-9
Precautions When Overloading size . 18-9

Customize Display for Heterogeneous Arrays . 18-10

Class with Default Object Display . 18-11
The EmployeeInfo Class . 18-11
Default Display — Scalar . 18-11
Default Display — Nonscalar . 18-12
Default Display — Empty Object Array . 18-12
Default Display — Handle to Deleted Object . 18-13
Default Display — Detailed Display . 18-13

Choose a Technique for Display Customization 18-15
Ways to Implement a Custom Display . 18-15
Sample Approaches Using the Interface . 18-15

Customize Property Display . 18-18
Objective . 18-18
Change the Property Order . 18-18
Change the Values Displayed for Properties . 18-18

Customize Header, Property List, and Footer . 18-21
Objective . 18-21
Design of Custom Display . 18-21
getHeader Method Override . 18-22
getPropertyGroups Override . 18-23
getFooter Override . 18-23

Customize Display of Scalar Objects . 18-26
Objective . 18-26
Design Of Custom Display . 18-26
displayScalarObject Method Override . 18-27
getPropertyGroups Override . 18-27

Customize Display of Object Arrays . 18-30
Objective . 18-30
Design of Custom Display . 18-30
The displayNonScalarObject Override . 18-31
The displayEmptyObject Override . 18-32

Overloading the disp Function . 18-34
Display Methods . 18-34
Overloaded disp . 18-34
Relationship Between disp and display . 18-34

Defining Custom Data Types
19

Representing Polynomials with Classes . 19-2
Object Requirements . 19-2

xxiv Contents

DocPolynom Class Members . 19-2
DocPolynom Class Synopsis . 19-4
The DocPolynom Constructor . 19-10
Remove Irrelevant Coefficients . 19-11
Convert DocPolynom Objects to Other Types . 19-11
Overload disp for DocPolynom . 19-13
Display Evaluated Expression . 19-13
Redefine Indexed Reference . 19-14
Define Arithmetic Operators . 19-16

Designing Related Classes
20

A Class Hierarchy for Heterogeneous Arrays . 20-2
Interfaces Based on Heterogeneous Arrays . 20-2
Define Heterogeneous Hierarchy . 20-2
Assets Class . 20-4
Stocks Class . 20-5
Bonds Class . 20-6
Cash Class . 20-8
Default Object . 20-9
Operating on an Assets Array . 20-11

xxv

Using Object-Oriented Design in
MATLAB

• “Why Use Object-Oriented Design” on page 1-2
• “Handle Object Behavior” on page 1-7

1

Why Use Object-Oriented Design
In this section...
“Approaches to Writing MATLAB Programs” on page 1-2
“When Should You Create Object-Oriented Programs” on page 1-2

Approaches to Writing MATLAB Programs
Creating software applications typically involves designing the application data and implementing
operations performed on that data. Procedural programs pass data to functions, which perform the
necessary operations on the data. Object-oriented software encapsulates data and operations in
objects that interact with each other via the object's interface.

The MATLAB language enables you to create programs using both procedural and object-oriented
techniques and to use objects and ordinary functions together in your programs.

Procedural Program Design

In procedural programming, your design focuses on the steps that must execute to achieve a desired
state. Typically, you represent data as individual variables or fields of a structure. You implement
operations as functions that take the variables as arguments. Programs usually call a sequence of
functions, each one of which is passed data, and then returns modified data. Each function performs
an operation or many operations on the data.

Object-Oriented Program Design

The object-oriented program design involves:

• Identifying the components of the system or application that you want to build
• Analyzing and identifying patterns to determine what components are used repeatedly or share

characteristics
• Classifying components based on similarities and differences

After performing this analysis, you define classes that describe the objects your application uses.

Classes and Objects

A class describes a set of objects with common characteristics. Objects are specific instances of a
class. The values contained in an object's properties are what make an object different from other
objects of the same class. The functions defined by the class (called methods) are what implement
object behaviors that are common to all objects of a class.

When Should You Create Object-Oriented Programs
You can implement simple programming tasks as simple functions. However, as the magnitude and
complexity of your tasks increase, functions become more complex and difficult to manage.

As functions become too large, you can break them into smaller functions and pass data from one to
function to another. However, as the number of functions becomes large, designing, and managing
the data passed to functions becomes difficult and error prone. At this point, consider moving your
MATLAB programming tasks to object-oriented designs.

1 Using Object-Oriented Design in MATLAB

1-2

Understand a Problem in Terms of Its Objects

Thinking in terms of objects is simpler and more natural for some problems. Think of the nouns in
your problem statement as the objects to define and the verbs as the operations to perform.

Consider the design of classes to represent money lending institutions (banks, mortgage companies,
individual money lenders, and so on). It is difficult to represent the various types of lenders as
procedures. However, you can represent each one as an object that performs certain actions and
contains certain data. The process of designing the objects involves identifying the characteristics of
a lender that are important to your application.
Identify Commonalities

What do all money lenders have in common? All MoneyLender objects can have a loan method and
an InterestRate property, for example.
Identify Differences

How does each money lender differ? One can provide loans to businesses while another provides
loans only to individuals. Therefore, the loan operation might need to be different for different types
of lending institutions. Subclasses of a base MoneyLender class can specialize the subclass versions
of the loan method. Each lender can have a different value for its InterestRate property.

Factor out commonalities into a superclass and implement what is specific to each type of lender in
the subclass.
Add Only What Is Necessary

These institutions might engage in activities that are not of interest to your application. During the
design phase, determine what operations and data an object must contain based on your problem
definition.

Objects Manage Internal State

Objects provide several useful features not available from structures and cell arrays. For example,
objects can:

• Constrain the data values assigned to any given property
• Calculate the value of a property only when it is queried
• Broadcast notices when any property value is queried or changed
• Restrict access to properties and methods

Reducing Redundancy

As the complexity of your program increases, the benefits of an object-oriented design become more
apparent. For example, suppose that you implement the following procedure as part of your
application:

1 Check inputs
2 Perform computation on the first input argument
3 Transform the result of step 2 based on the second input argument
4 Check validity of outputs and return values

You can implement this procedure as an ordinary function. But suppose that you use this procedure
again somewhere in your application, except that step 2 must perform a different computation. You

 Why Use Object-Oriented Design

1-3

could copy and paste the first implementation, and then rewrite step 2. Or you could create a function
that accepted an option indicating which computation to make, and so on. However, these options
lead to more complicated code.

An object-oriented design can factor out the common code into what is called a base class. The base
class would define the algorithm used and implement whatever is common to all cases that use this
code. Step 2 could be defined syntactically, but not implemented, leaving the specialized
implementation to the classes that you then derive from this base class.

Step 1
function checkInputs()
 % actual implementation
end

Step 2
function results = computeOnFirstArg()
 % specify syntax only
end

Step 3
function transformResults()
 % actual implementation
end

Step 4
function out = checkOutputs()
 % actual implementation
end

The code in the base class is not copied or modified. Classes you derive from the base class inherit
this code. Inheritance reduces the amount of code to be tested, and isolates your program from
changes to the basic procedure.

Defining Consistent Interfaces

The use of a class as the basis for similar, but more specialized classes is a useful technique in object-
oriented programming. This class defines a common interface. Incorporating this kind of class into
your program design enables you to:

• Identify the requirements of a particular objective
• Encode requirements into your program as an interface class

Reducing Complexity

Objects reduce complexity by reducing what you must know to use a component or system:

• Objects provide an interface that hides implementation details.
• Objects enforce rules that control how objects interact.

To illustrate these advantages, consider the implementation of a data structure called a doubly linked
list. See “Implementing Linked Lists with Classes” on page 3-23 for the actual implementation.

Here is a diagram of a three-element list:

1 Using Object-Oriented Design in MATLAB

1-4

To add a node to the list, disconnect the existing nodes in the list, insert the new node, and reconnect
the nodes appropriately. Here are the basic steps:

First disconnect the nodes:

1 Unlink n2.Prev from n1
2 Unlink n1.Next from n2

Now create the new node, connect it, and renumber the original nodes:

1 Link new.Prev to n1
2 Link new.Next to n3 (was n2)
3 Link n1.Next to new (will be n2)
4 Link n3.Prev to new (will be n2)

The details of how methods perform these steps are encapsulated in the class design. Each node
object contains the functionality to insert itself into or remove itself from the list.

For example, in this class, every node object has an insertAfter method. To add a node to a list,
create the node object and then call its insertAfter method:

nnew = NodeConstructor;
nnew.insertAfter(n1)

Because the node class defines the code that implements these operations, this code is:

• Implemented in an optimal way by the class author
• Always up to date with the current version of the class
• Properly tested
• Can automatically update old-versions of the objects when they are loaded from MAT-files.

The object methods enforce the rules for how the nodes interact. This design removes the
responsibility for enforcing rules from the applications that use the objects. It also means that the
application is less likely to generate errors in its own implementation of the process.

Fostering Modularity

As you decompose a system into objects (car –> engine –> fuel system –> oxygen sensor), you form
modules around natural boundaries. Classes provide three levels of control over code modularity:

• Public — Any code can access this particular property or call this method.

 Why Use Object-Oriented Design

1-5

• Protected — Only this object's methods and methods of objects derived from this object's class can
access this property or call this method.

• Private — Only the object's own methods can access this property or call this method.

Overloaded Functions and Operators

When you define a class, you can overload existing MATLAB functions to work with your new object.
For example, the MATLAB serial port class overloads the fread function to read data from the device
connected to the port represented by this object. You can define various operations, such as equality
(eq) or addition (plus), for a class you have defined to represent your data.

See Also

More About
• “Role of Classes in MATLAB” on page 3-2

1 Using Object-Oriented Design in MATLAB

1-6

Handle Object Behavior
In this section...
“What Is a Handle?” on page 1-7
“Copies of Handles” on page 1-7
“Handle Objects Modified in Functions” on page 1-8
“Determine If an Object Is a Handle” on page 1-9
“Deleted Handle Objects” on page 1-9

More than one variable can refer to the same handle object. Therefore, users interact with instances
of handle classes differently than instances of value classes. Understanding how handle objects
behave can help you determine whether to implement a handle or a value class. This topic illustrates
some of those interactions.

For more information on handle classes, see “Handle Classes”.

What Is a Handle?
Certain kinds of MATLAB objects are handles. When a variable holds a handle, it actually holds a
reference to the object.

Handle objects enable more than one variable to refer to the same object. Handle-object behavior
affects what happens when you copy handle objects and when you pass them to functions.

Copies of Handles
All copies of a handle object variable refer to the same underlying object. This reference behavior
means that if h identifies a handle object, then,

h2 = h;

Creates another variable, h2, that refers to the same object as h.

For example, the MATLAB audioplayer function creates a handle object that contains the audio
source data to reproduce a specific sound segment. The variable returned by the audioplayer
function identifies the audio data and enables you to access object functions to play the audio.

MATLAB software includes audio data that you can load and use to create an audioplayer object.
This sample load audio data, creates the audio player, and plays the audio:

load gong Fs y
gongSound = audioplayer(y,Fs);
play(gongSound)

Suppose that you copy the gongSound object handle to another variable (gongSound2):

gongSound2 = gongSound;

The variables gongSound and gongSound2 are copies of the same handle and, therefore, refer to the
same audio source. Access the audioplayer information using either variable.

 Handle Object Behavior

1-7

For example, set the sample rate for the gong audio source by assigning a new value to the
SampleRate property. First get the current sample rate and then set a new sample rate:

sr = gongSound.SampleRate;
disp(sr)

8192

gongSound.SampleRate = sr*2;

You can use gongSound2 to access the same audio source:

disp(gongSound2.SampleRate)

16384

Play the gong sound with the new sample rate:

play(gongSound2)

Handle Objects Modified in Functions
When you pass an argument to a function, the function copies the variable from the workspace in
which you call the function into the parameter variable in the function’s workspace.

Passing a nonhandle variable to a function does not affect the original variable that is in the caller’s
workspace. For example, myFunc modifies a local variable called var, but when the function ends,
the local variable var no longer exists:

function myFunc(var)
 var = var + 1;
end

Define a variable and pass it to myfunc:

x = 12;
myFunc(x)

The value of x has not changed after executing myFunc(x):

disp(x)

12

The myFunc function can return the modified value, which you could assign to the same variable
name (x) or another variable.

function out = myFunc(var)
 out = var + 1;
end

Modify a value in myfunc:

x = 12;
x = myFunc(x);
disp(x)

13

1 Using Object-Oriented Design in MATLAB

1-8

When the argument is a handle variable, the function copies only the handle, not the object identified
by that handle. Both handles (original and local copy) refer to the same object.

When the function modifies the data referred to by the object handle, those changes are accessible
from the handle variable in the calling workspace without the need to return the modified object.

For example, the modifySampleRate function changes the audioplayer sample rate:

function modifySampleRate(audioObj,sr)
 audioObj.SampleRate = sr;
end

Create an audioplayer object and pass it to the modifySampleRate function:

load gong Fs y
gongSound = audioplayer(y,Fs);
disp(gongSound.SampleRate)

8192

modifySampleRate(gongSound,16384)
disp(gongSound.SampleRate)

16384

The modifySampleRate function does not need to return a modified gongSound object because
audioplayer objects are handle objects.

Determine If an Object Is a Handle
Handle objects are members of the handle class. Therefore, you can always identify an object as a
handle using the isa function. isa returns logical true (1) when testing for a handle variable:

load gong Fs y
gongSound = audioplayer(y,Fs);
isa(gongSound,'handle')

To determine if a variable is a valid handle object, use isa and isvalid:

if isa(gongSound,'handle') && isvalid(gongSound)
 ...
end

Deleted Handle Objects
When a handle object has been deleted, the handle variables that referenced the object can still exist.
These variables become invalid because the object they referred to no longer exists. Calling delete
on the object removes the object, but does not clear handle variables.

For example, create an audioplayer object:

load gong Fs y
gongSound = audioplayer(y,Fs);

The output argument, gongSound, is a handle variable. Calling delete deletes the object along with
the audio source information it contains:

 Handle Object Behavior

1-9

delete(gongSound)

However, the handle variable still exists:

disp(gongSound)

handle to deleted audioplayer

The whos command shows gongSound as an audioplayer object:

whos

 Name Size Bytes Class Attributes

 Fs 1x1 8 double
 gongSound 1x1 0 audioplayer
 y 42028x1 336224 double

Note The value for Bytes returned by the whos command does not include the data referenced by a
handle because many variables can reference the same data.

The handle gongSound no longer refers to a valid object, as shown by the isvalid handle method:

isvalid(gongSound)

ans =

 logical

 0

Calling delete on a deleted handle does nothing and does not cause an error. You can pass an array
containing both valid and invalid handles to delete. MATLAB deletes the valid handles, but does not
issue an error when encountering handles that are already invalid.

You cannot access properties with the invalid handle variable:

gongSound.SampleRate

Invalid or deleted object.

Functions and methods that access object properties cause an error:

play(gongSound)

Invalid or deleted object.

To remove the variable, gongSound, use clear:

clear gongSound
whos

 Name Size Bytes Class Attributes

 Fs 1x1 8 double
 y 42028x1 336224 double

1 Using Object-Oriented Design in MATLAB

1-10

See Also

More About
• “Handle Class Destructor” on page 7-13
• “Comparison of Handle and Value Classes” on page 7-2

 Handle Object Behavior

1-11

Basic Example

2

Create a Simple Class

In this section...
“Design Class” on page 2-2
“Create Object” on page 2-3
“Access Properties” on page 2-3
“Call Methods” on page 2-3
“Add Constructor” on page 2-4
“Vectorize Methods” on page 2-4
“Overload Functions” on page 2-5
“BasicClass Code Listing” on page 2-6

Design Class
The basic purpose of a class is to define an object that encapsulates data and the operations
performed on that data. For example, BasicClass defines a property and two methods that operate
on the data in that property:

• Value — Property that contains the numeric data stored in an object of the class
• roundOff — Method that rounds the value of the property to two decimal places
• multiplyBy — Method that multiplies the value of the property by the specified number

Here is the definition of BasicClass:

classdef BasicClass
 properties
 Value {mustBeNumeric}
 end
 methods
 function r = roundOff(obj)
 r = round([obj.Value],2);
 end
 function r = multiplyBy(obj,n)
 r = [obj.Value] * n;
 end
 end
end

For a summary of class syntax, see classdef.

To use the class:

• Save the class definition in a .m file with the same name as the class.
• Create an object of the class.
• Access the properties to assign data.
• Call methods to perform operation on the data.

2 Basic Example

2-2

Create Object
Create an object of the class using the class name:

a = BasicClass

a =

 BasicClass with properties:

 Value: []

Initially, the property value is empty.

Access Properties
Assign a value to the Value property using the object variable and a dot before the property name:

a.Value = pi/3;

To return a property value, use dot notation without the assignment:

a.Value

ans =

 1.0472

For information on class properties, see “Class Properties” on page 5-10.

Call Methods
Call the roundOff method on object a:

roundOff(a)

ans =

 1.0500

Pass the object as the first argument to a method that takes multiple arguments, as in this call to the
multiplyBy method:

multiplyBy(a,3)

ans =

 3.1416

You can also call a method using dot notation:

a.multiplyBy(3)

It is not necessary to pass the object explicitly as an argument when using dot notation. The notation
uses the object to the left of the dot and method name.

For information on class methods, see “Define Class Methods and Functions” on page 5-13

 Create a Simple Class

2-3

Add Constructor
Classes can define a special method to create objects of the class, called a constructor. Constructor
methods enable you to pass arguments to the constructor, which you can assign as property values.
The BasicClass Value property restricts its possible values using the mustBeNumeric function.

Here is a constructor for the BasicClass class. When you call the constructor with an input
argument, it is assigned to the Value property. If you call the constructor without an input argument,
the Value property has a default value of empty ([]).

methods
 function obj = BasicClass(val)
 if nargin == 1
 obj.Value = val;
 end
 end
end

By adding this constructor to the class definition, you can create an object and set the property value
in one step:

a = BasicClass(pi/3)

a =

 BasicClass with properties:

 Value: 1.0472

The constructor can perform other operations related to creating objects of the class.

For information on constructors, see “Class Constructor Methods” on page 9-16

Vectorize Methods
MATLAB enables you to vectorize operations. For example, you can add a number to a vector:

[1 2 3] + 2

ans =

 3 4 5

MATLAB adds the number 2 to each of the elements in the array [1 2 3]. To vectorize the
arithmetic operator methods, enclose the obj.Value property reference in brackets.

[obj.Value] + 2

This syntax enables the method to work with arrays of object. For example, create an object array
using indexed assignment.

obj(1) = BasicClass(2.7984);
obj(2) = BasicClass(sin(pi/3));
obj(3) = BasicClass(7);

Then this expression:

2 Basic Example

2-4

[obj.Value] + 2

Is equivalent to this expression:

[obj(1).Value obj(2).Value obj(3).Value] + 2

Because the roundOff method is vectorized, it can operate on arrays:

roundOff(obj)

ans =

 2.8000 0.8700 7.0000

Overload Functions
Classes can implement existing functionality, such as addition, by defining a method with the same
name as the existing MATLAB function. For example, suppose that you want to add two BasicClass
objects. It makes sense to add the values of the Value properties of each object.

Here is an overloaded version of the MATLAB plus function. It defines addition for the BasicClass
class as adding the property values:

method
 function r = plus(o1,o2)
 r = [o1.Value] + [o2.Value];
 end
end

By implementing a method called plus, you can use the “+” operator with objects of BasicClass.

a = BasicClass(pi/3);
b = BasicClass(pi/4);
a + b

ans =

 1.8326

By vectorizing the plus method, you can operate on object arrays.

a = BasicClass(pi/3);
b = BasicClass(pi/4);
c = BasicClass(pi/2);
ar = [a b];
ar + c

ans =

 2.6180 2.3562

Related Information

For information on overloading functions, see “Overload Functions in Class Definitions” on page 9-
26.

For information on overloading operators, see “Operator Overloading” on page 17-38.

 Create a Simple Class

2-5

BasicClass Code Listing
Here is the BasicClass definition after adding the features discussed in this topic:

classdef BasicClass
 properties
 Value {mustBeNumeric}
 end
 methods
 function obj = BasicClass(val)
 if nargin == 1
 obj.Value = val;
 end
 end
 function r = roundOff(obj)
 r = round([obj.Value],2);
 end
 function r = multiplyBy(obj,n)
 r = [obj.Value] * n;
 end
 function r = plus(o1,o2)
 r = [o1.Value] + [o2.Value];
 end
 end
end

See Also

Related Examples
• “Class Syntax Guide”
• “Validate Property Values” on page 8-19

2 Basic Example

2-6

MATLAB Classes Overview

• “Role of Classes in MATLAB” on page 3-2
• “Developing Classes — Typical Workflow” on page 3-6
• “Representing Structured Data with Classes” on page 3-14
• “Implementing Linked Lists with Classes” on page 3-23

3

Role of Classes in MATLAB
In this section...
“Classes” on page 3-2
“Some Basic Relationships” on page 3-3

Classes
In the MATLAB language, every value is assigned to a class. For example, creating a variable with an
assignment statement constructs a variable of the appropriate class:

a = 7;
b = 'some text';
s.Name = 'Nancy';
s.Age = 64;
whos

whos
 Name Size Bytes Class Attributes

 a 1x1 8 double
 b 1x9 18 char
 s 1x1 370 struct

Basic commands like whos display the class of each value in the workspace. This information helps
MATLAB users recognize that some values are characters and display as text while other values are
double precision numbers, and so on. Some variables can contain different classes of values like
structures.

Predefined Classes

MATLAB defines fundamental classes that comprise the basic types used by the language. These
classes include numeric, logical, char, cell, struct, and function handle.

User-Defined Classes

You can create your own MATLAB classes. For example, you could define a class to represent
polynomials. This class could define the operations typically associated with MATLAB classes, like
addition, subtraction, indexing, displaying in the command window, and so on. These operations
would need to perform the equivalent of polynomial addition, polynomial subtraction, and so on. For
example, when you add two polynomial objects:

p1 + p2

the plus operation must be able to add polynomial objects because the polynomial class defines this
operation.

When you define a class, you can overload special MATLAB functions (such as plus.m for the
addition operator). MATLAB calls these methods when users apply those operations to objects of your
class.

See “Representing Polynomials with Classes” on page 19-2 for an example that creates just such a
class.

3 MATLAB Classes Overview

3-2

MATLAB Classes — Key Terms

MATLAB classes use the following words to describe different parts of a class definition and related
concepts.

• Class definition — Description of what is common to every instance of a class.
• Properties — Data storage for class instances
• Methods — Special functions that implement operations that are usually performed only on

instances of the class
• Events — Messages defined by classes and broadcast by class instances when some specific action

occurs
• Attributes — Values that modify the behavior of properties, methods, events, and classes
• Listeners — Objects that respond to a specific event by executing a callback function when the

event notice is broadcast
• Objects — Instances of classes, which contain actual data values stored in the objects' properties
• Subclasses — Classes that are derived from other classes and that inherit the methods, properties,

and events from those classes (subclasses facilitate the reuse of code defined in the superclass
from which they are derived).

• Superclasses — Classes that are used as a basis for the creation of more specifically defined
classes (that is, subclasses).

• Packages — Folders that define a scope for class and function naming

Some Basic Relationships
This section discusses some of the basic concepts used by MATLAB classes.

Classes

A class is a definition that specifies certain characteristics that all instances of the class share. These
characteristics are determined by the properties, methods, and events that define the class and the
values of attributes that modify the behavior of each of these class components. Class definitions
describe how objects of the class are created and destroyed, what data the objects contain, and how
you can manipulate this data.

Class Hierarchies

It sometimes makes sense to define a new class in terms of existing classes. This approach enables
you to reuse the designs and techniques in a new class that represents a similar entity. You
accomplish this reuse by creating a subclass. A subclass defines objects that are a subset of those
objects defined by the superclass. A subclass is more specific than its superclass and might add new
properties, methods, and events to those components inherited from the superclass.

Mathematical sets can help illustrate the relationships among classes. In the following diagram, the
set of Positive Integers is a subset of the set of Integers and a subset of Positives. All three sets are
subsets of Reals, which is a subset of All Numbers.

The definition of Positive Integers requires the additional specification that members of the set be
greater than zero. Positive Integers combine the definitions from both Integers and Positives. The
resulting subset is more specific, and therefore more narrowly defined, than the supersets, but still
shares all the characteristics that define the supersets.

 Role of Classes in MATLAB

3-3

The “is a” relationship is a good way to determine if it is appropriate to define a particular subset in
terms of existing supersets. For example, each of the following statements makes senses:

• A Positive Integer is an Integer
• A Positive Integer is a Positive number

If the “is a” relationship holds, then it is likely you can define a new class from a class or classes that
represent some more general case.

Reusing Solutions

Classes are usually organized into taxonomies to foster code reuse. For example, if you define a class
to implement an interface to the serial port of a computer, it would probably be similar to a class
designed to implement an interface to the parallel port. To reuse code, you could define a superclass
that contains everything that is common to the two types of ports, and then derive subclasses from
the superclass in which you implement only what is unique to each specific port. Then the subclasses
would inherit all the common functionality from the superclass.

Objects

A class is like a template for the creation of a specific instance of the class. This instance or object
contains actual data for a particular entity that is represented by the class. For example, an instance
of a bank account class is an object that represents a specific bank account, with an actual account
number and an actual balance. This object has built into it the ability to perform operations defined
by the class, such as making deposits to and withdrawals from the account balance.

Objects are not just passive data containers. Objects actively manage the data contained by allowing
only certain operations to be performed, by hiding data that does not need to be public, and by
preventing external clients from misusing data by performing operations for which the object was not
designed. Objects even control what happens when they are destroyed.

Encapsulating Information

An important aspect of objects is that you can write software that accesses the information stored in
the object via its properties and methods without knowing anything about how that information is
stored, or even whether it is stored or calculated when queried. The object isolates code that
accesses the object from the internal implementation of methods and properties. You can define
classes that hide both data and operations from any methods that are not part of the class. You can
then implement whatever interface is most appropriate for the intended use.

References
[1] Shalloway, A., J. R. Trott, Design Patterns Explained A New Perspective on Object-Oriented

Design.. Boston, MA: Addison-Wesley 2002.

[2] Gamma, E., R. Helm, R. Johnson, J. Vlissides, Design Patterns Elements of Reusable Object-
Oriented Software. Boston, MA: Addison-Wesley 1995.

[3] Freeman, E., Elisabeth Freeman, Kathy Sierra, Bert Bates, Head First Design Patterns.
Sebastopol, CA 2004.

3 MATLAB Classes Overview

3-4

See Also

Related Examples
• “Create a Simple Class” on page 2-2
• “Developing Classes — Typical Workflow” on page 3-6
• “Representing Structured Data with Classes” on page 3-14
• “Implementing Linked Lists with Classes” on page 3-23

 Role of Classes in MATLAB

3-5

Developing Classes — Typical Workflow
In this section...
“Formulating a Class” on page 3-6
“Specifying Class Components” on page 3-7
“BankAccount Class Implementation” on page 3-7
“Formulating the AccountManager Class” on page 3-10
“Implementing the AccountManager Class” on page 3-11
“AccountManager Class Synopsis” on page 3-11
“Using BankAccount Objects” on page 3-12

Formulating a Class
This example discusses how to approach the design and implementation of a class. The objective of
this class is to represent a familiar concept (a bank account). However, you can apply the same
approach to most class designs.

To design a class that represents a bank account, first determine the elements of data and the
operations that form your abstraction of a bank account. For example, a bank account has:

• An account number
• An account balance
• A status (open, closed, etc.)

You must perform certain operations on a bank account:

• Create an object for each bank account
• Deposit money
• Withdraw money
• Generate a statement
• Save and load the BankAccount object

If the balance is too low and you attempt to withdraw money, the bank account broadcasts a notice.
When this event occurs, the bank account broadcasts a notice to other entities that are designed to
listen for these notices. In this example, a simplified version of an account manager program
performs this task.

In this example, an account manager program determines the status of all bank accounts. This
program monitors the account balance and assigns one of three values:

• open — Account balance is a positive value
• overdrawn — Account balance is overdrawn, but by $200 or less.
• closed — Account balance is overdrawn by more than $200.

These features define the requirements of the BankAccount and AccountManager classes. Include
only what functionality is required to meet your specific objectives. Support special types of accounts
by subclassing BankAccount and adding more specific features to the subclasses. Extend the
AccountManager as required to support new account types.

3 MATLAB Classes Overview

3-6

Specifying Class Components
Classes store data in properties, implement operations with methods, and support notifications with
events and listeners. Here is how the BankAccount and AccountManager classes define these
components.

Class Data

The class defines these properties to store the account number, account balance, and the account
status:

• AccountNumber — A property to store the number identifying the specific account. MATLAB
assigns a value to this property when you create an instance of the class. Only BankAccount class
methods can set this property. The SetAccess attribute is private.

• AccountBalance — A property to store the current balance of the account. The class operation
of depositing and withdrawing money assigns values to this property. Only BankAccount class
methods can set this property. The SetAccess attribute is private.

• AccountStatus — The BankAccount class defines a default value for this property. The
AccountManager class methods change this value whenever the value of the AccountBalance
falls below 0. The Access attribute specifies that only the AccountManager and BankAccount
classes have access to this property.

• AccountListener — Storage for the InsufficentFunds event listener. Saving a BankAccount
object does not save this property because you must recreate the listener when loading the object.

Class Operations

These methods implement the operations defined in the class formulation:

• BankAccount — Accepts an account number and an initial balance to create an object that
represents an account.

• deposit — Updates the AccountBalance property when a deposit transaction occurs
• withdraw — Updates the AccountBalance property when a withdrawal transaction occurs
• getStatement — Displays information about the account
• loadobj — Recreates the account manager listener when you load the object from a MAT-file.

Class Events

The account manager program changes the status of bank accounts that have negative balances. To
implement this action, the BankAccount class triggers an event when a withdrawal results in a
negative balance. Therefore, the triggering of the InsufficientsFunds event occurs from within
the withdraw method.

To define an event, specify a name within an events block. Trigger the event by a call to the notify
handle class method. Because InsufficientsFunds is not a predefined event, you can name it with
any char vector and trigger it with any action.

BankAccount Class Implementation
It is important to ensure that there is only one set of data associated with any object of a
BankAccount class. You would not want independent copies of the object that could have, for

 Developing Classes — Typical Workflow

3-7

example, different values for the account balance. Therefore, implement the BankAccount class as a
handle class. All copies of a given handle object refer to the same data.

BankAccount Class Synopsis

BankAccount Class Discussion
classdef BankAccount < handle Handle class because there should be only one

copy of any instance of BankAccount.
“Comparison of Handle and Value Classes” on
page 7-2

 properties (Access = ?AccountManager)
 AccountStatus = 'open'
 end

AccountStatus contains the status of the
account determined by the current balance.
Access is limited to the BankAccount and
AccountManager classes. “Class Members
Access” on page 12-24

 properties (SetAccess = private)
 AccountNumber
 AccountBalance
 end
 properties (Transient)
 AccountListener
 end

AccountStatus property access by
AccountManager class methods.

AccountNumber and AccountBalance
properties have private set access.

AccountListener property is transient so
the listener handle is not saved.

See “Specify Property Attributes” on page 8-
5.

 events
 InsufficientFunds
 end

Class defines event called
InsufficentFunds. withdraw method
triggers event when account balance becomes
negative.

For information on events and listeners, see
“Events” .

 methods Block of ordinary methods. See “Define Class
Methods and Functions” on page 5-13 for
syntax.

 function BA = BankAccount(AccountNumber,InitialBalance)
 BA.AccountNumber = AccountNumber;
 BA.AccountBalance = InitialBalance;
 BA.AccountListener = AccountManager.addAccount(BA);
 end

Constructor initializes property values with
input arguments.

AccountManager.addAccount is static
method of AccountManager class. Creates
listener for InsufficientFunds event and
stores listener handle in AccountListener
property.

 function deposit(BA,amt)
 BA.AccountBalance = BA.AccountBalance + amt;
 if BA.AccountBalance > 0
 BA.AccountStatus = 'open';
 end
 end

deposit adjusts value of AccountBalance
property.

If AccountStatus is closed and subsequent
deposit brings AccountBalance into positive
range, then AccountStatus is reset to open.

3 MATLAB Classes Overview

3-8

BankAccount Class Discussion
 function withdraw(BA,amt)
 if (strcmp(BA.AccountStatus,'closed')&& ...
 BA.AccountBalance < 0)
 disp(['Account ',num2str(BA.AccountNumber),...
 ' has been closed.'])
 return
 end
 newbal = BA.AccountBalance - amt;
 BA.AccountBalance = newbal;
 if newbal < 0
 notify(BA,'InsufficientFunds')
 end
 end

Updates AccountBalance property. If value
of account balance is negative as a result of
the withdrawal, notify triggers
InsufficentFunds event.

For more information on listeners, see “Events
and Listeners Syntax” on page 11-17.

 function getStatement(BA)
 disp('-------------------------')
 disp(['Account: ',num2str(BA.AccountNumber)])
 ab = sprintf('%0.2f',BA.AccountBalance);
 disp(['CurrentBalance: ',ab])
 disp(['Account Status: ',BA.AccountStatus])
 disp('-------------------------')
 end

Display selected information about the
account.

 end
 methods (Static)

End of ordinary methods block.

Beginning of static methods block. See “Static
Methods” on page 9-24

 function obj = loadobj(s)
 if isstruct(s)
 accNum = s.AccountNumber;
 initBal = s.AccountBalance;
 obj = BankAccount(accNum,initBal);
 else
 obj.AccountListener = AccountManager.addAccount(s);
 end
 end

loadobj method:

• If the load operation fails, create the object
from a struct.

• Recreates the listener using the newly
created BankAccount object as the
source.

For more information on saving and loading
objects, see “Save and Load Process for
Objects” on page 13-2

 end
end

End of static methods block

End of classdef

Expand for Class Code
classdef BankAccount < handle
 properties (Access = ?AccountManager)
 AccountStatus = 'open'
 end
 properties (SetAccess = private)
 AccountNumber
 AccountBalance
 end
 properties (Transient)
 AccountListener
 end
 events
 InsufficientFunds
 end
 methods
 function BA = BankAccount(accNum,initBal)
 BA.AccountNumber = accNum;
 BA.AccountBalance = initBal;
 BA.AccountListener = AccountManager.addAccount(BA);

 Developing Classes — Typical Workflow

3-9

 end
 function deposit(BA,amt)
 BA.AccountBalance = BA.AccountBalance + amt;
 if BA.AccountBalance > 0
 BA.AccountStatus = 'open';
 end
 end
 function withdraw(BA,amt)
 if (strcmp(BA.AccountStatus,'closed')&& BA.AccountBalance <= 0)
 disp(['Account ',num2str(BA.AccountNumber),' has been closed.'])
 return
 end
 newbal = BA.AccountBalance - amt;
 BA.AccountBalance = newbal;
 if newbal < 0
 notify(BA,'InsufficientFunds')
 end
 end
 function getStatement(BA)
 disp('-------------------------')
 disp(['Account: ',num2str(BA.AccountNumber)])
 ab = sprintf('%0.2f',BA.AccountBalance);
 disp(['CurrentBalance: ',ab])
 disp(['Account Status: ',BA.AccountStatus])
 disp('-------------------------')
 end
 end
 methods (Static)
 function obj = loadobj(s)
 if isstruct(s)
 accNum = s.AccountNumber;
 initBal = s.AccountBalance;
 obj = BankAccount(accNum,initBal);
 else
 obj.AccountListener = AccountManager.addAccount(s);
 end
 end
 end
end

Formulating the AccountManager Class
The purpose of the AccountManager class is to provide services to accounts. For the BankAccount
class, the AccountManager class listens for withdrawals that cause the balance to drop into the
negative range. When the BankAccount object triggers the InsufficientsFunds event, the
AccountManager resets the account status.

The AccountManager class stores no data so it does not need properties. The BankAccount object
stores the handle of the listener object.

The AccountManager performs two operations:

• Assign a status to each account as a result of a withdrawal
• Adds an account to the system by monitoring account balances.

Class Components

The AccountManager class implements two methods:

• assignStatus — Method that assigns a status to a BankAccount object. Serves as the listener
callback.

• addAccount — Method that creates the InsufficientFunds listener.

3 MATLAB Classes Overview

3-10

Implementing the AccountManager Class
The AccountManager class implements both methods as static because there is no need for an
AccountManager object. These methods operate on BankAccount objects.

The AccountManager is not intended to be instantiated. Separating the functionality of the
AccountManager class from the BankAccount class provides greater flexibility and extensibility.
For example, doing so enables you to:

• Extend the AccountManager class to support other types of accounts while keeping the
individual account classes simple and specialized.

• Change the criteria for the account status without affecting the compatibility of saved and loaded
BankAccount objects.

• Develop an Account superclass that factors out what is common to all accounts without requiring
each subclass to implement the account management functionality

AccountManager Class Synopsis
AccountManager Class Discussion
classdef AccountManager This class defines the InsufficentFunds

event listener and the listener callback.
 methods (Static) There is no need to create an instance of this

class so the methods defined are static. See
“Static Methods” on page 9-24.

 function assignStatus(BA)
 if BA.AccountBalance < 0
 if BA.AccountBalance < -200
 BA.AccountStatus = 'closed';
 else
 BA.AccountStatus = 'overdrawn';
 end
 end
 end

The assignStatus method is the callback for
the InsufficentFunds event listener. It
determines the value of a BankAccount object
AccountStatus property based on the value
of the AccountBalance property.

The BankAccount class constructor calls the
AccountManager addAccount method to
create and store this listener.

 function lh = addAccount(BA)
 lh = addlistener(BA, 'InsufficientFunds', ...
 @(src, ~)AccountManager.assignStatus(src));
 end

addAccount creates the listener for the
InsufficentFunds event that the
BankAccount class defines.

See “Control Listener Lifecycle” on page 11-
22

 end
end

end statements for methods and for
classdef.

Expand for Class Code
classdef AccountManager
 methods (Static)
 function assignStatus(BA)
 if BA.AccountBalance < 0
 if BA.AccountBalance < -200
 BA.AccountStatus = 'closed';
 else

 Developing Classes — Typical Workflow

3-11

 BA.AccountStatus = 'overdrawn';
 end
 end
 end
 function lh = addAccount(BA)
 lh = addlistener(BA, 'InsufficientFunds', ...
 @(src, ~)AccountManager.assignStatus(src));
 end
 end
end

Using BankAccount Objects
The BankAccount class, while overly simple, demonstrates how MATLAB classes behave. For
example, create a BankAccount object with an account number and an initial deposit of $500:

BA = BankAccount(1234567,500)

BA =

 BankAccount with properties:

 AccountNumber: 1234567
 AccountBalance: 500
 AccountListener: [1x1 event.listener]

Use the getStatement method to check the status:

getStatement(BA)

Account: 1234567
CurrentBalance: 500.00
Account Status: open

Make a withdrawal of $600, which results in a negative account balance:

withdraw(BA,600)
getStatement(BA)

Account: 1234567
CurrentBalance: -100.00
Account Status: overdrawn

The $600 withdrawal triggered the InsufficientsFunds event. The current criteria defined by the
AccountManager class results in a status of overdrawn.

Make another withdrawal of $200:

withdraw(BA,200)
getStatement(BA)

Account: 1234567
CurrentBalance: -300.00

3 MATLAB Classes Overview

3-12

Account Status: closed

Now the AccountStatus has been set to closed by the listener and further attempts to make
withdrawals are blocked without triggering the event:

withdraw(BA,100)

Account 1234567 has been closed.

If the AccountBalance is returned to a positive value by a deposit, then the AccountStatus is
returned to open and withdrawals are allowed again:

deposit(BA,700)
getStatement(BA)

Account: 1234567
CurrentBalance: 400.00
Account Status: open

 Developing Classes — Typical Workflow

3-13

Representing Structured Data with Classes

In this section...
“Objects as Data Structures” on page 3-14
“Structure of the Data” on page 3-14
“The TensileData Class” on page 3-15
“Create an Instance and Assign Data” on page 3-15
“Restrict Properties to Specific Values” on page 3-16
“Simplifying the Interface with a Constructor” on page 3-16
“Calculate Data on Demand” on page 3-17
“Displaying TensileData Objects” on page 3-18
“Method to Plot Stress vs. Strain” on page 3-18
“TensileData Class Synopsis” on page 3-19

Objects as Data Structures
This example defines a class for storing data with a specific structure. Using a consistent structure
for data storage makes it easier to create functions that operate on the data. A MATLAB struct with
field names describing the particular data element is a useful way to organize data. However, a class
can define both the data storage (properties) and operations that you can perform on that data
(methods). This example illustrates these advantages.

Background for the Example

For this example, the data represents tensile stress/strain measurements. These data are used to
calculate the elastic modulus of various materials. In simple terms, stress is the force applied to a
material and strain is the resulting deformation. Their ratio defines a characteristic of the material.
While this approach is an over simplification of the process, it suffices for this example.

Structure of the Data
This table describes the structure of the data.

Data Description
Material char vector identifying the type of material tested
SampleNumber Number of a particular test sample
Stress Vector of numbers representing the stress applied to the

sample during the test.
Strain Vector of numbers representing the strain at the

corresponding values of the applied stress.
Modulus Number defining an elastic modulus of the material under test,

which is calculated from the stress and strain data

3 MATLAB Classes Overview

3-14

The TensileData Class
This example begins with a simple implementation of the class and builds on this implementation to
illustrate how features enhance the usefulness of the class.

The first version of the class provides only data storage. The class defines a property for each of the
required data elements.

classdef TensileData
 properties
 Material
 SampleNumber
 Stress
 Strain
 Modulus
 end
end

Create an Instance and Assign Data
The following statements create a TensileData object and assign data to it:

td = TensileData;
td.Material = 'Carbon Steel';
td.SampleNumber = 001;
td.Stress = [2e4 4e4 6e4 8e4];
td.Strain = [.12 .20 .31 .40];
td.Modulus = mean(td.Stress./td.Strain);

Advantages of a Class vs. a Structure

Treat the TensileData object (td in the previous statements) much as you would any MATLAB
structure. However, defining a specialized data structure as a class has advantages over using a
general-purpose data structure, like a MATLAB struct:

• Users cannot accidentally misspell a field name without getting an error. For example, typing the
following:

td.Modulis = ...

would simply add a field to a structure. However, it returns an error when td is an instance of the
TensileData class.

• A class is easy to reuse. Once you have defined the class, you can easily extend it with subclasses
that add new properties.

• A class is easy to identify. A class has a name so that you can identify objects with the whos and
class functions and the Workspace browser. The class name makes it easy to refer to records
with a meaningful name.

• A class can validate individual field values when assigned, including class or value.
• A class can restrict access to fields, for example, allowing a particular field to be read, but not

changed.

 Representing Structured Data with Classes

3-15

Restrict Properties to Specific Values
Restrict properties to specific values by defining a property set access method. MATLAB calls the set
access method whenever setting a value for a property.

Material Property Set Function

The Material property set method restricts the assignment of the property to one of the following
strings: aluminum, stainless steel, or carbon steel.

Add this function definition to the methods block.

classdef TensileData
 properties
 Material
 SampleNumber
 Stress
 Strain
 Modulus
 end
 methods
 function obj = set.Material(obj,material)
 if (strcmpi(material,'aluminum') ||...
 strcmpi(material,'stainless steel') ||...
 strcmpi(material,'carbon steel'))
 obj.Material = material;
 else
 error('Invalid Material')
 end
 end
 end
end

When there is an attempt to set the Material property, MATLAB calls the set.Material method
before setting the property value.

If the value matches the acceptable values, the function set the property to that value. The code
within set method can access the property directly to avoid calling the property set method
recursively.

For example:

td = TensileData;
td.Material = 'brass';

Error using TensileData/set.Material
Invalid Material

Simplifying the Interface with a Constructor
Simplify the interface to the TensileData class by adding a constructor that:

• Enables you to pass the data as arguments to the constructor
• Assigns values to properties

The constructor is a method having the same name as the class.

3 MATLAB Classes Overview

3-16

methods
 function td = TensileData(material,samplenum,stress,strain)
 if nargin > 0
 td.Material = material;
 td.SampleNumber = samplenum;
 td.Stress = stress;
 td.Strain = strain;
 end
 end
end

Create a TensileData object fully populated with data using the following statement:

td = TensileData('carbon steel',1,...
 [2e4 4e4 6e4 8e4],...
 [.12 .20 .31 .40]);

Calculate Data on Demand
If the value of a property depends on the values of other properties, define that property using the
Dependent attribute. MATLAB does not store the values of dependent properties. The dependent
property get method determines the property value when the property is accessed. Access can occur
when displaying object properties or as the result of an explicit query.

Calculating Modulus

TensileData objects do not store the value of the Modulus property. The constructor does not have
an input argument for the value of the Modulus property. The value of the Modulus:

• Is calculated from the Stress and Strain property values
• Must change if the value of the Stress or Strain property changes

Therefore, it is better to calculate the value of the Modulus property only when its value is
requested. Use a property get access method to calculate the value of the Modulus.

Modulus Property Get Method

The Modulus property depends on Stress and Strain, so its Dependent attribute is true. Place
the Modulus property in a separate properties block and set the Dependent attribute.

The get.Modulus method calculates and returns the value of the Modulus property.

properties (Dependent)
 Modulus
end

Define the property get method in a methods block using only default attributes.

methods
 function modulus = get.Modulus(obj)
 ind = find(obj.Strain > 0);
 modulus = mean(obj.Stress(ind)./obj.Strain(ind));
 end
end

This method calculates the average ratio of stress to strain data after eliminating zeros in the
denominator data.

 Representing Structured Data with Classes

3-17

MATLAB calls the get.Modulus method when the property is queried. For example,

td = TensileData('carbon steel',1,...
 [2e4 4e4 6e4 8e4],...
 [.12 .20 .31 .40]);
td.Modulus

ans =
 1.9005e+005

Modulus Property Set Method

To set the value of a Dependent property, the class must implement a property set method. There is
no need to allow explicit setting of the Modulus property. However, a set method enables you to
provide a customized error message. The Modulus set method references the current property value
and then returns an error:

methods
 function obj = set.Modulus(obj,~)
 fprintf('%s%d\n','Modulus is: ',obj.Modulus)
 error('You cannot set the Modulus property');
 end
end

Displaying TensileData Objects
The TensileData class overloads the disp method. This method controls object display in the
command window.

The disp method displays the value of the Material, SampleNumber, and Modulus properties. It
does not display the Stress and Strain property data. These properties contain raw data that is not
easily viewed in the command window.

The disp method uses fprintf to display formatted text in the command window:
methods
 function disp(td)
 fprintf(1,...
 'Material: %s\nSample Number: %g\nModulus: %1.5g\n',...
 td.Material,td.SampleNumber,td.Modulus);
 end
end

Method to Plot Stress vs. Strain
It is useful to view a graph of the stress/strain data to determine the behavior of the material over a
range of applied tension. The TensileData class overloads the MATLAB plot function.

The plot method creates a linear graph of the stress versus strain data and adds a title and axis
labels to produce a standardized graph for the tensile data records:

methods
 function plot(td,varargin)
 plot(td.Strain,td.Stress,varargin{:})
 title(['Stress/Strain plot for Sample',...
 num2str(td.SampleNumber)])
 ylabel('Stress (psi)')

3 MATLAB Classes Overview

3-18

 xlabel('Strain %')
 end
end

The first argument to this method is a TensileData object, which contains the data.

The method passes a variable list of arguments (varargin) directly to the built-in plot function. The
TensileData plot method allows you to pass line specifier arguments or property name-value
pairs.

For example:

td = TensileData('carbon steel',1,...
 [2e4 4e4 6e4 8e4],[.12 .20 .31 .40]);
plot(td,'-+b','LineWidth',2)

TensileData Class Synopsis
Example Code Discussion
classdef TensileData Value class enables independent copies of

object. For more information, see “Comparison
of Handle and Value Classes” on page 7-2

 Representing Structured Data with Classes

3-19

Example Code Discussion
 properties
 Material
 SampleNumber
 Stress
 Strain
 end

See “Structure of the Data” on page 3-14

 properties (Dependent)
 Modulus
 end

Calculate Modulus when queried. For
information about this code, see “Calculate
Data on Demand” on page 3-17.

For general information, see “Set and Get
Methods for Dependent Properties” on page 8-
50

 methods For general information about methods, see
“Ordinary Methods” on page 9-6

 function td = TensileData(material,samplenum,...
 stress,strain)
 if nargin > 0
 td.Material = material;
 td.SampleNumber = samplenum;
 td.Stress = stress;
 td.Strain = strain;
 end
 end

For information about this code, see
“Simplifying the Interface with a Constructor”
on page 3-16.

For general information about constructors, see
“Class Constructor Methods” on page 9-16

 function obj = set.Material(obj,material)
 if (strcmpi(material,'aluminum') ||...
 strcmpi(material,'stainless steel') ||...
 strcmpi(material,'carbon steel'))
 obj.Material = material;
 else
 error('Invalid Material')
 end
 end

Restrict possible values for Material property.

For information about this code, see “Restrict
Properties to Specific Values” on page 3-16.

For general information about property set
methods, see “Property Set Methods” on page
8-45.

 function m = get.Modulus(obj)
 ind = find(obj.Strain > 0);
 m = mean(obj.Stress(ind)./obj.Strain(ind));
 end

Calculate Modulus property when queried.

For information about this code, see “Modulus
Property Get Method” on page 3-17.

For general information about property get
methods, see “Property Get Methods” on page
8-48.

 function obj = set.Modulus(obj,~)
 fprintf('%s%d\n','Modulus is: ',obj.Modulus)
 error('You cannot set Modulus property');
 end

Add set method for Dependent Modulus
property. For information about this code, see
“Modulus Property Set Method” on page 3-18.

For general information about property set
methods, see “Property Set Methods” on page
8-45.

3 MATLAB Classes Overview

3-20

Example Code Discussion
 function disp(td)
 fprintf(1,'Material: %s\nSample Number: %g\nModulus: %1.5g\n',...
 td.Material,td.SampleNumber,td.Modulus)
 end

Overload disp method to display certain
properties.

For information about this code, see
“Displaying TensileData Objects” on page 3-18

For general information about overloading disp,
see “Overloading the disp Function” on page
18-34

 function plot(td,varargin)
 plot(td.Strain,td.Stress,varargin{:})
 title(['Stress/Strain plot for Sample',...
 num2str(td.SampleNumber)])
 ylabel('Stress (psi)')
 xlabel('Strain %')
 end

Overload plot function to accept
TensileData objects and graph stress vs.
strain.

“Method to Plot Stress vs. Strain” on page 3-18
 end
end

end statements for methods and for
classdef.

Expand for Class Code

classdef TensileData
 properties
 Material
 SampleNumber
 Stress
 Strain
 end
 properties (Dependent)
 Modulus
 end

 methods
 function td = TensileData(material,samplenum,stress,strain)
 if nargin > 0
 td.Material = material;
 td.SampleNumber = samplenum;
 td.Stress = stress;
 td.Strain = strain;
 end
 end

 function obj = set.Material(obj,material)
 if (strcmpi(material,'aluminum') ||...
 strcmpi(material,'stainless steel') ||...
 strcmpi(material,'carbon steel'))
 obj.Material = material;
 else
 error('Invalid Material')
 end
 end

 function m = get.Modulus(obj)
 ind = find(obj.Strain > 0);
 m = mean(obj.Stress(ind)./obj.Strain(ind));
 end

 Representing Structured Data with Classes

3-21

 function obj = set.Modulus(obj,~)
 fprintf('%s%d\n','Modulus is: ',obj.Modulus)
 error('You cannot set Modulus property');
 end

 function disp(td)
 sprintf('Material: %s\nSample Number: %g\nModulus: %1.5g\n',...
 td.Material,td.SampleNumber,td.Modulus)
 end

 function plot(td,varargin)
 plot(td.Strain,td.Stress,varargin{:})
 title(['Stress/Strain plot for Sample ',...
 num2str(td.SampleNumber)])
 xlabel('Strain %')
 ylabel('Stress (psi)')
 end
 end
end

See Also

More About
• “Class Components” on page 5-4

3 MATLAB Classes Overview

3-22

Implementing Linked Lists with Classes
In this section...
“Class Definition Code” on page 3-23
“dlnode Class Design” on page 3-23
“Create Doubly Linked List” on page 3-24
“Why a Handle Class for Linked Lists?” on page 3-25
“dlnode Class Synopsis” on page 3-25
“Specialize the dlnode Class” on page 3-34

Class Definition Code
For the class definition code listing, see “dlnode Class Synopsis” on page 3-25.

To use the class, create a folder named @dlnode and save dlnode.m to this folder. The parent folder
of @dlnode must be on the MATLAB path. Alternatively, save dlnode.m to a path folder.

dlnode Class Design
dlnode is a class for creating doubly linked lists in which each node contains:

• Data array
• Handle to the next node
• Handle to the previous node

Each node has methods that enable the node to be:

• Inserted before a specified node in a linked list
• Inserted after a specific node in a linked list
• Removed from a list

Class Properties

The dlnode class implements each node as a handle object with three properties:

• Data — Contains the data for this node
• Next — Contains the handle of the next node in the list (SetAccess = private)
• Prev — Contains the handle of the previous node in the list (SetAccess = private)

This diagram shows a list with three-nodes n1, n2, and n3. It also shows how the nodes reference the
next and previous nodes.

 Implementing Linked Lists with Classes

3-23

Class Methods

The dlnode class implements the following methods:

• dlnode — Construct a node and assign the value passed as an input to the Data property
• insertAfter — Insert this node after the specified node
• insertBefore — Insert this node before the specified node
• removeNode — Remove this node from the list and reconnect the remaining nodes
• clearList — Remove large lists efficiently
• delete — Private method called by MATLAB when deleting the list.

Create Doubly Linked List
Create a node by passing the node's data to the dlnode class constructor. For example, these
statements create three nodes with data values 1, 2, and 3:

n1 = dlnode(1);
n2 = dlnode(2);
n3 = dlnode(3);

Build these nodes into a doubly linked list using the class methods designed for this purpose:

n2.insertAfter(n1) % Insert n2 after n1
n3.insertAfter(n2) % Insert n3 after n2

Now the three nodes are linked:

n1.Next % Points to n2

ans =

 dlnode with properties:

 Data: 2
 Next: [1x1 dlnode]
 Prev: [1x1 dlnode]

n2.Next.Prev % Points back to n2

ans =

 dlnode with properties:

 Data: 2
 Next: [1x1 dlnode]
 Prev: [1x1 dlnode]

n1.Next.Next % Points to n3

ans =

 dlnode with properties:

 Data: 3
 Next: []
 Prev: [1x1 dlnode]

3 MATLAB Classes Overview

3-24

n3.Prev.Prev % Points to n1

ans =

 dlnode with properties:

 Data: 1
 Next: [1x1 dlnode]
 Prev: []

Why a Handle Class for Linked Lists?
Each node is unique in that no two nodes can be previous to or next to the same node.

For example, a node object, node, contains in its Next property the handle of the next node object,
node.Next. Similarly, the Prev property contains the handle of the previous node, node.Prev.
Using the three-node linked list defined in the previous section, you can demonstrate that the
following statements are true:

n1.Next == n2
n2.Prev == n1

Now suppose that you assign n2 to x:

x = n2;

The following two equalities are then true:

x == n1.Next
x.Prev == n1

But each instance of a node is unique so there is only one node in the list that can satisfy the
conditions of being equal to n1.Next and having a Prev property that contains a handle to n1.
Therefore, x must point to the same node as n2.

There has to be a way for multiple variables to refer to the same object. The MATLAB handle class
provides a means for both x and n2 to refer to the same node.

The handle class defines the eq method (use methods('handle') to list the handle class methods),
which enables the use of the == operator with all handle objects.

Related Information

For more information on handle classes, see “Comparison of Handle and Value Classes” on page 7-
2.

dlnode Class Synopsis
This section describes the implementation of the dlnode class.

 Implementing Linked Lists with Classes

3-25

Example Code Discussion
classdef dlnode < handle “dlnode Class Design” on page 3-23

“Why a Handle Class for Linked Lists?” on page
3-25

“Comparison of Handle and Value Classes” on
page 7-2

 properties
 Data
 end

“dlnode Class Design” on page 3-23

 properties (SetAccess = private)
 Next = dlnode.empty
 Prev = dlnode.empty
 end

“Property Attributes” on page 8-6:
SetAccess.

Initialize these properties to empty dlnode
objects.

For general information about properties, see
“Property Syntax” on page 8-4

 methods For general information about methods,
see“Methods in Class Design” on page 9-2

 function node = dlnode(Data)
 if (nargin > 0)
 node.Data = Data;
 end
 end

Creating an individual node (not connected)
requires only the data.

For general information about constructors, see
“Guidelines for Constructors” on page 9-17

 function insertAfter(newNode, nodeBefore)
 removeNode(newNode);
 newNode.Next = nodeBefore.Next;
 newNode.Prev = nodeBefore;
 if ~isempty(nodeBefore.Next)
 nodeBefore.Next.Prev = newNode;
 end
 nodeBefore.Next = newNode;
 end

Insert node into a doubly linked list after
specified node, or link the two specified nodes
if there is not already a list. Assigns the correct
values for Next and Prev properties.

“Insert Nodes” on page 3-29

 function insertBefore(newNode, nodeAfter)
 removeNode(newNode);
 newNode.Next = nodeAfter;
 newNode.Prev = nodeAfter.Prev;
 if ~isempty(nodeAfter.Prev)
 nodeAfter.Prev.Next = newNode;
 end
 nodeAfter.Prev = newNode;
 end

Insert node into doubly linked list before
specified node, or link the two specified nodes
if there is not already a list. This method
assigns correct values for Next and Prev
properties.

See “Insert Nodes” on page 3-29
 function removeNode(node)
 if ~isscalar(node)
 error('Nodes must be scalar')
 end
 prevNode = node.Prev;
 nextNode = node.Next;
 if ~isempty(prevNode)
 prevNode.Next = nextNode;
 end
 if ~isempty(nextNode)
 nextNode.Prev = prevNode;
 end
 node.Next = = dlnode.empty;
 node.Prev = = dlnode.empty;
 end

Remove node and fix the list so that remaining
nodes are properly connected. node argument
must be scalar.

Once there are no references to node, MATLAB
deletes it.

“Remove a Node” on page 3-30

3 MATLAB Classes Overview

3-26

Example Code Discussion
 function clearList(node)
 prev = node.Prev;
 next = node.Next;
 removeNode(node)
 while ~isempty(next)
 node = next;
 next = node.Next;
 removeNode(node);
 end
 while ~isempty(prev)
 node = prev;
 prev = node.Prev;
 removeNode(node)
 end
 end

Avoid recursive calls to destructor as a result of
clearing the list variable. Loop through list to
disconnect each node. When there are no
references to a node, MATLAB calls the class
destructor (see the delete method) before
deleting it.

 methods (Access = private)
 function delete(node)
 clearList(node)
 end

Class destructor method. MATLAB calls the
delete method you delete a node that is still
connected to the list.

 end
end

End of private methods and end of class
definition.

Expand for Class Code
classdef dlnode < handle
 % dlnode A class to represent a doubly-linked node.
 % Link multiple dlnode objects together to create linked lists.
 properties
 Data
 end
 properties(SetAccess = private)
 Next = dlnode.empty
 Prev = dlnode.empty
 end

 methods
 function node = dlnode(Data)
 % Construct a dlnode object
 if nargin > 0
 node.Data = Data;
 end
 end

 function insertAfter(newNode, nodeBefore)
 % Insert newNode after nodeBefore.
 removeNode(newNode);
 newNode.Next = nodeBefore.Next;
 newNode.Prev = nodeBefore;
 if ~isempty(nodeBefore.Next)
 nodeBefore.Next.Prev = newNode;
 end
 nodeBefore.Next = newNode;
 end

 function insertBefore(newNode, nodeAfter)
 % Insert newNode before nodeAfter.
 removeNode(newNode);
 newNode.Next = nodeAfter;
 newNode.Prev = nodeAfter.Prev;

 Implementing Linked Lists with Classes

3-27

 if ~isempty(nodeAfter.Prev)
 nodeAfter.Prev.Next = newNode;
 end
 nodeAfter.Prev = newNode;
 end

 function removeNode(node)
 % Remove a node from a linked list.
 if ~isscalar(node)
 error('Input must be scalar')
 end
 prevNode = node.Prev;
 nextNode = node.Next;
 if ~isempty(prevNode)
 prevNode.Next = nextNode;
 end
 if ~isempty(nextNode)
 nextNode.Prev = prevNode;
 end
 node.Next = dlnode.empty;
 node.Prev = dlnode.empty;
 end

 function clearList(node)
 % Clear the list before
 % clearing list variable
 prev = node.Prev;
 next = node.Next;
 removeNode(node)
 while ~isempty(next)
 node = next;
 next = node.Next;
 removeNode(node);
 end
 while ~isempty(prev)
 node = prev;
 prev = node.Prev;
 removeNode(node)
 end
 end
 end

 methods (Access = private)
 function delete(node)
 clearList(node)
 end
 end
end

Class Properties

Only dlnode class methods can set the Next and Prev properties because these properties have
private set access (SetAccess = private). Using private set access prevents client code from
performing any incorrect operation with these properties. The dlnode class methods perform all the
operations that are allowed on these nodes.

The Data property has public set and get access, allowing you to query and modify the value of Data
as required.

3 MATLAB Classes Overview

3-28

Here is how the dlnode class defines the properties:

properties
 Data
end
properties(SetAccess = private)
 Next = dlnode.empty;
 Prev = dlnode.empty;
end

Construct a Node Object

To create a node object, specify the node's data as an argument to the constructor:

function node = dlnode(Data)
 if nargin > 0
 node.Data = Data;
 end
end

Insert Nodes

There are two methods for inserting nodes into the list — insertAfter and insertBefore. These
methods perform similar operations, so this section describes only insertAfter in detail.

function insertAfter(newNode, nodeBefore)
 removeNode(newNode);
 newNode.Next = nodeBefore.Next;
 newNode.Prev = nodeBefore;
 if ~isempty(nodeBefore.Next)
 nodeBefore.Next.Prev = newNode;
 end
 nodeBefore.Next = newNode;
end

How insertAfter Works

First, insertAfter calls the removeNode method to ensure that the new node is not connected to
any other nodes. Then, insertAfter assigns the newNode Next and Prev properties to the handles
of the nodes that are after and before the newNode location in the list.

For example, suppose that you want to insert a new node, nnew, after an existing node, n1, in a list
containing n1—n2—n3.

First, create nnew:

nnew = dlnode(rand(3));

Next, call insertAfter to insert nnew into the list after n1:

nnew.insertAfter(n1)

The insertAfter method performs the following steps to insert nnew in the list between n1 and n2:

• Set nnew.Next to n1.Next (n1.Next is n2):

nnew.Next = n1.Next;

 Implementing Linked Lists with Classes

3-29

• Set nnew.Prev to n1

nnew.Prev = n1;
• If n1.Next is not empty, then n1.Next is still n2, so n1.Next.Prev is n2.Prev, which is set to

nnew

n1.Next.Prev = nnew;
• n1.Next is now set to nnew

n1.Next = nnew;

Remove a Node

The removeNode method removes a node from a list and reconnects the remaining nodes. The
insertBefore and insertAfter methods always call removeNode on the node to insert before
attempting to connect it to a linked list.

Calling removeNode ensures that the node is in a known state before assigning it to the Next or
Prev property:

function removeNode(node)
 if ~isscalar(node)
 error('Input must be scalar')
 end
 prevNode = node.Prev;
 nextNode = node.Next;
 if ~isempty(prevNode)
 prevNode.Next = nextNode;
 end
 if ~isempty(nextNode)
 nextNode.Prev = prevNode;
 end
 node.Next = dlnode.empty;
 node.Prev = dlnode.empty;
end

For example, suppose that you remove n2 from a three-node list (n1–n2–n3):

n2.removeNode;

3 MATLAB Classes Overview

3-30

removeNode removes n2 from the list and reconnects the remaining nodes with the following steps:

n1 = n2.Prev;
n3 = n2.Next;
if n1 exists, then
 n1.Next = n3;
if n3 exists, then
 n3.Prev = n1

The list is rejoined because n1 connects to n3 and n3 connects to n1. The final step is to ensure that
n2.Next and n2.Prev are both empty (that is, n2 is not connected):

n2.Next = dlnode.empty;
n2.Prev = dlnode.empty;

Removing a Node from a List

Suppose that you create a list with 10 nodes and save the handle to the head of the list:

head = dlnode(1);
for i = 10:-1:2
 new = dlnode(i);
 insertAfter(new,head);
end

Now remove the third node (Data property assigned the value 3):

removeNode(head.Next.Next)

Now the third node in the list has a data value of 4:

head.Next.Next

ans =

 dlnode with properties:

 Data: 4
 Next: [1x1 dlnode]
 Prev: [1x1 dlnode]

And the previous node has a Data value of 2:

head.Next

 Implementing Linked Lists with Classes

3-31

ans =

 dlnode with properties:

 Data: 2
 Next: [1x1 dlnode]
 Prev: [1x1 dlnode]

Delete a Node

To delete a node, call the removeNode method on that node. The removeNode method disconnects
the node and reconnects the list before allowing MATLAB to destroy the removed node. MATLAB
destroys the node once references to it by other nodes are removed and the list is reconnected.

Delete the List

When you create a linked list and assign a variable that contains, for example, the head or tail of the
list, clearing that variable causes the destructor to recurse through the entire list. With large enough
list, clearing the list variable can result in MATLAB exceeding its recursion limit.

The clearList method avoids recursion and improves the performance of deleting large lists by
looping over the list and disconnecting each node. clearList accepts the handle of any node in the
list and removes the remaining nodes.

function clearList(node)
 if ~isscalar(node)
 error('Input must be scalar')
 end
 prev = node.Prev;
 next = node.Next;
 removeNode(node)
 while ~isempty(next)
 node = next;
 next = node.Next;

3 MATLAB Classes Overview

3-32

 removeNode(node);
 end
 while ~isempty(prev)
 node = prev;
 prev = node.Prev;
 removeNode(node)
 end
end

For example, suppose that you create a list with many nodes:

head = dlnode(1);
for k = 100000:-1:2
 nextNode = dlnode(k);
 insertAfter(nextNode,head)
end

The variable head contains the handle to the node at the head of the list:

head

head =

 dlnode with properties:

 Data: 1
 Next: [1x1 dlnode]
 Prev: []

head.Next

ans =

 dlnode with properties:

 Data: 2
 Next: [1x1 dlnode]
 Prev: [1x1 dlnode]

You can call clearList to remove the whole list:

clearList(head)

The only nodes that have not been deleted by MATLAB are those nodes for which there exists an
explicit reference. In this case, those references are head and nextNode:

head

head =

 dlnode with properties:

 Data: 1
 Next: []
 Prev: []

nextNode

nextNode =

 Implementing Linked Lists with Classes

3-33

 dlnode with properties:

 Data: 2
 Next: []
 Prev: []

You can remove these nodes by clearing the variables:

clear head nextNode

The delete Method

The delete method simply calls the clearList method:

methods (Access = private)
 function delete(node)
 clearList(node)
 end
end

The delete method has private access to prevent users from calling delete when intending to
delete a single node. MATLAB calls delete implicitly when the list is destroyed.

To delete a single node from the list, use the removeNode method.

Specialize the dlnode Class
The dlnode class implements a doubly linked list and provides a convenient starting point for
creating more specialized types of linked lists. For example, suppose that you want to create a list in
which each node has a name.

Rather than copying the code used to implement the dlnode class, and then expanding upon it, you
can derive a new class from dlnode (that is, subclass dlnode). You can create a class that has all the
features of dlnode and also defines its own additional features. And because dlnode is a handle
class, this new class is a handle class too.

NamedNode Class Definition

To use the class, create a folder named @NamedNode and save NamedNode.m to this folder. The
parent folder of @NamedNode must be on the MATLAB path. Alternatively, save NamedNode.m to a
path folder.

The following class definition shows how to derive the NamedNode class from the dlnode class:

classdef NamedNode < dlnode
 properties
 Name = ''
 end
 methods
 function n = NamedNode (name,data)
 if nargin == 0
 name = '';
 data = [];
 end
 n = n@dlnode(data);
 n.Name = name;

3 MATLAB Classes Overview

3-34

 end
 end
end

The NamedNode class adds a Name property to store the node name.

The constructor calls the class constructor for the dlnode class, and then assigns a value to the Name
property.

Use NamedNode to Create a Doubly Linked List

Use the NamedNode class like the dlnode class, except that you specify a name for each node object.
For example:

n(1) = NamedNode('First Node',100);
n(2) = NamedNode('Second Node',200);
n(3) = NamedNode('Third Node',300);

Now use the insert methods inherited from dlnode to build the list:

n(2).insertAfter(n(1))
n(3).insertAfter(n(2))

A single node displays its name and data when you query its properties:

n(1).Next

ans =

 NamedNode with properties:

 Name: 'Second Node'
 Data: 200
 Next: [1x1 NamedNode]
 Prev: [1x1 NamedNode]

n(1).Next.Next

ans =

 NamedNode with properties:

 Name: 'Third Node'
 Data: 300
 Next: []
 Prev: [1x1 NamedNode]

n(3).Prev.Prev

ans =

 NamedNode with properties:

 Name: 'First Node'
 Data: 100
 Next: [1x1 NamedNode]
 Prev: []

 Implementing Linked Lists with Classes

3-35

See Also

More About
• “The Handle Superclass” on page 7-11

3 MATLAB Classes Overview

3-36

Static Data

4

Static Data
In this section...
“What Is Static Data” on page 4-2
“Static Variable” on page 4-2
“Static Data Object” on page 4-3
“Constant Data” on page 4-4

What Is Static Data
Static data refers to data that all objects of the class share and that you can modify after creation.

Use static data to define counters used by class instances or other data that is shared among all
objects of a class. Unlike instance data, static data does not vary from one object to another. MATLAB
provides several ways to define static data, depending on your requirements.

Static Variable
Classes can use a persistent variable to store static data. Define a static method or local function in
which you create a persistent variable. The method or function provides access to this variable. Use
this technique when you want to store one or two variables.

Saving an object of the class defining the persistent variable does not save the static data associated
with the class. To save your static data in an object, or define more extensive data, use the static data
object technique “Static Data Object” on page 4-3

Implementation

The StoreData class defines a static method that declares a persistent variable Var. The
setgetVar method provides set and get access to the data in the persistent variable. Because the
setgetVar method has public access, you can set and get the data stored in the persistent variable
globally. Control the scope of access by setting the method Access attribute.

classdef StoreData
 methods (Static)
 function out = setgetVar(data)
 persistent Var;
 if nargin
 Var = data;
 end
 out = Var;
 end
 end
end

Set the value of the variable by calling setgetVar with an input argument. The method assigns the
input value to the persistent variable:

StoreData.setgetVar(10);

Get the value of the variable by calling setgetVar with no input argument:

4 Static Data

4-2

a = StoreData.setgetVar

a =

 10

Clear the persistent variable by calling clear on the StoreData class:

clear StoreData
a = StoreData.setgetVar

a =

 []

Add a method like setgetVar to any class in which you want the behavior of a static property.

Static Data Object
To store more extensive data, define a handle class with public properties. Assign an object of the
class to a constant property of the class that uses the static data. This technique is useful when you
want to:

• Add more properties or methods that modify the data.
• Save objects of the data class and reload the static data.

Implementation

The SharedData class is a handle class, which enables you to reference the same object data from
multiple handle variables:

classdef SharedData < handle
 properties
 Data1
 Data2
 end
end

The UseData class is the stub of a class that uses the data stored in the SharedData class. The
UseData class stores the handle to a SharedData object in a constant property.

classdef UseData
 properties (Constant)
 Data = SharedData
 end
 % Class code here
end

The Data property contains the handle of the SharedData object. MATLAB constructs the
SharedData object when loading the UseData class. All subsequently created instances of the
UseData class refer to the same SharedData object.

To initialize the SharedData object properties, load theUseData class by referencing the constant
property.

h = UseData.Data

 Static Data

4-3

h =

 SharedData with properties:

 Data1: []
 Data2: []

Use the handle to the SharedData object to assign data to property values:

h.Data1 = 'MyData1';
h.Data2 = 'MyData2';

Each instance of the UseData class refers to the same handle object:

a1 = UseData;
a2 = UseData;

Reference the data using the object variable:

a1.Data.Data1

ans =

MyData1

Assign a new value to the properties in the SharedData object:

a1.Data.Data1 = rand(3);

All new and existing objects of the UseData class share the same SharedData object. a2 now has
the rand(3) data that was assigned to a1 in the previous step:

a2.Data.Data1

ans =

 0.8147 0.9134 0.2785
 0.9058 0.6324 0.5469
 0.1270 0.0975 0.9575

To reinitialize the constant property, clear all instances of the UseData class and then clear the class:

clear a1 a2
clear UseData

Constant Data
To store constant values that do not change, assign the data to a constant property. All instances of
the class share the same value for that property. Control the scope of access to constant properties by
setting the property Access attribute.

The only way to change the value of a constant property is to change the class definition. Use
constant properties like public final static fields in Java®.

See Also
clear | persistent

4 Static Data

4-4

Related Examples
• “Define Class Properties with Constant Values” on page 15-2
• “Static Methods” on page 9-24

More About
• “Method Attributes” on page 9-4
• “Property Attributes” on page 8-6
• “Static Properties” on page 5-53

 Static Data

4-5

Class Definition—Syntax Reference

• “Class Files and Folders” on page 5-2
• “Class Components” on page 5-4
• “Classdef Block” on page 5-8
• “Class Properties” on page 5-10
• “Define Class Methods and Functions” on page 5-13
• “Events and Listeners” on page 5-17
• “Attribute Specification” on page 5-18
• “Call Superclass Methods on Subclass Objects” on page 5-20
• “Representative Class Code” on page 5-22
• “MATLAB Code Analyzer Warnings” on page 5-27
• “Objects In Conditional Statements” on page 5-29
• “Operations on Objects” on page 5-34
• “Use of Editor and Debugger with Classes” on page 5-37
• “Automatic Updates for Modified Classes” on page 5-39
• “Compatibility with Previous Versions” on page 5-46
• “Comparison of MATLAB and Other OO Languages” on page 5-49

5

Class Files and Folders
In this section...
“Class Definition Files” on page 5-2
“Options for Class Folders” on page 5-2
“Options for Class Files” on page 5-2
“Group Classes with Package Folders” on page 5-3

Class Definition Files
Put class definition code in files that have the .m extension. The name of the file must be the same as
the name of the class followed by the .m extension.

For information on the code that defines a class, see “Class Components” on page 5-4.

Options for Class Folders
There are two ways to create folders that contain class-definition files:

• Path folder — a folder that is on the MATLAB path.
• Class folder — a folder that is in a path folder and is named with the @ character and the class

name. For example:

@MyClass

Class folders are not directly on the MATLAB path. The path folder that contains the class folder is on
the MATLAB path.

Options for Class Files
There are two ways to specify classes with respect to files and folders:

• Create a single, self-contained class definition file in a path folder or a class folder
• Define a class in multiple files, which requires you to use a class folder inside a path folder

Create a Single, Self-Contained Class Definition File

Create a single, self-contained class definition file in a folder on the MATLAB® path. The name of the
file must match the class (and constructor) name and must have the .m extension. Define the class
entirely in this file. You can put other single-file classes in this folder.

The following diagram shows an example of this folder organization. pathfolder is a folder on the
MATLAB path.

Distribute the Class Definition to Multiple Files

If you use multiple files to define a class, put all the class-definition files (the file containing the
classdef and all class method files) in a single @ClassName folder. That class folder must be inside
a folder that is on the MATLAB path. You can define only one class in a class folder.

5 Class Definition—Syntax Reference

5-2

A path folder can contain classes defined in both class folders and single files without a class folder.

Group Classes with Package Folders
The parent folder to a package folder is on the MATLAB path, but the package folder is not. Package
folders (which always begin with a + character) can contain multiple class definitions, package-
scoped functions, and other packages. A package folder defines a new name space in which you can
reuse class names. Use the package name to refer to classes and functions defined in package folders
(for example, packagefld1.ClassNameA(), packagefld2.packageFunction()).

See Also

More About
• “Folders Containing Class Definitions” on page 6-13
• “Packages Create Namespaces” on page 6-20
• “Methods in Separate Files” on page 9-8

 Class Files and Folders

5-3

Class Components

In this section...
“Class Building Blocks” on page 5-4
“Class Definition Block” on page 5-4
“Properties Block” on page 5-5
“Methods Block” on page 5-5
“Events Block” on page 5-5
“A Complete Class” on page 5-6
“Enumeration Classes” on page 5-6
“Related Information” on page 5-7

Class Building Blocks
MATLAB organizes class definition code into modular blocks, delimited by keywords. All keywords
have an associated end statement:

• classdef...end — Definition of all class components
• properties...end — Declaration of property names, specification of property attributes,

assignment of default values
• methods...end — Declaration of method signatures, method attributes, and function code
• events...end — Declaration of event name and attributes
• enumeration...end — Declaration of enumeration members and enumeration values for

enumeration classes.

properties, methods, events, and enumeration are keywords only within a classdef block.

Class Definition Block
The classdef block contains the class definition within a file that starts with the classdef keyword
and terminates with the end keyword.

classdef (ClassAttributes) ClassName < SuperClass
 ...
end

For example, this classdef defines a class called MyClass that subclasses the handle class, but
cannot be used to derive subclasses:

classdef (Sealed) MyClass < handle
 ...
end

See, “Classdef Block” on page 5-8 for more syntax information.

5 Class Definition—Syntax Reference

5-4

Properties Block
The properties block (one for each unique set of attribute specifications) contains property
definitions, including optional initial values. The properties block starts with the properties
keyword and terminates with the end keyword.

classdef ClassName
 properties (PropertyAttributes)
 ...
 end
 ...
end

For example, this class defines a property called Prop1 that has private access and has a default
value equal to the output of the date function.

classdef MyClass
 properties (SetAccess = private)
 Prop1 = date
 end
 ...
end

See “Property Definition” on page 8-12 for more information.

Methods Block
The methods block (one for each unique set of attribute specifications) contains function definitions
for the class methods. The methods block starts with the methods keyword and terminates with the
end keyword.

classdef ClassName
 methods (MethodAttributes)
 ...
 end
 ...
end

For example:

classdef MyClass
 methods (Access = private)
 function obj = myMethod(obj)
 ...
 end
 end
end

See “Define Class Methods and Functions” on page 5-13 for more information.

Events Block
The events block (one for each unique set of attribute specifications) contains the names of events
that this class declares. The events block starts with the events keyword and terminates with the
end keyword.

 Class Components

5-5

classdef ClassName
 events (EventAttributes)
 EventName
 end
 ...
end

For example, this class defined an event called StateChange with a ListenAccess set to
protected:

classdef EventSource
 events (ListenAccess = protected)
 StateChanged
 end
 ...
end

See “Events and Listeners” on page 5-17 for more information.

A Complete Class
A complete class definition contains any combination of properties, methods, and events code blocks.

classdef (Sealed) MyClass < handle
 properties (SetAccess = private)
 Prop1 = datenum(date)
 end
 properties
 Prop2
 end
 methods
 function obj = MyClass(x)
 obj.Prop2 = x;
 end
 end
 methods (Access = {?MyOtherClass})
 function d = myMethod(obj)
 d = obj.Prop1 + x;
 end
 end
 events (ListenAccess = protected)
 StateChanged
 end
end

Enumeration Classes
Enumeration classes are specialized classes that define a fixed set of names representing a single
type of value. Enumeration classes use an enumeration block that contains the enumeration
members defined by the class.

The enumeration block starts with the enumeration keyword and terminates with the end keyword.

classdef ClassName < SuperClass
 enumeration
 EnumerationMember

5 Class Definition—Syntax Reference

5-6

 end
 ...
end

For example, this class defines two enumeration members that represent logical false and true:

classdef Boolean < logical
 enumeration
 No (0)
 Yes (1)
 end
end

See, “Define Enumeration Classes” on page 14-4 for more information.

Related Information
“Folders Containing Class Definitions” on page 6-13

 Class Components

5-7

Classdef Block
In this section...
“How to Specify Attributes and Superclasses” on page 5-8
“Class Attribute Syntax” on page 5-8
“Superclass Syntax” on page 5-8
“Local Functions in Class File” on page 5-9

How to Specify Attributes and Superclasses
The classdef block contains the class definition. The classdef line is where you specify:

• Class attributes
• Superclasses

The classdef block contains the properties, methods, and events subblocks.

Class Attribute Syntax
Class attributes modify class behavior in some way. Assign values to class attributes only when you
want to change their default value.

No change to default attribute values:

classdef ClassName
 ...
end

One or more attribute values assigned:

classdef (attribute1 = value,...) ClassName
 ...
end

For example, the TextString class specifies that it cannot be used to derive subclasses:

classdef (Sealed) TextString
 ...
end

See “Class Attributes” on page 6-5 for a list of attributes and a discussion of the behaviors they
control.

Superclass Syntax
Derive a class from one or more other classes by specifying the superclasses on the classdef line:

classdef ClassName < SuperclassName
 ...
end

For example, the LinkedList class inherits from classes called Array and handle:

5 Class Definition—Syntax Reference

5-8

classdef LinkedList < Array & handle
 ...
end

Local Functions in Class File
You can define only one class per file. However, you can add local functions to a file containing the
classdef block. Local functions are scoped to the classdef file and have access to private and
protected class members.

classdef ClassName
 ...
end
function localFunction
 ...
end

See Also

Related Examples
• “User-Defined Classes” on page 6-2
• “Design Subclass Constructors” on page 12-7
• “Local Functions”

 Classdef Block

5-9

Class Properties
In this section...
“The Properties Block” on page 5-10
“Access to Property Values” on page 5-11

The Properties Block
Define class properties within a properties block:

classdef ClassName
 properties (PropertyAttributes)
 PropertyName size class {validation functions} = DefaultValue
 end
end

Property attributes apply to all properties defined within the block. To define properties with different
attributes, use multiple properties blocks. All property attributes have default values. For a list of
property attributes, see “Property Attributes” on page 8-6.

Restrict the size, class, and other aspects of values assigned to properties in the property definition.
For more information, see “Validate Property Values” on page 8-19.

Optionally assign default values to the property in the properties block. MATLAB evaluates the
assignment statement when the class is first referenced or when loading a saved object. For more
information, see “Property Definition” on page 8-12.

Note Evaluation of property default values occurs only when the value is first needed, and only once
when MATLAB first initializes the class. MATLAB does not reevaluate the expression each time you
create an instance of the class.

For more information on the evaluation of expressions that you assign as property default values, see
“When MATLAB Evaluates Expressions” on page 6-10.

Properties with Different Attributes

The following class defines three properties. Model and Color use default attribute values, resulting
in public read and write access. SerialNumber has read-only access by object users. Assign the
SerialNumber property value from a class member function, such as the constructor or other class
method.

classdef NewCar
 properties
 Model
 Color
 end
 properties (SetAccess = private)
 SerialNumber
 end
 methods
 ...

5 Class Definition—Syntax Reference

5-10

 end
end

Access to Property Values
Use dot notation to access property value.

A = NewCar

A =

 NewCar with properties:

 Model: []
 Color: []
 SerialNumber: []

Set the Model and Color properties:

A.Model = 'XGT7000';
A.Color = 'Red';

Add a constructor to the NewCar class to set property values:

classdef NewCar
 properties
 Model
 Color
 end
 properties (SetAccess = private)
 SerialNumber
 end
 methods
 function obj = NewCar(model,color)
 obj.Model = model;
 obj.Color = color;
 obj.SerialNumber = datenum(datetime('now'));
 end
 end
end

A = NewCar('XGT7000','Red')

A =

 NewCar with properties:

 Model: 'XGT7000'
 Color: 'Red'
 SerialNumber: 7.362456078531134e+05

See Also

Related Examples
• “Ways to Use Properties” on page 8-2

 Class Properties

5-11

• “Validate Property Values” on page 8-19

5 Class Definition—Syntax Reference

5-12

Define Class Methods and Functions

In this section...
“The Methods Block” on page 5-13
“Method Calling Syntax” on page 5-13
“Private Methods” on page 5-14
“More Detailed Information on Methods” on page 5-14
“Class-Related Functions” on page 5-14
“How to Overload Functions and Operators” on page 5-15
“Rules for Defining Methods in Separate Files” on page 5-15

The Methods Block
Define methods as MATLAB functions within a methods block, inside the classdef block. The
constructor method has the same name as the class and returns an initialized object of the class. To
create an object with property values that are unique to that instance, assign values to properties in
the class constructor. Terminate all method functions with an end statement.

classdef ClassName
 properties
 PropertyName
 end
 methods
 function obj = ClassName(arg1,...)
 obj.PropertyName = arg1;
 ...
 end
 function ordinaryMethod(obj,arg1,...)
 ...
 end
 end
 methods (Static)
 function staticMethod(arg1,...)
 ...
 end
 end
end

Method Calling Syntax
MATLAB differs from languages like C++ and Java in that there is no special hidden class object
passed to all methods. You must pass an object of the class explicitly to the method. The leftmost
argument does not need to be the class object, and the argument list can have multiple objects.
MATLAB dispatches to the method defined by the class of the dominant argument. For more
information, see “Method Invocation” on page 9-11.

Methods must be on the MATLAB path when called. For example, if you create an object and then
change your current folder to a folder from which the method file is not visible, an error occurs when
you call that method.

Always use case-sensitive method names in your MATLAB code.

 Define Class Methods and Functions

5-13

Ordinary Methods

Call ordinary methods using MATLAB function syntax or dot notation. For example, suppose that you
have a class that defines ordinaryMethod. Pass an object of the defining class and whatever
arguments are required.

classdef MyClass
 methods
 function out = ordinaryMethod(obj,arg1)
 ...
 end
 end
end

Call ordinaryMethod using the object obj of the class and either syntax:

obj = MyClass;
r = ordinaryMethod(obj,arg1);
r = obj.ordinaryMethod(arg1);

Static Methods

Static methods do not require an object of the class. To call a static method, prefix the method name
with the class name so that MATLAB can determine what class defines the method.

classdef MyClass
 methods (Static)
 function out = staticMethod(arg1)
 ...
 end
 end
end

Call staticMethod using the syntax classname.methodname:

r = MyClass.staticMethod(arg1);

See “Static Methods” on page 9-24 for information on methods that do not require objects of their
class.

Private Methods
Use the Access method attribute to create a private method. You do not need to use a private folder.

See “Method Attributes” on page 9-4 for a list of method attributes.

More Detailed Information on Methods
“Methods”

Class-Related Functions
You can define functions that are not class methods in the file that contains the class definition
(classdef). Define local functions outside of the classdef - end block, but in the same file as the
class definition. Functions defined in classdef files work like local functions. You can call these

5 Class Definition—Syntax Reference

5-14

functions from anywhere in the same file, but they are not visible outside of the file in which you
define them.

Local functions in classdef files are useful for utility functions that you use only within that file.
These functions can take or return arguments that are instances of the class but, it is not necessary,
as in the case of ordinary methods. For example, the following code defines myUtilityFcn outside
the classdef block:

classdef MyClass
 properties
 PropName
 end
 methods
 function obj = MyClass(arg1)
 obj.PropName = arg1;
 end
 end
end % End of classdef

function myUtilityFcn
 ...
end

You also can create package functions, which require the use of the package name when calling these
functions.

How to Overload Functions and Operators
Overload MATLAB functions for your class by defining a class method with the same name as the
function that you want to overload. MATLAB dispatches to the class method when the function is
called with an instance of the class.

You can overload MATLAB arithmetic, logical, relational, and indexing operators by defining class
methods with the appropriate names.

See the handle class for a list of operations defined for that class. All classes deriving from handle
inherit these methods.

Rules for Defining Methods in Separate Files
The following rules apply to methods defined in separate files:

• To specify attributes for a method defined in a separate file, declare this method in a methods
block in the classdef file. Specify the attribute values with the methods block.

• Match the syntax declared in the methods block (if used) to the method's function line.
• The separate file must be in the class (@) folder.
• The class constructor method must be defined in the classdef file. The constructor cannot be in

a separate file.
• Handle class delete methods must be defined in the classdef file. The delete method cannot

be in a separate file.

All functions that use dots in their names must be defined in the classdef file, including:

 Define Class Methods and Functions

5-15

• Converter methods that must use the package name as part of the class name because the
class is contained in packages

• Property set and get access methods

For more information on defining methods in separate files, see “Methods in Separate Files” on page
9-8

See Also

More About
• “Methods in Class Design” on page 9-2

5 Class Definition—Syntax Reference

5-16

Events and Listeners

In this section...
“Define and Trigger Events” on page 5-17
“Listen for Events” on page 5-17

Define and Trigger Events
To define an event, declare a name for the event in an events block. Trigger the event using the
handle class notify method. Only classes derived from the handle class can define events.

For example, MyClass class:

• Subclasses handle
• Defines an event named StateChange
• Triggers the event using the inherited notify method in its upDateUI method.

classdef MyClass < handle
 events
 StateChange
 end
 ...
 methods
 function upDateUI(obj)
 ...
 notify(obj,'StateChange');
 end
 end
end

Listen for Events
Any number of objects can listen to the StateChange event. When notify executes, MATLAB calls
all registered listener callbacks. MATLAB passes the handle of the object generating the event and
event data to the callback functions. To create a listener, use the addlistener method of the
handle class.

addlistener(event_obj,'StateChange',@myCallback)

To control the lifecycle of the listener, use the event.listener constructor to create the listener
object.

See Also
event.hasListener | event.listener | event.proplistener

Related Examples
• “Overview Events and Listeners” on page 11-2
• “Events and Listeners Syntax” on page 11-17

 Events and Listeners

5-17

Attribute Specification
In this section...
“Attribute Syntax” on page 5-18
“Attribute Descriptions” on page 5-18
“Attribute Values” on page 5-18
“Simpler Syntax for true/false Attributes” on page 5-19

Attribute Syntax
Attributes modify the behavior of classes and class components (properties, methods, and events).
Attributes enable you to define useful behaviors without writing complicated code. For example, you
can create a read-only property by setting its SetAccess attribute to private, but leaving its
GetAccess attribute set to public:

properties (SetAccess = private)
 ScreenSize = getScreenSize
end

All class definition blocks (classdef, properties, methods, and events) support specific
attributes. All attributes have default values. Specify attribute values only in cases where you want to
change from the default value to another predefined value.

Note Specify the value of a particular attribute only once in any component block.

Attribute Descriptions
For lists of supported attributes, see:

• “Class Attributes” on page 6-5
• “Property Attributes” on page 8-6
• “Method Attributes” on page 9-4
• “Event Attributes” on page 11-15

Attribute Values
When you specify attribute values, those values affect all the components defined within the defining
block. For example, the following property definition blocks set the:

• AccountBalance property SetObservable attribute to true
• SSNumber and CreditCardNumber properties' Hidden attribute to true and SetAccess

attribute to private.

Defining properties with different attribute settings requires multiple properties blocks.
properties (SetObservable = true)
 AccountBalance
end
properties (SetAccess = private, Hidden = true)

5 Class Definition—Syntax Reference

5-18

 SSNumber
 CreditCardNumber
end

Specified multiple attributes in a comma-separated list, as shown in the previous example.

When specifying class attributes, place the attribute list directly after the classdef keyword:

classdef (AttributeName = attributeValue) ClassName
 ...
end

Simpler Syntax for true/false Attributes
You can use a simpler syntax for attributes whose values are true or false — the attribute name
alone implies true and adding the not operator (~) to the name implies false. For example:

methods (Static)
 ...
end

Is the same as:

methods (Static = true)
 ...
end

Use the not operator before an attribute name to define it as false:

methods (~Static)
 ...
end

Is the same as:

methods (Static = false)
 ...
end

All attributes that take a logical value (that is, true or false) have a default value of false.
Therefore, specify an attribute only if you want to set it to true.

See Also

Related Examples
• “Evaluation of Expressions in Class Definitions” on page 6-8

 Attribute Specification

5-19

Call Superclass Methods on Subclass Objects
In this section...
“Superclass Relation to Subclass” on page 5-20
“How to Call Superclass Methods” on page 5-20
“How to Call Superclass Constructor” on page 5-20

Superclass Relation to Subclass
Subclasses can override superclass methods to support the greater specialization defined by the
subclass. Because of the relationship that a subclass object is a superclass object, it is often useful to
call the superclass version of the method before executing the specialized subclass code.

How to Call Superclass Methods
Subclass methods can call superclass methods if both methods have the same name. From the
subclass, reference the method name and superclass name with the @ symbol.

This diagram illustrates how to call the superMethod defined by MySuperClass.

For example, a subclass can call a superclass disp method to implement the display of the superclass
part of the object. Then the subclass adds code to display the subclass part of the object:

classdef MySub < MySuperClass
 methods
 function disp(obj)
 disp@MySuperClass(obj)
 ...
 end
 end
end

How to Call Superclass Constructor
If you create a subclass object, MATLAB calls the superclass constructor to initialize the superclass
part of the subclass object. By default, MATLAB calls the superclass constructor without arguments.
If you want the superclass constructor called with specific arguments, explicitly call the superclass
constructor from the subclass constructor. The call to the superclass constructor must come before
any other references to the object.

The syntax for calling the superclass constructor uses an @ symbol:

In the following class, the MySub object is initialized by the MySuperClass constructor. The
superclass constructor constructs the MySuperClass part of the object using the specified
arguments.

classdef MySub < MySuperClass
 methods

5 Class Definition—Syntax Reference

5-20

 function obj = MySub(arg1,arg2,...)
 obj = obj@MySuperClass(SuperClassArguments);
 ...
 end
 end
end

See “Subclass Constructors” on page 9-19 for more information.

See Also

Related Examples
• “Modify Inherited Methods” on page 12-13

 Call Superclass Methods on Subclass Objects

5-21

Representative Class Code
In this section...
“Class Calculates Area” on page 5-22
“Description of Class Definition” on page 5-24

Class Calculates Area
The CircleArea class shows the syntax of a typical class definition. This class stores a value for the
radius of a circle and calculates the area of the circle when you request this information.
CircleArea also implements methods to graph, display, and create objects of the class.

To use the CircleArea class, copy this code into a file named CircleArea.m and save this file in a
folder that is on the MATLAB path.

classdef CircleArea
 properties
 Radius
 end
 properties (Constant)
 P = pi
 end
 properties (Dependent)
 Area
 end
 methods
 function obj = CircleArea(r)
 if nargin > 0
 obj.Radius = r;
 end
 end
 function val = get.Area(obj)
 val = obj.P*obj.Radius^2;
 end
 function obj = set.Radius(obj,val)
 if val < 0
 error('Radius must be positive')
 end
 obj.Radius = val;
 end
 function plot(obj)
 r = obj.Radius;
 d = r*2;
 pos = [0 0 d d];
 curv = [1 1];
 rectangle('Position',pos,'Curvature',curv,...
 'FaceColor',[.9 .9 .9])
 line([0,r],[r,r])
 text(r/2,r+.5,['r = ',num2str(r)])
 title(['Area = ',num2str(obj.Area)])
 axis equal
 end
 function disp(obj)
 rad = obj.Radius;
 disp(['Circle with radius: ',num2str(rad)])

5 Class Definition—Syntax Reference

5-22

 end
 end
 methods (Static)
 function obj = createObj
 prompt = {'Enter the Radius'};
 dlgTitle = 'Radius';
 rad = inputdlg(prompt,dlgTitle);
 r = str2double(rad{:});
 obj = CircleArea(r);
 end
 end
end

Use the CircleArea Class

Create an object using the dialog box:

ca = CircleArea.createObj

Add a value for radius and click OK.

Query the area of the defined circle:

ca.Area

ans =

 164.2202

Call the overloaded plot method:

plot(ca)

 Representative Class Code

5-23

Description of Class Definition
Class definition code begins with the classdef keyword followed by the class name:
classdef CircleArea
Define the Radius property within the properties-end keywords. Use default attributes:
 properties
 Radius
 end
Define the P property as Constant (“Define Class Properties with Constant Values” on page 15-
2). Call the pi function only once when class is initialized.
 properties (Constant)
 P = pi
 end
Define the Area property as Dependent because its value depends on the Radius property.
 properties (Dependent)
 Area
 end
methods % Begin defining methods
The CircleArea class constructor method has the same name as the class and accepts the value of
the circle radius as an argument. This method also allows no input arguments. (“Class Constructor
Methods” on page 9-16)

5 Class Definition—Syntax Reference

5-24

 function obj = CircleArea(r)
 if nargin > 0
 obj.Radius = r;
 else
 obj.Radius = 0;
 end
 end
Because the Area property is Dependent, it does not store its value. The get.Area method
calculates the value of the Area property whenever it is queried. (“Set and Get Methods for
Dependent Properties” on page 8-50)
 function val = get.Area(obj)
 val = obj.P*obj.Radius^2;
 end
The set.Radius method tests the value assigned to the Radius property to ensure that the value is
not less than zero. MATLAB calls set.Radius to assign a value to Radius. (“Property Set Methods”
on page 8-45.
 function obj = set.Radius(obj,val)
 if val < 0
 error('Radius must be positive')
 end
 obj.Radius = val;
 end
The CircleArea class overloads the plot function. The plot method uses the rectangle function
to create a circle and draws the radius. (“Overload Functions in Class Definitions” on page 9-26
 function plot(obj)
 r = obj.Radius;
 d = r*2;
 pos = [0 0 d d];
 curv = [1 1];
 rectangle('Position',pos,'Curvature',curv)
 line([0,r],[r,r])
 text(r/2,r+.5,['r = ',num2str(r)])
 axis equal
 end
The CircleArea class overloads the disp function to change the way MATLAB displays objects in
the command window.
 function disp(obj)
 rad = obj.Radius;
 disp(['Circle with radius: ',num2str(rad)])
 end
end
methods (Static)
The CircleArea class defines a Static method that uses a dialog box to create an object. (“Static
Methods” on page 9-24
 function obj = createObj
 prompt = {'Enter the Radius'};
 dlgTitle = 'Radius';
 rad = inputdlg(prompt,dlgTitle);
 r = str2double(rad{:});
 obj = CircleArea(r);
 end

 Representative Class Code

5-25

End of Static methods block and end of classdef block.
 end
end

5 Class Definition—Syntax Reference

5-26

MATLAB Code Analyzer Warnings
In this section...
“Syntax Warnings and Property Names” on page 5-27
“Variable/Property Name Conflict Warnings” on page 5-27
“Exception to Variable/Property Name Rule” on page 5-28

Syntax Warnings and Property Names
The MATLAB Code Analyzer helps you optimize your code and avoid syntax errors while you write
code. It is useful to understand some of the rules that the Code Analyzer applies in its analysis of
class definition code. This understanding helps you avoid situations in which MATLAB allows code
that is undesirable.

Variable/Property Name Conflict Warnings
The Code Analyzer warns about the use of variable names in methods that match the names of
properties. For example, suppose that a class defines a property called EmployeeName and in this
class, there is a method that uses EmployeeName as a variable:

properties
 EmployeeName
end
methods
 function someMethod(obj,n)
 EmployeeName = n;
 end
end

While the previous function is legal MATLAB code, it results in Code Analyzer warnings for two
reasons:

• The value of EmployeeName is never used
• EmployeeName is the name of a property that is used as a variable

If the function someMethod contained the following statement instead:

obj.EmployeeName = n;

The Code Analyzer generates no warnings.

If you change someMethod to:

function EN = someMethod(obj)
 EN = EmployeeName;
end

The Code Analyzer returns only one warning, suggesting that you might actually want to refer to the
EmployeeName property.

While this version of someMethod is legal MATLAB code, it is confusing to give a property the same
name as a function. Therefore, the Code Analyzer provides a warning suggesting that you might have
intended the statement to be:

 MATLAB Code Analyzer Warnings

5-27

EN = obj.EmployeeName;

Exception to Variable/Property Name Rule
Suppose that you define a method that returns a value of a property and uses the name of the
property for the output variable name. For example:

function EmployeeName = someMethod(obj)
 EmployeeName = obj.EmployeeName;
end

The Code Analyzer does not warn when a variable name is the same as a property name when the
variable is:

• An input or output variable
• A global or persistent variable

In these particular cases, the Code Analyzer does not warn you that you are using a variable name
that is also a property name. Therefore, a coding error like the following:

function EmployeeName = someMethod(obj)
 EmployeeName = EmployeeName; % Forgot to include obj.
end

does not trigger a warning from the Code Analyzer.

See Also

Related Examples
• “Use of Editor and Debugger with Classes” on page 5-37

5 Class Definition—Syntax Reference

5-28

Objects In Conditional Statements
In this section...
“Enable Use of Objects in Conditional Statements” on page 5-29
“How MATLAB Evaluates Switch Statements” on page 5-29
“How to Define the eq Method” on page 5-30
“Enumerations in Switch Statements” on page 5-32

Enable Use of Objects in Conditional Statements
Enable the use of objects in conditional statements by defining relational operators for the class of
the object. Classes that derive from the handle class inherit relational operators. Value classes can
implement operators to support the use of conditional statements involving objects. For information
on defining operators for your class, see “Operator Overloading” on page 17-38.

How MATLAB Evaluates Switch Statements
MATLAB enables you to use objects in switch statements when the object’s class defines an eq
method. The eq method implements the == operation on objects of that class.

For objects, case_expression == switch_expression defines how MATLAB evaluates switch
and cases statements.

The values returned by the eq method must be of type logical or convertible to logical. MATLAB
attempts to convert the output of eq to a logical value if the output of the eq method is a nonlogical
value.

Note You do not need to define eq methods for enumeration classes. See “Enumerations in Switch
Statements” on page 5-32.

Handle Objects in Switch Statements

All classes derived from the handle class inherit an eq method. The expression,

h1 == h2

is true if h1 and h2 are handles for the same object.

For example, the BasicHandle class derives from handle:

classdef BasicHandle < handle
 properties
 Prop1
 end
 methods
 function obj = BasicHandle(val)
 if nargin > 0
 obj.Prop1 = val;
 end
 end

 Objects In Conditional Statements

5-29

 end
end

Create a BasicHandle object and use it in a switch statement:

h1 = BasicHandle('Handle Object');
h2 = h1;

Here is the switch statement code:

switch h1
 case h2
 disp('h2 is selected')
 otherwise
 disp('h2 not selected')
end

The result is:

h2 is selected

Object Must Be Scalar

The switch statements work only with scalar objects. For example:

h1(1) = BasicHandle('Handle Object');
h1(2) = BasicHandle('Handle Object');
h1(3) = BasicHandle('Handle Object');
h2 = h1;

switch h1
 case h2
 disp('h2 is selected')
 otherwise
 disp('h2 not selected')
end

The result is:

SWITCH expression must be a scalar or string constant.

In this case, h1 is not scalar. Use isscalar to determine if an object is scalar before entering a
switch statement.

How to Define the eq Method
To enable the use of value-class objects in switch statements, implement an eq method for the class.
Use the eq method to determine what constitutes equality of two objects of the class.

Behave like a Built-in Type

Some MATLAB functions also use the built-in == operator in their implementation. Therefore, your
implementation of eq should be replaceable with the built-in eq to enable objects of your class work
like built-in types in MATLAB code.

Design of eq

Implement the eq method to return a logical array representing the result of the == comparison.

5 Class Definition—Syntax Reference

5-30

For example, the SwitchOnVer class implements an eq method that returns true for the ==
operation if the value of the Version property is the same for both objects. In addition, eq works
with arrays the same way as the built-in eq. For the following expression:

obj1 == obj2

The eq method works as follows:

• If both obj1 and obj2 are scalar, eq returns a scalar value.
• If both obj1 and obj2 are nonscalar arrays, then these arrays must have the same dimensions,

and eq returns an array of the same size.
• If one input argument is scalar and the other is a nonscalar array, then eq treats the scalar object

as if it is an array having the same dimensions as the nonscalar array.

Implementation of eq

Here is a class that implements an eq method. Ensure that your implementation contains appropriate
error checking for the intended use.

classdef SwitchOnVer
 properties
 Version
 end
 methods
 function obj = SwitchOnVer(ver)
 if nargin > 0
 obj.Version = ver;
 end
 end
 function bol = eq(obj1,obj2)
 if ~strcmp(class(obj1),class(obj2))
 error('Objects are not of the same class')
 end
 s1 = numel(obj1);
 s2 = numel(obj2);
 if s1 == s2
 bol = false(size(obj1));
 for k=1:s1
 if obj1(k).Version == obj2(k).Version
 bol(k) = true;
 else
 bol(k) = false;
 end
 end
 elseif s1 == 1
 bol = scalarExpEq(obj2,obj1);
 elseif s2 == 1
 bol = scalarExpEq(obj1,obj2);
 else
 error('Dimension missmatch')
 end
 function ret = scalarExpEq(ns,s)
 % ns is nonscalar array
 % s is scalar array
 ret = false(size(ns));
 n = numel(ns);
 for kk=1:n

 Objects In Conditional Statements

5-31

 if ns(kk).Version == s.Version
 ret(kk) = true;
 else
 ret(kk) = false;
 end
 end
 end
 end
 end
end

Use SwitchOnVer objects in switch statements:

% Create known versions of objects
ov1 = SwitchOnVer(1.0);
ov2 = SwitchOnVer(2.0);
ov3 = SwitchOnVer(3.0);
...

...
if isscalar(objIn)
 switch(objIn)
 case ov1
 disp('This is version 1.0')
 case ov2
 disp('This is version 2.0')
 case ov3
 disp('This is version 3.0')
 otherwise
 disp('There is no version')
 end
 else
 error('Input object must be scalar')
 end

Enumerations in Switch Statements
MATLAB enables you to use enumerations in switch statements without requiring an explicitly
defined eq method for the enumeration class.

For example, the WeeklyPlanner class defines enumerations for five days of the week. The switch/
case statements in the todaySchedule static method dispatch on the enumeration member
corresponding to the current day of the week. The date and datestr functions return a char vector
with the name of the current day.

classdef WeeklyPlanner
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
 methods (Static)
 function todaySchedule
 dayName = datestr(date,'dddd');
 dayEnum = WeeklyPlanner.(dayName);
 switch dayEnum
 case WeeklyPlanner.Monday
 disp('Monday schedule')
 case WeeklyPlanner.Tuesday

5 Class Definition—Syntax Reference

5-32

 disp('Tuesday schedule')
 case WeeklyPlanner.Wednesday
 disp('Wednesday schedule')
 case WeeklyPlanner.Thursday
 disp('Thursday schedule')
 case WeeklyPlanner.Friday
 disp('Friday schedule')
 end
 end
 end
end

Call todaySchedule to display today’s schedule:

WeeklyPlanner.todaySchedule

Enumerations Derived from Built-In Types

Enumeration classes that derived from built-in types inherit the superclass eq method. For example,
the FlowRate class derives from int32:

classdef FlowRate < int32
 enumeration
 Low (10)
 Medium (50)
 High (100)
 end
end

The switchEnum function switches on the input argument, which can be a FlowRate enumeration
value.

function switchEnum(inpt)
 switch inpt
 case 10
 disp('Flow = 10 cfm')
 case 50
 disp('Flow = 50 cfm')
 case 100
 disp('Flow = 100 cfm')
 end
end

Call switchEnum with an enumerated value:

switchEnum(FlowRate.Medium)

Flow = 50 cfm

 Objects In Conditional Statements

5-33

Operations on Objects
In this section...
“Object Operations” on page 5-34
“Help on Objects” on page 5-35
“Functions to Test Objects” on page 5-36
“Functions to Query Class Components” on page 5-36

Object Operations
A fundamental purpose of objects is to contain data and facilitate ways to manipulate that data.
Objects often define their own version of ordinary MATLAB functions that work with the object. For
example, you can create a timeseries object and pass the object to plot:

ts = timeseries(rand(100,1),.01:.01:1,'Name','Data1');
plot(ts)

However, MATLAB does not call the standard plot function. MATLAB calls the timeseries plot
method, which can extract the data from the timeseries object and create a customized graph.

5 Class Definition—Syntax Reference

5-34

Help on Objects
Suppose that you use an audioplayer object to play audio with MATLAB. To play audio, load audio
data into MATLAB and create an audioplayer:

load('handel','Fs','y')
chorus = audioplayer(y,Fs);

The audioplayer function creates an object that you access using the object variable chorus.
MATLAB stores the audio source and other information in the object properties.

Here are the properties and values for the chorus instance of the audioplayer:

chorus

chorus =

Click the link to get the documentation on audioplayer objects.

The object’s documentation discusses the purpose of the object and describes the properties and
methods that you use when working with objects of that class.

You can also list the methods to see what operations you can perform. Pass the object to the methods
function to see the list:

methods(chorus)

Methods for class audioplayer:

audioplayer getdisp pause resume stop
delete horzcat play set vertcat
get isplaying playblocking setdisp

To play the audio, use the play method:

play(chorus)

 Operations on Objects

5-35

Functions to Test Objects
These functions provide logical tests, which are useful when using objects in ordinary functions.

Function Description
isa Determine whether an argument is an object of specific class.
isequal Determine if two objects are equal, which means both objects are of the

same class and size and their corresponding property values are equal.
a == b (eq) Determine if handle variable a refers to the same object as handle variable b.
isobject Determine whether input is a MATLAB object

Functions to Query Class Components
These functions provide information about object class components.

Function Description
class Return class of object.
enumeration Display class enumeration members and names.
events List event names defined by the class.
methods List methods implemented by the class.
methodsview List methods in separate window.
properties List class property names.

See Also

Related Examples
• “Class Syntax Guide”

5 Class Definition—Syntax Reference

5-36

Use of Editor and Debugger with Classes
In this section...
“Write Class Code in the Editor” on page 5-37
“How to Refer to Class Files” on page 5-37
“How to Debug Class Files” on page 5-37

Write Class Code in the Editor
The MATLAB code editor provides an effective environment for class development. The Code
Analyzer, which is built into the editor, check code for problems and provides information on fixing
these problems. For information on editor use and features, see edit.

How to Refer to Class Files
Define classes in files just like scripts and functions. To use the editor or debugger with a class file,
use the full class name. For example, suppose the file for a class, myclass.m is in the following
location:

+PackFld1/+PackFld2/@myclass/myclass.m

To open myclass.m in the MATLAB editor, you could reference the file using dot-separated package
names:

edit PackFld1.PackFld2.myclass

You could also use path notation:

edit +PackFld1/+PackFld2/@myclass/myclass

If myclass.m is not in a class folder, then enter:

edit +PackFld1/+PackFld2/myclass

To refer to functions inside a package folder, use dot or path separators:

edit PackFld1.PackFld2.packFunction
edit +PackFld1/+PackFld2/packFunction

To refer to a method defined in its own file inside a class folder, use:

edit +PackFld1/+PackFld2/@myclass/myMethod

How to Debug Class Files
For debugging, dbstop enables you to set breakpoints in the class constructor by specifying the fully
qualified class file name. To set a breakpoint at a method defined in the class file, specify the line
number of the method with the dbstop command. For example, if the method begins on line 14 in the
classdef file, myclass.m, use this command to put a breakpoint on the first executable line of the
method.

dbstop in myclass at 14

 Use of Editor and Debugger with Classes

5-37

See “Automatic Updates for Modified Classes” on page 5-39 for information about clearing class
after modification.

See Also
dbstop

Related Examples
• “MATLAB Code Analyzer Warnings” on page 5-27
• “Debug a MATLAB Program”

5 Class Definition—Syntax Reference

5-38

Automatic Updates for Modified Classes
In this section...
“When MATLAB Loads Class Definitions” on page 5-39
“Consequences of Automatic Update” on page 5-39
“What Happens When Class Definitions Change” on page 5-40
“Ensure Defining Folder Remains in Scope” on page 5-40
“Actions That Do Not Trigger Updates” on page 5-41
“Multiple Updates to Class Definitions” on page 5-41
“Object Validity with Deleted Class File” on page 5-41
“When Updates Are Not Possible” on page 5-41
“Potential Consequences of Class Updates” on page 5-41
“Interactions with the Debugger” on page 5-42
“Updates to Class Attributes” on page 5-42
“Updates to Property Definitions” on page 5-42
“Updates to Method Definitions” on page 5-43
“Updates to Event Definitions” on page 5-44

When MATLAB Loads Class Definitions
MATLAB loads a class definition:

• The first time the class is referenced, such as creating an instance, accessing a constant property,
or calling a static method of the class.

• Whenever the definition of a loaded class changes and MATLAB returns to the command prompt.
• When you change the MATLAB path and cause a different definition of the class to be used. The

change takes effect after MATLAB returns to the command prompt.
• Whenever you access the class metadata.

MATLAB allows only one definition for a class to exist at any time. Therefore, MATLAB attempts to
update all existing objects of a class automatically to conform to the new class definition. You do not
need to call clear classes to remove existing objects when you change their defining class.

Note Using an editor other than the MATLAB editor or using MATLAB Online™ can result in delays
to automatic updating.

Consequences of Automatic Update
MATLAB follows a set of basic rules when updating existing objects. An automatic update can result
in:

• Existing objects being updated to the new class definition.
• An error if MATLAB cannot convert the objects to the new class definition or if there is an error in

the class definition itself.

 Automatic Updates for Modified Classes

5-39

Here is an example of what happens when you create an instance of a concrete class edit the class
definition to make the class abstract.

a = MyClass;
% Edit MyClass to make it Abstract

a

Error using MyClass/display
Cannot update object because the class 'MyClass' is now abstract.

Note MATLAB does not update metaclass instances when you change the definition of a class. You
must get new metaclass data after updating a class definition.

What Happens When Class Definitions Change
MATLAB updates existing objects when a class definition changes, including the following situations:

• Value change to handle — Existing objects become independent handles referring to different
objects.

• Enumeration member added — Existing objects preserve the enumeration members they had
previously, even if the underlying values have changed.

• Enumeration member removed — Existing objects that are not using the removed member have
the same enumeration members that they had previously. Existing objects that use the removed
member replace the removed member with the default member of the enumeration.

• Enumeration block removed — Enumeration members are taken out of use.
• Superclass definition changed — Changes applied to all subclasses in the hierarchy of that

superclass.
• Superclass added or removed — Change of superclass applied to all existing objects.

Ensure Defining Folder Remains in Scope
Changes to the MATLAB path that result in removing the class definition file from the path, even
temporarily, can produce side effects. If a function changes from the current folder, which contains
the class definition, and that folder is not on the path, then the function cannot call methods of the
class that is now out of scope. To avoid potential problems, add the class defining folder to the path
before changing to another folder.

For example, suppose the class of the input obj is defined in the current folder, which is not on the
path. Before changing the current folder to another folder, add the current folder to the path using
the addpath function.

function runFromTempFolder(obj)
 % Add current folder to path
 addpath(pwd)
 definingFolder = cd('myTempFolder');
 obj.myMethod;
 cd(definingFolder)
end

5 Class Definition—Syntax Reference

5-40

Actions That Do Not Trigger Updates
These actions do not update existing objects:

• Calling the class function on an out-of-date object
• Assigning an out-of-date object to a variable
• Calling a method that does not access class data
• Changing property validation in the class definition (“Validate Property Values” on page 8-19)

Objects do not update until referenced in a way that exposes the change, such as invoking the object
display or assigning to a property.

Multiple Updates to Class Definitions
Updates do not occur incrementally. Updates conform to the latest version of the class.

Object Validity with Deleted Class File
Deleting a class definition file does not make instances of that class invalid. However, you cannot call
methods on existing objects of that class.

When Updates Are Not Possible
Some class updates result in an invalid class definition. In these cases, objects do not update until the
error is resolved:

• Adding a superclass can result in a property or method being defined twice.
• Changing a superclass to be Sealed when objects of one of its subclasses exists results in an

invalid subclass definition.

Some class updates cause situations in which MATLAB cannot update existing objects to conform to a
modified class definition. These cases result in errors until you delete the objects:

• Adding an enumeration block to a non-enumeration class
• Redefining a class to be abstract
• Removing a class from a heterogeneous hierarchy that results in there being no default object to

replace existing objects in a heterogeneous array
• Updating a class to restrict array formation behavior, such as overloading array indexing and

concatenation.
• Inheriting a subsref, subsasgn, cat, vertcat, or horzcat method
• Redefining a handle class to be a value class.

Potential Consequences of Class Updates
• Following an update, existing objects can be incompatible with the new class definition. For

example, a newly added property can require execution of the constructor to be valid.
• Removing or renaming properties can lose the data held in the property. For example, if a

property holds the only reference to another object and you remove that property from the class,
the MATLAB deletes the object because there are no longer any references to it.

 Automatic Updates for Modified Classes

5-41

• Removing a class from a heterogeneous class hierarchy can result in invalid heterogeneous array
elements. In this case, the default object for the heterogeneous hierarchy replaces these array
elements.

Interactions with the Debugger
Since R2021a.

MATLAB disables the debugger during class updates. Before R2021a, a breakpoint could potentially
interrupt the class update process and allow for the introduction of errors when the update resumes.

For example, this class defines a property validation function:

classdef ClassWithBreakpoint
 properties (Constant)
 Prop1 (1,1) {myPropertyValidator}
 end
end

function myPropertyValidator(~)
end % Add breakpoint here

Create an instance of this class. Then add a breakpoint where indicated, and update the definition of
Prop1 to include an initial value:

Prop1 (1,1) {myPropertyValidator} = 32

In version R2020b and earlier, MATLAB hits the breakpoint, and the class update is interrupted. In
R2021a, the debugger is disabled, and the breakpoint does not interrupt the update.

Updates to Class Attributes
Changing class attributes can change existing object behavior or make the objects invalid. MATLAB
returns an error when you access the invalid objects.

Change Effect
Make Abstract = true Accessing existing objects returns an error.
Change AllowedSubclasses Newly created objects can inherit from different superclasses

than existing objects.
Change ConstructOnLoad Loading classes obeys the current value of ConstructOnLoad.
Change HandleCompatible Newly created objects can have different class hierarchy than

existing objects.
Change Hidden Appearance of class in list of superclasses and access by help

function can change
Change InferiorClasses Method dispatching for existing objects can change.
Make Sealed = true Existing subclass objects return errors when accessed.

Updates to Property Definitions
When you change the definition of class properties, MATLAB applies the changes to existing objects
of the class.

5 Class Definition—Syntax Reference

5-42

Change Effect
Add property Adds the new property to existing objects of the class. Sets the

property values to the default value (which is [] if the class
definition does not specify a default).

Remove property Removes the property from existing objects of the class.
Attempts to access the removed property fail.

Change property default value Does not apply the new default value to existing objects of the
class.

Move property between subclass
and superclass

Does not apply different default value when property definition
moves between superclass and subclass.

Change property attribute value Applies changes to existing objects of the class.

Some cases require transitional steps:

• Abstract — Existing objects of a class that becomes
abstract cannot be updated. Delete these objects.

• Access — Changes to the public, protected, or private
property access settings affect access to existing objects.

Changes to the access lists do not change existing objects.
However, if you add classes to the access list, instances of
those classes have access to this property. If you remove
classes from the access list, objects of those classes no
longer have access to this property.

• Dependent — If changed to true, existing objects no longer
store property values. If you want to query the property
value, add a property get method for the property.

• Transient — If changed to true, objects already saved,
reload this property value. If changed to false, objects
already saved reload this property using the default value.

Updates to Method Definitions
When you change the definition of class methods, MATLAB changes the affected class member in
existing objects as follows.

Change Effect
Add method You can call the new method on existing objects of the class.
Modify method Modifications are available to existing objects.
Remove method You can on longer call deleted method on existing objects.

 Automatic Updates for Modified Classes

5-43

Change Effect
Change method attribute value Apply changes to existing objects of the class.

Some cases require transitional steps:

• Abstract — Existing objects of a class that becomes
abstract cannot be updated. Delete these objects.

• Access — Changes to method public, protected, or
private access settings affect access to existing objects.

Changes to the access lists do not change existing instances.
However, if you add classes to the access list, instances of
those classes have access to this method. If you remove
classes from the access list, objects of those classes no
longer have access to this method.

• Sealed — If changed to true and existing subclasses
already have defined the method, MATLAB returns an error
because the new class definition cannot be applied to
existing subclasses.

Updates to Event Definitions
Change Effect
Add event Existing objects of the class support the new event.
Change event name New event name is visible to existing objects of the class.

MATLAB:

• Does not update existing metaclass objects
• Does update newly acquired metaclass objects
• Does not update listeners to use new event name

Remove event Existing objects no longer support deleted event.

5 Class Definition—Syntax Reference

5-44

Change Effect
Change event attribute value Apply changes to existing objects of the class.

Some cases require transitional steps:

• ListenAccess — Changes to event public, protected,
or private listen access settings affect access to existing
objects.

Changes to the access list do not change existing objects.
However, if you add classes to the access list, objects of
those classes can create listeners for this event. If you
remove classes from the access list, objects of those classes
are not allowed to create listeners for this event.

• NotifyAccess — Changes to event public, protected,
or private notify access settings affect access to existing
objects.

Changes to the access list do not change existing objects.
However, if you add classes to the access list, instances of
those classes can trigger this event. If you remove classes,
objects of those classes are not able to trigger this event.

See Also

Related Examples
• “Use of Editor and Debugger with Classes” on page 5-37

 Automatic Updates for Modified Classes

5-45

Compatibility with Previous Versions
In this section...
“New Class-Definition Syntax Introduced with MATLAB Software Version 7.6” on page 5-46
“Changes to Class Constructors” on page 5-46
“New Features Introduced with Version 7.6” on page 5-47
“Examples of Old and New” on page 5-47

New Class-Definition Syntax Introduced with MATLAB Software
Version 7.6
MATLAB software Version 7.6 introduces a new syntax for defining classes. This new syntax includes:

• The classdef keyword begins a block of class-definitions code. An end statement terminates the
class definition.

• Within the classdef code block, properties, methods, and events are also keywords
delineating where you define the respective class members.

Cannot Mix Class Hierarchy

It is not possible to create class hierarchies that mix classes defined before Version 7.6 and current
class definitions that use classdef. Therefore, you cannot subclass an old class to create a version
of the new class.

Only One “@” Class Folder Per Class

For classes defined using the new classdef keyword, a class folder shadows all class folders that
occur after it on the MATLAB path. Classes defined in class folders must locate all class files in that
single folder. However, classes defined in class folders continue to take precedence over functions
and scripts having the same name, even those functions and scripts that come before them on the
path.

Private Methods

You do not need to define private folders in class folders in Version 7.6. You can set the method's
Access attribute to private instead.

Changes to Class Constructors
Class constructor methods have two major differences. Class constructors:

• Do not use the class function.
• Must call the superclass constructor only if you want to pass arguments to its constructor.

Otherwise, no call to the superclass constructor is necessary.

Example of Old and New Syntax

Compare the following two Stock constructor methods. The Stock class is a subclass of the Asset
class, which requires arguments passed to its constructor.

Constructor Function Before Version 7.6

5 Class Definition—Syntax Reference

5-46

 function s = Stock(description,num_shares,share_price)
 s.NumShares = num_shares;
 s.SharePrice = share_price;
% Construct Asset object
 a = Asset(description,'stock',share_price*num_shares);
% Use the class function to define the stock object
 s = class(s,'Stock',a);

Write the same Stock class constructor as shown here. Define the inheritance on the classdef line
and define the constructor within a methods block.

Constructor Function for Version 7.6

classdef Stock < Asset
 ...
 methods

 function s = Stock(description,num_shares,share_price)
% Call superclass constructor to pass arguments
 s = s@Asset(description,'stock',share_price*num_shares);
 s.NumShares = num_shares;
 s.SharePrice = share_price;
 end % End of function

 end % End of methods block
end % End of classdef block

New Features Introduced with Version 7.6
• Properties: “Ways to Use Properties” on page 8-2
• Handle classes: “Comparison of Handle and Value Classes” on page 7-2
• Events and listeners: “Event and Listener Concepts” on page 11-12
• Class member attributes: “Attribute Specification” on page 5-18
• Abstract classes: “Abstract Classes and Class Members” on page 12-70
• Dynamic properties: “Dynamic Properties — Adding Properties to an Instance” on page 8-55
• Ability to subclass MATLAB built-in classes: “Design Subclass Constructors” on page 12-7
• Packages for scoping functions and classes: “Packages Create Namespaces” on page 6-20.

MATLAB does not support packages for classes created before MATLAB Version 7.6 (that is,
classes that do not use classdef).

• The JIT/Accelerator supports objects defined only by classes using classdef.

Examples of Old and New
The MATLAB Version 7.6 implementation of classes uses different syntax from previous releases.
However, classes written in previous versions continue to work. Most of the code you use to
implement the methods is likely to remain the same, except where you take advantage of new
features.

The following sections reimplement examples using the latest syntax. The original MATLAB Classes
and Objects documentation implemented these same examples and provide a comparison of old and
new syntax.

 Compatibility with Previous Versions

5-47

“Representing Polynomials with Classes” on page 19-2

“A Class Hierarchy for Heterogeneous Arrays” on page 20-2

5 Class Definition—Syntax Reference

5-48

Comparison of MATLAB and Other OO Languages
In this section...
“Some Differences from C++ and Java Code” on page 5-49
“Object Modification” on page 5-50
“Static Properties” on page 5-53
“Common Object-Oriented Techniques” on page 5-53

Some Differences from C++ and Java Code
The MATLAB programming language differs from other object-oriented languages, such as C++ or
Java in some important ways.

Public Properties

Unlike fields in C++ or the Java language, you can use MATLAB properties to define a public
interface separate from the implementation of data storage. You can provide public access to
properties because you can define set and get access methods that execute automatically when
assigning or querying property values. For example, the following statement:

myobj.Material = 'plastic';

assigns the char vector plastic to the Material property of myobj. Before making the actual
assignment, myobj executes a method called set.Material (assuming the class of myobj defines
this method), which can perform any necessary operations. See “Property Access Methods” on page
8-40 for more information on property access methods.

You can also control access to properties by setting attributes, which enable public, protected , or
private access. See “Property Attributes” on page 8-6 for a full list of property attributes.

No Implicit Parameters

In some languages, one object parameter to a method is always implicit. In MATLAB, objects are
explicit parameters to the methods that act on them.

Dispatching

In MATLAB classes, method dispatching is not based on method signature, as it is in C++ and Java
code. When the argument list contains objects of equal precedence, MATLAB uses the leftmost object
to select the method to call.

However, if the class of an argument is superior to the class of the other arguments, MATLAB
dispatches to the method of the superior argument, regardless of its position within the argument
list.

See “Class Precedence” on page 6-18 for more information.

Calling Superclass Method

• In C++, you call a superclass method using the scoping operator: superclass::method
• In Java code, you use: superclass.method

 Comparison of MATLAB and Other OO Languages

5-49

The equivalent MATLAB operation is method@superclass.

Other Differences

In MATLAB classes, there is no equivalent to C++ templates or Java generics. However, MATLAB is
weakly typed and it is possible to write functions and classes that work with different types of data.

MATLAB classes do not support overloading functions using different signatures for the same
function name.

Object Modification
MATLAB classes can define public properties, which you can modify by explicitly assigning values to
those properties on a given instance of the class. However, only classes derived from the handle
class exhibit reference behavior. Modifying a property value on an instance of a value classes (classes
not derived from handle), changes the value only within the context in which the modification is
made.

The sections that follow describe this behavior in more detail.

Objects Passed to Functions

MATLAB passes all variables by value. When you pass an object to a function, MATLAB copies the
value from the caller into the parameter variable in the called function.

However, MATLAB supports two kinds of classes that behave differently when copied:

• Handle classes — a handle class instance variable refers to an object. A copy of a handle class
instance variable refers to the same object as the original variable. If a function modifies a handle
object passed as an input argument, the modification affects the object referenced by both the
original and copied handles.

• Value classes — the property data in an instance of a value class are independent of the property
data in copies of that instance (although, a value class property could contain a handle). A
function can modify a value object that is passed as an input argument, but this modification does
not affect the original object.

See “Comparison of Handle and Value Classes” on page 7-2 for more information on the behavior
and use of both kinds of classes.

Passing Value Objects

When you pass a value object to a function, the function creates a local copy of the argument
variable. The function can modify only the copy. If you want to modify the original object, return the
modified object and assign it to the original variable name. For example, consider the value class,
SimpleClass :

classdef SimpleClass
 properties
 Color
 end
 methods
 function obj = SimpleClass(c)
 if nargin > 0
 obj.Color = c;
 end

5 Class Definition—Syntax Reference

5-50

 end
 end
end

Create an instance of SimpleClass, assigning a value of red to its Color property:

obj = SimpleClass('red');

Pass the object to the function g, which assigns blue to the Color property:

function y = g(x)
 x.Color = 'blue';
 y = x;
end

y = g(obj);

The function g modifies its copy of the input object and returns that copy, but does not change the
original object.

y.Color

ans =

 blue

obj.Color

ans =

 red

If the function g did not return a value, the modification of the object Color property would have
occurred only on the copy of obj within the function workspace. This copy would have gone out of
scope when the function execution ended.

Overwriting the original variable actually replaces it with a new object:

obj = g(obj);

Passing Handle Objects

When you pass a handle to a function, the function makes a copy of the handle variable, just like
when passing a value object. However, because a copy of a handle object refers to the same object as
the original handle, the function can modify the object without having to return the modified object.

For example, suppose that you modify the SimpleClass class definition to make a class derived from
the handle class:

classdef SimpleHandleClass < handle
 properties
 Color
 end
 methods
 function obj = SimpleHandleClass(c)
 if nargin > 0
 obj.Color = c;
 end
 end

 Comparison of MATLAB and Other OO Languages

5-51

 end
end

Create an instance of SimpleHandleClass, assigning a value of red to its Color property:

obj = SimpleHandleClass('red');

Pass the object to the function g, which assigns blue to the Color property:

y = g(obj);

The function g sets the Color property of the object referred to by both the returned handle and the
original handle:

y.Color

ans =

blue

obj.Color

ans =

blue

The variables y and obj refer to the same object:

y.Color = 'yellow';
obj.Color

ans =

yellow

The function g modified the object referred to by the input argument (obj) and returned a handle to
that object in y.
MATLAB Passes Handles by Value

A handle variable is a reference to an object. MATLAB passes this reference by value.

Handles do not behave like references in C++. If you pass an object handle to a function and that
function assigns a different object to that handle variable, the variable in the caller is not affected.
For example, suppose you define a function g2:

function y = g2(x)
 x = SimpleHandleClass('green');
 y = x;
end

Pass a handle object to g2:

obj = SimpleHandleClass('red');
y = g2(obj);
y.Color

ans =

green

5 Class Definition—Syntax Reference

5-52

obj.Color

ans =

red

The function overwrites the handle passed in as an argument, but does not overwrite the object
referred to by the handle. The original handle obj still references the original object.

Static Properties
In MATLAB, classes can define constant properties, but not "static" properties in the sense of other
languages like C++. You cannot change constant properties from the initial value specified in the
class definition.

MATLAB has long-standing rules that variables always take precedence over the names of functions
and classes. Assignment statements introduce a variable if one does not exist.

Expressions of this form

A.B = C

Introduce a new variable, A, that is a struct containing a field B whose value is C. If A.B = C could
refer to a static property of class A, then class A would take precedence over variable A.

This behavior would be a significant incompatibility with prior releases of MATLAB. For example, the
introduction of a class named A on the MATLAB path could change the meaning of an assignment
statement like A.B = C inside a .m code file.

In other languages, classes rarely use static data, except as private data within the class or as public
constants. In MATLAB, you can use constant properties the same way you use public final static
fields in Java. To use data that is internal to a class in MATLAB, create persistent variables in private
or protected methods or local functions used privately by the class.

Avoid static data in MATLAB. If a class has static data, using the same class in multiple applications
causes conflicts among applications. Conflicts are less of an issue in some other languages. These
languages compile applications into executables that run in different processes. Each process has its
own copy of the class static data. MATLAB, frequently runs many different applications in the same
process and environment with a single copy of each class.

For ways to define and use static data in MATLAB, see “Static Data” on page 4-2.

Common Object-Oriented Techniques
This table provides links to sections that discuss object-oriented techniques commonly used by other
object-oriented languages.

Technique How to Use in MATLAB
Operator overloading “Operator Overloading” on page 17-38
Multiple inheritance “Subclassing Multiple Classes” on page 12-19
Subclassing “Design Subclass Constructors” on page 12-7
Destructor “Handle Class Destructor” on page 7-13

 Comparison of MATLAB and Other OO Languages

5-53

Technique How to Use in MATLAB
Data member scoping “Property Attributes” on page 8-6
Packages (scoping classes) “Packages Create Namespaces” on page 6-20
Named constants See “Define Class Properties with Constant Values” on page 15-2

and “Named Values” on page 14-2
Enumerations “Define Enumeration Classes” on page 14-4
Static methods “Static Methods” on page 9-24
Static properties Not supported. See persistent variables. For the equivalent of Java

static final or C++ static const properties, use Constant
properties. See “Define Class Properties with Constant Values” on
page 15-2

For mutable static data, see “Static Data” on page 4-2
Constructor “Class Constructor Methods” on page 9-16
Copy constructor No direct equivalent
Reference/reference classes “Comparison of Handle and Value Classes” on page 7-2
Abstract class/Interface “Abstract Classes and Class Members” on page 12-70
Garbage collection “Object Lifecycle” on page 7-16
Instance properties “Dynamic Properties — Adding Properties to an Instance” on page 8-

55
Importing classes “Import Classes” on page 6-24
Events and Listeners “Event and Listener Concepts” on page 11-12

5 Class Definition—Syntax Reference

5-54

Defining and Organizing Classes

• “User-Defined Classes” on page 6-2
• “Class Attributes” on page 6-5
• “Evaluation of Expressions in Class Definitions” on page 6-8
• “Folders Containing Class Definitions” on page 6-13
• “Class Precedence” on page 6-18
• “Packages Create Namespaces” on page 6-20
• “Import Classes” on page 6-24

6

User-Defined Classes
In this section...
“What Is a Class Definition” on page 6-2
“Attributes for Class Members” on page 6-2
“Kinds of Classes” on page 6-2
“Constructing Objects” on page 6-3
“Class Hierarchies” on page 6-3
“classdef Syntax” on page 6-3
“Class Code” on page 6-3

What Is a Class Definition
A MATLAB class definition is a template whose purpose is to provide a description of all the elements
that are common to all instances of the class. Class members are the properties, methods, and events
that define the class.

Define MATLAB classes in code blocks, with subblocks delineating the definitions of various class
members. For syntax information on these blocks, see “Class Components” on page 5-4.

Attributes for Class Members
Attributes modify the behavior of classes and the members defined in the class-definition block. For
example, you can specify that methods are static or that properties are private. The following sections
describe these attributes:

• “Class Attributes” on page 6-5
• “Method Attributes” on page 9-4
• “Property Attributes” on page 8-6
• “Event Attributes” on page 11-15

Class definitions can provide information, such as inheritance relationships or the names of class
members without actually constructing the class. See “Class Metadata” on page 16-2.

See “Specifying Attributes” on page 6-7 for more on attribute syntax.

Kinds of Classes
There are two kinds of MATLAB classes—handle classes and value classes.

• Value classes represent independent values. Value objects contain the object data and do not
share this data with copies of the object. MATLAB numeric types are value classes. Values objects
passed to and modified by functions must return a modified object to the caller.

• Handle classes create objects that reference the object data. Copies of the instance variable refer
to the same object. Handle objects passed to and modified by functions affect the object in the
caller’s workspace without returning the object.

For more information, see “Comparison of Handle and Value Classes” on page 7-2.

6 Defining and Organizing Classes

6-2

Constructing Objects
For information on class constructors, see “Class Constructor Methods” on page 9-16.

For information on creating arrays of objects, see “Construct Object Arrays” on page 10-2.

Class Hierarchies
For more information on how to define class hierarchies, see “Hierarchies of Classes — Concepts” on
page 12-2.

classdef Syntax
Class definitions are blocks of code that are delineated by the classdef keyword at the beginning
and the end keyword at the end. Files can contain only one class definition.

The following diagram shows the syntax of a classdef block. Only comments and blank lines can
precede the classdef keyword.

Class Code
Here is a simple class definition with one property and a constructor method that sets the value of the
property when there is an input argument supplied.

classdef MyClass
 properties
 Prop
 end
 methods
 function obj = MyClass(val)
 if nargin > 0
 obj.Prop = val;
 end
 end

 User-Defined Classes

6-3

 end
end

To create an object of MyClass, save the class definition in a .m file having the same name as the
class and call the constructor with any necessary arguments:

d = datestr(now);
o = MyClass(d);

Use dot notation to access the property value:

o.Prop

ans =

10-Nov-2005 10:38:14

The constructor should support a no argument syntax so MATLAB can create default objects. For
more information, see “No Input Argument Constructor Requirement” on page 9-19.

For more information on the components of a class definition, see “Class Components” on page 5-4

See Also

Related Examples
• “Create a Simple Class” on page 2-2
• “Developing Classes — Typical Workflow” on page 3-6
• “Representing Structured Data with Classes” on page 3-14

6 Defining and Organizing Classes

6-4

Class Attributes
In this section...
“Specifying Class Attributes” on page 6-5
“Specifying Attributes” on page 6-7
“Class-Specific Attributes” on page 6-7

Specifying Class Attributes
All classes support the attributes listed in the following table. Attributes enable you to modify the
behavior of class. Attribute values apply to the class defined within the classdef block.

classdef (Attribute1 = value1, Attribute2 = value2,...) ClassName
 ...
end

For more information on attribute syntax, see “Attribute Specification” on page 5-18.

 Class Attributes

6-5

Class Attributes

Attribute Name Class Description
Abstract logical

(default =
false)

If specified as true, this class is an abstract class (cannot be
instantiated).

See “Abstract Classes and Class Members” on page 12-70 for more
information.

AllowedSubclasses meta.class
object or cell
array of
meta.class
objects

List classes that can subclass this class. Specify subclasses as
meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell array, {}, is

the same as a Sealed class (no subclasses).

Specify meta.class objects using the ?ClassName syntax only.

See “Specify Allowed Subclasses” on page 12-21 for more
information.

ConstructOnLoad logical

(default =
false)

If true, MATLAB calls the class constructor when loading an object
from a MAT-file. Therefore, implement the constructor so it can be
called with no arguments without producing an error.

See “Initialize Objects When Loading” on page 13-22 for more
information.

HandleCompatible logical

(default =
false) for
value classes

If specified as true, this class can be used as a superclass for
handle classes. All handle classes are HandleCompatible by
definition. See “Handle Compatible Classes” on page 12-33 for
more information.

Hidden logical

(default =
false)

If true, this class does not appear in the output of the
superclasses or help functions.

InferiorClasses meta.class
object or cell
array of
meta.class
objects

Use this attribute to establish a precedence relationship among
classes. Specify a cell array of meta.class objects using the ?
operator.

The fundamental classes are always inferior to user-defined classes
and do not show up in this list.

See “Class Precedence” on page 6-18 and “Dominant Argument in
Overloaded Graphics Functions” on page 9-38.

Sealed logical

(default =
false)

If true, this class cannot be subclassed.

Framework attributes Classes that use certain framework base classes have framework-specific attributes.
See the documentation for the specific base class you are using for information on
these attributes.

6 Defining and Organizing Classes

6-6

Specifying Attributes
Attributes are specified for class members in the classdef, properties, methods, and events
definition blocks. The particular attribute setting applies to all members defined within that
particular block. You can use multiple properties, methods, and events definition blocks to apply
different attribute setting to different class members.

Superclass Attribute Values Are Not Inherited

Class attributes settings are not inherited, so superclass attribute values do not affect subclasses.

Attribute Syntax

Specify class attribute values in parentheses, separating each attribute name/attribute value pair
with a comma. The attribute list always follows the classdef or class member keyword, as shown:
classdef (attribute-name = expression, ...) ClassName

 properties (attribute-name = expression, ...)
 ...
 end
 methods (attribute-name = expression, ...)
 ...
 end
 events (attribute-name = expression, ...)
 ...
 end
end

Class-Specific Attributes
Some MATLAB classes define additional attributes that you can use only with the class hierarchies
that define these attributes. See the specific documentation for the classes you are using for
information on any additional attributes supported by those classes.

See Also

More About
• “Expressions in Attribute Specifications” on page 6-9

 Class Attributes

6-7

Evaluation of Expressions in Class Definitions
In this section...
“Why Use Expressions” on page 6-8
“Where to Use Expressions in Class Definitions” on page 6-8
“How MATLAB Evaluates Expressions” on page 6-10
“When MATLAB Evaluates Expressions” on page 6-10
“Expression Evaluation in Handle and Value Classes” on page 6-10

Why Use Expressions
An expression used in a class definition can be any valid MATLAB statement that evaluates to a single
array. Use expressions to define property default values and in attribute specifications. Expressions
are useful to derive values in terms of other values. For example, suppose that you want to define a
constant property with the full precision value of 2π. You can assign the property the value returned
by the expression 2*pi. MATLAB evaluates the function when first loading the class.

For information on assign property default values and attribute values, see the following topics:

• “Property Definition” on page 8-12
• “Attribute Specification” on page 5-18

Where to Use Expressions in Class Definitions
Here are some examples of expressions used in a class definition:

classdef MyClass
 % Some attributes are set to logical values
 properties (Constant = true)
 CnstProp = 2*pi
 end
 properties
 % Static method of this class
 Prop1 = MyClass.setupAccount
 % Constant property from this class
 Prop2 = MyClass.CnstProp
 % Function that returns a value
 Prop3 = datestr(now)
 % A class constructor
 Prop4 = AccountManager
 end
 methods (Static)
 function accNum = setupAccount
 accNum = randi(9,[1,12]);
 end
 end
end

MATLAB does not call property set methods when assigning the result of default value expressions to
properties. (See “Property Access Methods” on page 8-40 for information about these special
methods.)

6 Defining and Organizing Classes

6-8

Enumerations that derived from MATLAB types can use expression to assign a value:

classdef FlowRate < int32
 enumeration
 Low (10)
 Medium (FlowRate.Low*5)
 High (FlowRate.Low*10)
 end
end

MATLAB evaluates these expressions only once when enumeration members are first accessed.

Expressions in Attribute Specifications

For attributes values that are logical true or false, class definitions can specify attribute values
using expressions. For example, this assignment makes MyClass sealed (cannot be subclassed) for
versions of MATLAB before R2014b (verLessThan)

classdef (Sealed = verLessThan('matlab','8.4')) MyClass

The expression on the right side of the equal sign (=) must evaluate to true or false. You cannot
use any definitions from the class file in this expression, including any constant properties, static
methods, and local functions.

While you can use conditional expression to set attribute values, doing so can cause the class
definition to change based on external conditions. Ensure that this behavior is consistent with your
class design.

Note The AllowedSubclasses and the InferiorClasses attributes require an explicit
specification of a cell array of meta.class objects as their values. You cannot use expressions to
return these values.

See “Attribute Specification” on page 5-18 for more information on attribute syntax.

Expressions That Specify Default Property Values

Property definitions allow you to specify default values for properties using any expression that has
no reference to variables. For example, VectorAngle defines a constant property (Rad2Deg) and
uses it in an expression that defines the default value of another property (Angle). The default value
expression also uses a static method (getAngle) defined by the class:

classdef VectorAngle
 properties (Constant)
 Rad2Deg = 180/pi
 end
 properties
 Angle = VectorAngle.Rad2Deg*VectorAngle.getAngle([1 0],[0 1])
 end
 methods
 function obj = VectorAngle(vx,vy)
 obj.Angle = VectorAngle.getAngle(vx,vy);
 end
 end
 methods (Static)
 function r = getAngle(vx,vy)

 Evaluation of Expressions in Class Definitions

6-9

 % Calculate angle between 2D vectors
 cr = vx(1)*vy(1) + vx(2)*vy(2)/sqrt(vx(1)^2 + vx(2)^2) * ...
 sqrt(vy(1)^2 + vy(2)^2);
 r = acos(cr);
 end
 end
end

You cannot use the input variables to the constructor to define the default value of the Angle
property. For example, this definition for the Angle property is not valid:

properties
 Angle = VectorAngle.Rad2Deg*VectorAngle.getAngle(vx,vy)
end

Attempting to create an instance causes an error:

a = VectorAngle([1,0],[0,1])

Error using VectorAngle
Unable to update the class 'VectorAngle' because the new definition contains an
error:
 Undefined function or variable 'vx'.

Expressions in Class Methods

Expression in class methods execute like expressions in any function. MATLAB evaluates an
expression within the function workspace when the method executes. Therefore, expressions used in
class methods are not considered part of the class definition and are not discussed in this section.

How MATLAB Evaluates Expressions
MATLAB evaluates the expressions used in the class definition without any workspace. Therefore,
these expressions cannot reference variables of any kind.

MATLAB evaluates expressions in the context of the class file, so these expressions can access any
functions, static methods, and constant properties of other classes that are on your path at the time
MATLAB initializes the class. Expressions defining property default values can access constant
properties defined in their own class.

When MATLAB Evaluates Expressions
MATLAB evaluates the expressions in class definitions only when initializing the class. Initialization
occurs before the first use of the class.

After initialization, the values returned by these expressions are part of the class definition and are
constant for all instances of the class. Each instance of the class uses the results of the initial
evaluation of the expressions without re-evaluation.

If you clear a class, then MATLAB reinitializes the class by reevaluating the expressions that are part
of the class definition. (see “Automatic Updates for Modified Classes” on page 5-39)

Expression Evaluation in Handle and Value Classes
The following example shows how value and handle object behave when assigned to properties as
default values. Suppose that you have the following classes.

6 Defining and Organizing Classes

6-10

Expressions in Value Classes

The ClassExp class has a property that contains a ContClass object:

classdef ContClass
 properties
 % Assign current date and time
 TimeProp = datestr(now)
 end
end

classdef ClassExp
 properties
 ObjProp = ContClass
 end
end

When you first use the ClassExp class, MATLAB creates an instance of the ContClass class.
MATLAB initializes both classes at this time. All instances of ClassExp include a copy of this same
instance of ContClass.

a = ClassExp;
a.ObjProp.TimeProp

ans =

08-Oct-2003 17:16:08

The TimeProp property of the ContClass object contains the date and time when MATLAB
initialized the class. Creating additional instances of the ClassExp class shows that the date string
has not changed:

b = ClassExp;
b.ObjProp.TimeProp

ans =

08-Oct-2003 17:16:08

Because this example uses a value class for the contained object, each instance of the ClassExp has
its own copy of the object. For example, suppose that you change the value of the TimeProp property
on the object contained by ClassExp objectb:

b.ObjProp.TimeProp = datestr(now)

ans =

08-Oct-2003 17:22:49

The copy of the object contained by object a is unchanged:

a.ObjProp.TimeProp

ans =

08-Oct-2003 17:16:08

 Evaluation of Expressions in Class Definitions

6-11

Expressions in Handle Classes

Now consider the behavior if the contained object is a handle object:

classdef ContClass < handle
 properties
 TimeProp = datestr(now)
 end
end

Creating two instances of the ClassExp class shows that MATLAB created an object when it
initialized the ContClass. MATLAB used a copy of the object’s handle for each instance of the
ClassExp class. Therefore, there is one ContClass object and the ObjProp property of each
ClassExp object contains a copy of its handle.

Create an instance of the ClassExp class and note the time of creation:

a = ClassExp;
a.ObjProp.TimeProp

ans =

08-Oct-2003 17:46:01

Create a second instance of the ClassExp class. The ObjProp contains the handle of the same
object:

b = ClassExp;
b.ObjProp.TimeProp

ans =

08-Oct-2003 17:46:01

Reassign the value of the contained object TimeProp property:

b.ObjProp.TimeProp = datestr(now);
b.ObjProp.TimeProp

ans =

08-Oct-2003 17:47:34

The ObjProp property of object b contains a handle to the same object as the ObjProp property of
object a. The value of the TimeProp property has changed on this object as well:

a.ObjProp.TimeProp

ans =

08-Oct-2003 17:47:34

See Also

More About
• “Comparison of Handle and Value Classes” on page 7-2

6 Defining and Organizing Classes

6-12

Folders Containing Class Definitions
In this section...
“Class Definitions on the Path” on page 6-13
“Class and Path Folders” on page 6-13
“Using Path Folders” on page 6-13
“Using Class Folders” on page 6-14
“Functions in Private Folders Within Class Folders” on page 6-14
“Class Precedence and MATLAB Path” on page 6-15
“Changing Path to Update Class Definition” on page 6-16

Class Definitions on the Path
To call a class method, the class definition must be on the MATLAB path, as described in the next
sections.

Class and Path Folders
There are two types of folders that can contain class definition files.

• Path folders — The folder is on the MATLAB path and the folder name does not begin with an @
character. Use this type of folder when you want multiple classes and functions in one folder. The
entire class definition must be contained in one file.

• Class folders — The folder name begins with an @ character followed by the class name. The
folder is not on the MATLAB path, but its parent folder is on the path. Use this type of folder when
you want to use multiple files for one class definition.

See the path function for information about the MATLAB path.

Using Path Folders
The folders that contain class definition files are on the MATLAB path. Therefore, class definitions
placed in path folders behave like any ordinary function with respect to precedence—the first
occurrence of a name on the MATLAB path takes precedence over all subsequent occurrences of the
same name.

The name of each class definition file must match the name of the class that is specified with the
classdef keyword. Using a path folder eliminates the need to create a separate class folder for each
class. However, the entire class definition, including all methods, must be contained within a single
file.

Suppose that you have three classes defined in a single folder:

.../path_folder/MyClass1.m

.../path_folder/MyClass2.m

.../path_folder/MyClass3.m

To use these classes, add path_folder to your MATLAB path:

 Folders Containing Class Definitions

6-13

addpath path_folder

Using Class Folders
The name of a class folder always begins with the @ character followed by the class name for the
folder name. A class folder must be contained in a path folder, but the class folder is not on the
MATLAB path. Place the class definition file inside the class folder, which also can contain separate
method files. The class definition file must have the same name as the class folder (without the @
character).

.../parent_folder/@MyClass/MyClass.m

.../parent_folder/@MyClass/myMethod1.m

.../parent_folder/@MyClass/myMethod2.m

Define only one class per folder. All files have a .m or .p extension. For MATLAB versions R2018a and
later, standalone methods can be live functions with a .mlx extension.

Use a class folder when you want to use more than one file for your class definition. MATLAB treats
any function file in the class folder as a method of the class. Function files can be MATLAB code (.m),
Live Code file format (.mlx), MEX functions (platform dependent extensions), and P-code files (.p).

MATLAB explicitly identifies any file in a class folder as a method of that class. This enables you to
use a more modular approach to authoring methods of your class.

The base name of each file must be a valid MATLAB function name. Valid function names begin with
an alphabetic character and can contain letters, numbers, or underscores. For more information, see
“Methods in Separate Files” on page 9-8.

Functions in Private Folders Within Class Folders
Private folders contain functions that are accessible only from functions defined in folders
immediately above the private folder. Any functions defined in a private folder inside a class
folder can only be called from the methods of the class. The functions have access to the private
members of the class but are not themselves methods. They do not require an object to be passed as
an input and can only be called using function notation. Use functions in private folders when you
need helper functions that can be called from multiple methods of your class.

If a class folder contains a private folder, only the class defined in that folder can access functions
defined in the private folder. Subclasses do not have access to superclass private functions. For
more information on private folders, see “Private Functions”.

If you want a subclass to have access to the private functions of the superclass, define the functions
as protected methods of the superclass. Specify the methods with the Access attribute set to
protected.

Dispatching to Methods in Private Folders

If a class defines functions in a private folder that is in a class folder, then MATLAB follows these
precedence rules when dispatching to the private functions versus the methods of the classdef file:

• Using dot notation (obj.methodName), a function in a private folder takes precedence over a
method defined in the classdef file.

• Using function notation (methodName(obj)), a method defined in the classdef file takes
precedence over the function in the private folder.

6 Defining and Organizing Classes

6-14

No Class Definitions in Private Folders

You cannot put class definitions (classdef file) in private folders because doing so would not meet
the requirements for class or path folders.

Class Precedence and MATLAB Path
When there are multiple class definitions with the same name, the file location on the MATLAB path
determines precedence. The class definition in the folder that comes first on the MATLAB path always
takes precedence over any classes that are later on the path, whether or not the definitions are
contained in a class folder.

A function with the same name as a class in a path folder takes precedence over the class if the
function is in a folder that is earlier on the path. However, a class defined in a class folder (@-folder)
takes precedence over a function of the same name, even if the function is defined in a folder that is
earlier on the path.

For example, consider a path with the following folders and files.

Order in Path Folder and File File Defines
1 fldr1/Foo.m Class Foo
2 fldr2/Foo.m Function Foo
3 fldr3/@Foo/Foo.m Class Foo
4 fldr4/@Foo/bar.m Method bar
5 fldr5/Foo.m Class Foo

MATLAB applies this logic to determine which version of Foo to call:

Class fldr1/Foo.m takes precedence over the class fldr3/@Foo because:

• fldr1 is before fldr3 on the path, and fldr1/Foo.m is a class.

Class fldr3/@Foo takes precedence over function fldr2/Foo.m because:

• fldr3/@Foo is a class in a class folder.
• fldr2/Foo.m is not a class.
• Classes in class folders take precedence over functions.

Function fldr2/Foo.m takes precedence over class fldr5/Foo.m because:

• fldr2 comes before class fldr5 on the path.
• fldr5/Foo.m is not in a class folder.
• Classes that are not defined in class folders obey the path order with respect to functions.

Class fldr3/@Foo takes precedence over fldr4/@Foo because:

• fldr3 comes before fldr4 on the path.

If fldr3/@Foo/Foo.m contains a MATLAB class created before Version 7.6 (that is, the class does
not use the classdef keyword), then fldr4/@Foo/bar.m becomes a method of the Foo class
defined in fldr3/@Foo.

 Folders Containing Class Definitions

6-15

Previous Behavior of Classes Defined in Class Folders

In MATLAB Versions 5 through 7, class folders do not shadow other class folders having the same
name, but residing in later path folders. Instead, the class uses the combination of methods from all
class folders having the same name to define the class. This behavior is no longer supported.

For backward compatibility, classes defined in class folders always take precedence over functions
and scripts having the same name. This precedence applies to functions and scripts that come before
these classes on the path.

Changing Path to Update Class Definition
MATLAB can only recognize one definition of a class as the current definition. Changing your
MATLAB path can change the definition file for a class (see path). If no instances of the old definition
exist (that is, the definition that is no longer first on the path), MATLAB immediately recognizes the
new folder as the current definition. If, however, you have an existing instance of the class before
changing the path, whether MATLAB uses the definition in the new folder depends on how the new
class has been defined. If the new definition is defined in a class folder, MATLAB immediately
recognizes the new folder as the current class definition. However, for classes that are defined in path
folders (that is, not in class @ folders), you must clear the class before MATLAB recognizes the new
folder as the current class definition.

Class Definitions in Class Folders

Suppose that you define two versions of a class named Foo in two folders, fldA and fldB.

fldA/@Foo/Foo.m
fldB/@Foo/Foo.m

Add folder fldA to the top of the path.

addpath fldA

Create an instance of class Foo. MATLAB uses fldA/@Foo/Foo.m as the class definition.

a = Foo;

Change the current folder to fldB.

cd fldB

The current folder is always first on the path. Therefore, MATLAB finds fldB/@Foo/Foo.m as the
definition for class Foo.

b = Foo;

MATLAB automatically updates the existing instance, a, to use the new class definition in fldB.

Class Definitions in Path Folders

Suppose that you define two versions of a class named Foo in two folders, fldA and fldB, but do not
use a class folder.

fldA/Foo.m
fldB/Foo.m

Add folder fldA to the top of the path.

6 Defining and Organizing Classes

6-16

addpath fldA

Create an instance of class Foo. MATLAB uses fldA/Foo.m as the class definition.

a = Foo;

Change the current folder to fldB.

cd fldB

The current folder is effectively the top of the path. However, MATLAB does not identify fldB/Foo.m
as the definition for class Foo. MATLAB continues to use the original class definition until you clear
the class.

To use the definition of Foo in foldB, clear Foo.

clear Foo

MATLAB automatically updates the existing objects to conform to the class definition in fldB.
Usually, clearing instance variables is unnecessary.

See Also

More About
• “Packages Create Namespaces” on page 6-20
• “Automatic Updates for Modified Classes” on page 5-39
• “Live Code File Format (.mlx)”
• “MEX File Functions”
• “Using MEX Functions for MATLAB Class Methods”
• “Protect Your Source Code”

 Folders Containing Class Definitions

6-17

Class Precedence
In this section...
“Use of Class Precedence” on page 6-18
“Why Mark Classes as Inferior” on page 6-18
“InferiorClasses Attribute” on page 6-18

Use of Class Precedence
MATLAB uses class precedence to determine which method to call when multiple classes have the
same method. You can specify the relative precedence of user-defined classes with the class
InferiorClasses attribute.

The material presented in this topic builds on an understanding of the following information:

• “Class Metadata” on page 16-2
• “Attribute Specification” on page 5-18

Why Mark Classes as Inferior
When more than one class defines methods with the same name or when classes overload functions,
MATLAB determines which method or function to call based on the dominant argument. Here is how
MATLAB determines the dominant argument:

1 Determine the dominant argument based on the class of arguments.
2 If there is a dominant argument, call the method of the dominant class.
3 If arguments are of equal precedence, use the leftmost argument as the dominant argument.
4 If the class of the dominant argument does not define a method with the name of the called

function, call the first function on the path with that name.

InferiorClasses Attribute
Specify the relative precedence of user-defined classes using the class InferiorClasses attribute.
To specify classes that are inferior to the class you are defining, assign a cell array of class
meta.class objects to this attribute.

For example, the following classdef declares that MyClass is dominant over ClassName1 and
ClassName2.

classdef (InferiorClasses = {?ClassName1,?ClassName2}) MyClass
 ...
end

The ? operator combined with a class name creates a meta.class object. See metaclass.

The following MATLAB classes are always inferior to classes defined using the classdef syntax and
cannot be used in this list.

double, single, int64, uint64, int32, uint32, int16, uint16, int8, uint8, char, string,
logical, cell, struct, and function_handle.

6 Defining and Organizing Classes

6-18

Dominant Class

MATLAB uses class dominance when evaluating expressions involving objects of more than one class.
The dominant class determines:

• Which class method to call when more than one class defines methods with the same names.
• The class of arrays that are formed by combining objects of different classes, assuming MATLAB

can convert the inferior objects to the dominant class.

No Attribute Inheritance

Subclasses do not inherit a superclass InferiorClasses attribute. Only classes specified in the
subclass InferiorClasses attribute are inferior to subclass objects.

See Also

More About
• “Class Precedence and MATLAB Path” on page 6-15
• “Dominant Argument in Overloaded Graphics Functions” on page 9-38

 Class Precedence

6-19

Packages Create Namespaces
In this section...
“Package Folders” on page 6-20
“Internal Packages” on page 6-20
“Referencing Package Members Within Packages” on page 6-21
“Referencing Package Members from Outside the Package” on page 6-21
“Packages and the MATLAB Path” on page 6-22

Package Folders
Packages are special folders that can contain class folders, function, and class definition files, and
other packages. The names of classes and functions are scoped to the package folder. A package is a
namespace within which names must be unique. Function and class names must be unique only
within the package. Using a package provides a means to organize classes and functions. Packages
also enable you to reuse the names of classes and functions in different packages.

Note Packages are not supported for classes created before MATLAB Version 7.6 (that is, classes
that do not use classdef).

Package folders always begin with the + character. For example,

+mypack
+mypack/pkfcn.m % a package function
+mypack/@myClass % class folder in a package

The parent of the top-level package folder must be on the MATLAB path.

Listing the Contents of a Package

List the contents of a package using the help command:

help event

Contents of event:

EventData - event.EVENTDATA Base class for event data
PropertyEvent - event.PROPERTYEVENT Event data for object property events
listener - event.LISTENER Listener object
proplistener - event.PROPLISTENER Listener object for property events

You can also use the what command:

what event

Classes in directory Y:xxx\matlab\toolbox\matlab\lang\+event

EventData PropertyEvent listener proplistener

Internal Packages
MathWorks® reserves the use of packages named internal for utility functions used by internal
MATLAB code. Functions that belong to an internal package are intended for MathWorks use only.

6 Defining and Organizing Classes

6-20

Using functions or classes that belong to an internal package is discouraged. These functions and
classes are not guaranteed to work in a consistent manner from one release to the next. Any of these
functions and classes might be removed from the MATLAB software in any subsequent release
without notice and without documentation in the product release notes.

Referencing Package Members Within Packages
All references to packages, functions, and classes in the package must use the package name prefix,
unless you import the package. (See “Import Classes” on page 6-24.) For example, call this package
function:

+mypack/pkfcn.m

With this syntax:

z = mypack.pkfcn(x,y);

Definitions do not use the package prefix. For example, the function definition line of the pkfcn.m
function would include only the function name:

function z = pkfcn(x,y)

Define a package class with only the class name:

classdef myClass

but call it with the package prefix:

obj = mypack.myClass(arg1,arg2,...);

Calling class methods does not require the package name because you have an object of the class.
You can use dot or function notation:

obj.myMethod(arg)
myMethod(obj,arg)

A static method requires the full class name, which includes the package name:

mypack.myClass.stMethod(arg)

Referencing Package Members from Outside the Package
Functions, classes, and other packages contained in a package are scoped to that package. To
reference any of the package members, prefix the package name to the member name, separated by
a dot. For example, the following statement creates an instance of MyClass, which is contained in
mypack package.

obj = mypack.MyClass;

Accessing Class Members — Various Scenarios

This section shows you how to access various package members from outside a package. Suppose
that you have a package mypack with the following contents:

+mypack
+mypack/myFcn.m

 Packages Create Namespaces

6-21

+mypack/@MyFirstClass
+mypack/@MyFirstClass/myFcn.m
+mypack/@MyFirstClass/otherFcn.m
+mypack/@MyFirstClass/MyFirstClass.m
+mypack/@MySecondClass
+mypack/@MySecondClass/MySecondClass.m
+mypack/+mysubpack
+mypack/+mysubpack/myFcn.m

Invoke the myFcn function in mypack:

mypack.myFcn(arg)

Create an instance of each class in mypack:

obj1 = mypack.MyFirstClass;
obj2 = mypack.MySecondClass(arg);

Invoke the myFcn function that is in the package mysubpack:

mypack.mysubpack.myFcn(arg1,arg2);

If mypack.MyFirstClass has a method called myFcn, call it like any method call on an object:

obj = mypack.MyFirstClass;
myFcn(obj,arg);

If mypack.MyFirstClass has a property called MyProp, assign it using dot notation and the object:

obj = mypack.MyFirstClass;
obj.MyProp = x;

Packages and the MATLAB Path
You cannot add package folders to the MATLAB path, but you must add the package parent folder to
the MATLAB path. Package members are not accessible if the package parent folder is not on the
MATLAB path, even if the package folder is the current folder. Making the package folder the current
folder is not sufficient to add the package parent folder to the path.

Package members remain scoped to the package. Always refer to the package members using the
package name. Alternatively, import the package into the function in which you call the package
member, see “Import Classes” on page 6-24.

Package folders do not shadow other package folders that are positioned later on the path, unlike
classes, which do shadow other classes. If two or more packages have the same name, MATLAB
treats them all as one package. If redundantly named packages in different path folders define the
same function name, then MATLAB finds only one of these functions.

Resolving Redundant Names

Suppose a package and a class have the same name. For example:

fldr_1/+foo
fldr_2/@foo/foo.m

A call to which foo returns the path to the executable class constructor:

6 Defining and Organizing Classes

6-22

>> which foo
fldr_2/@foo/foo.m

A function and a package can have the same name. However, a package name by itself is not an
identifier. Therefore, if a redundant name occurs alone, it identifies the function. Executing a package
name alone returns an error.

Package Functions vs. Static Methods

In cases where a package and a class have the same name, a package function takes precedence over
a static method. For example, path folder fldrA contains a package function and path folder fldrB
contains a class static method:

fldrA/+foo/bar.m % bar is a function in package foo
fldrB/@foo/bar.m % bar is a static method of class foo

A call to which foo.bar returns the path to the package function:

which foo.bar

fldrA\+foo\bar.m % package function

In cases where the same path folder contains both package and class folders with the same name, the
package function takes precedence over the static method.

fldr/@foo/bar.m % bar is a static method of class foo
fldr/+foo/bar.m % bar is a function in package foo

A call to which foo.bar returns the path to the package function:

which foo.bar

fldr/+foo/bar.m

If a path folder fldr contains a classdef file foo that defines a static method bar and the same
folder contains a package +foo that contains a package function bar.

fldr/foo.m % bar is a static method of class foo
fldr/+foo/bar.m % bar is a function in package foo

A call to which foo.bar returns the path to the package function:

which foo.bar

fldr/+foo/bar.m

See Also

More About
• “Folders Containing Class Definitions” on page 6-13
• “Class Precedence” on page 6-18

 Packages Create Namespaces

6-23

Import Classes

In this section...
“Syntax for Importing Classes” on page 6-24
“Import Static Methods” on page 6-24
“Import Package Functions” on page 6-24
“Package Function and Class Method Name Conflict” on page 6-25
“Clearing Import List” on page 6-25

Syntax for Importing Classes
Import classes into a function to simplify access to class members. For example, suppose that there is
a package that contains several classes and you will use only one of these classes or a static method
in your function. Use the import command to simplify code. Once you have imported the class, you
do not need to reference the package name:
function myFunc
 import pkg.MyClass
 obj = MyClass(arg,...); % call MyClass constructor
 obj.Prop = MyClass.staticMethod(arg,...); % call MyClass static method
end

Import all classes in a package using the syntax pkg.*:

function myFunc
 import pkg.*
 obj1 = MyClass1(arg,...); % call pkg.MyClass1 constructor
 obj2 = MyClass2(arg,...); % call pkg.MyClass2 constructor
 a = pkgFunction(); % call package function named pkgFunction
end

Import Static Methods
Use import to import a static method so that you can call this method without using the class name.
Call import with the full class name, including any packages, and the static method name.

function myFunc
 import pkg.MyClass.MyStaticMethod
 MyStaticMethod(arg,...); % call static method
end

Import Package Functions
Use import to import package functions so that you can call these functions without using the
package name. Call import with the package and function name.

function myFunc
 import pkg.pkgFunction
 pkgFunction(arg,...); % call imported package function
end

6 Defining and Organizing Classes

6-24

Package Function and Class Method Name Conflict
Avoid importing an entire package using the * wildcard syntax. Doing so imports an unspecified set of
names into the local scope. For example, suppose that you have the following folder organization:

+pkg/timedata.m % package function
+pkg/@MyClass/MyClass.m % class definition file
+pkg/@MyClass/timedata.m % class method

Import the package and call timedata on an instance of MyClass:

import pkg.*
myobj = pkg.MyClass;
timedata(myobj)

A call to timedata finds the package function, not the class method because MATLAB applies the
import and finds pkg.timedata first. Do not use a package in cases where you have name conflicts
and plan to import the package.

Clearing Import List
You cannot clear the import list from a function workspace. To clear the base workspace only, use:

clear import

See Also
import

More About
• “Packages Create Namespaces” on page 6-20

 Import Classes

6-25

Value or Handle Class — Which to Use

• “Comparison of Handle and Value Classes” on page 7-2
• “Which Kind of Class to Use” on page 7-9
• “The Handle Superclass” on page 7-11
• “Handle Class Destructor” on page 7-13
• “Find Handle Objects and Properties” on page 7-21
• “Implement Set/Get Interface for Properties” on page 7-22
• “Implement Copy for Handle Classes” on page 7-30

7

Comparison of Handle and Value Classes
In this section...
“Basic Difference” on page 7-2
“Behavior of MATLAB Built-In Classes” on page 7-2
“User-Defined Value Classes” on page 7-3
“User-Defined Handle Classes” on page 7-4
“Determining Equality of Objects” on page 7-6
“Functionality Supported by Handle Classes” on page 7-7

Basic Difference
A value class constructor returns an object that is associated with the variable to which it is assigned.
If you reassign this variable, MATLAB creates an independent copy of the original object. If you pass
this variable to a function to modify it, the function must return the modified object as an output
argument. For information on value-class behavior, see “Avoid Unnecessary Copies of Data”.

A handle class constructor returns a handle object that is a reference to the object created. You can
assign the handle object to multiple variables or pass it to functions without causing MATLAB to
make a copy of the original object. A function that modifies a handle object passed as an input
argument does not need to return the object.

All handle classes are derived from the abstract handle class.

Create a Value Class

By default, MATLAB classes are value classes. The following definition creates a value class named
MyValueClass:

classdef MyValueClass
 ...
end

Create a Handle Class

To create a handle class, derive the class from the handle class.

classdef MyHandleClass < handle
 ...
end

Behavior of MATLAB Built-In Classes
MATLAB fundamental classes are value classes (numeric, logical, char, cell, struct, and
function handle). For example, if you create an object of the class int32 and make a copy of this
object, the result is two independent objects. When you change the value of a, the value of b does not
change. This behavior is typical of classes that represent values.

a = int32(7);
b = a;
a = a^4;

7 Value or Handle Class — Which to Use

7-2

b
 7

MATLAB graphics objects are implemented as handle objects because they represent visual elements.
For example, create a graphics line object and copy its handle to another variable. Both variables
refer to the same line object.

x = 1:10; y = sin(x);
l1 = line(x,y);
l2 = l1;

Set the properties of the line object using either copy of the handle.

set(l2,'Color','red')
set(l1,'Color','green')

get(l2,'Color')

ans =

 0 1 0

Calling the delete function on the l2 handle destroys the line object. If you attempt to set the
Color property on the line l1, the set function returns an error.

delete(l2)
set(l1,'Color','blue')

Error using matlab.graphics.primitive.Line/set
Invalid or deleted object.

If you delete the object by deleting any one of the existing handles, all copies are now invalid because
you deleted the single object to which all handles refer.

Deleting a handle object is not the same as clearing the handle variable. In the graphics object
hierarchy, the parent of the object holds a reference to the object. For example, the parent axes hold
a reference to the line object referred to by l1 and l2. If you clear both variables from the
workspace, the object still exists.

For more information on the behavior of handle objects, see “Handle Object Behavior” on page 1-7.

User-Defined Value Classes
MATLAB associates objects of value classes with the variables to which you assign the object. When
you copy a value object to another variable or pass a value object to a function, MATLAB creates an
independent copy of the object and all the data contained by the object. The new object is
independent of changes to the original object. Value objects behave like MATLAB numeric and
struct classes. Each property behaves essentially like a MATLAB array.

Value objects are always associated with one workspace or temporary variable. Value objects go out
of scope when their variable goes out of scope or is cleared. There are no references to value objects,
only copies that are independent objects.

Value Object Behavior

Here is a value class that stores a value in its Number property. The default property value is the
number 1.

 Comparison of Handle and Value Classes

7-3

classdef NumValue
 properties
 Number = 1
 end
end

Create a NumValue object assigned to the variable a.

a = NumValue

a =

 NumValue with properties:

 Number: 1

Assign the value of a to another variable, b.

b = a

b =

 NumValue with properties:

 Number: 1

The variables a and b are independent. Changing the value of the Number property of a does not
affect the Number property of b.

a.Number = 7

a =

 NumValue with properties:

 Number: 7

b

b =

 NumValue with properties:

 Number: 1

Modifying Value Objects in Functions

When you pass a value object to a function, MATLAB creates a copy of that object in the function
workspace. Because copies of value objects are independent, the function does not modify the object
in the caller’s workspace. Therefore, functions that modify value objects must return the modified
object to be reassigned in the caller’s workspace.

For more information, see “Object Modification” on page 5-50.

User-Defined Handle Classes
Instances of classes that derive from the handle class are references to the underlying object data.
When you copy a handle object, MATLAB copies the handle, but does not copy the data stored in the

7 Value or Handle Class — Which to Use

7-4

object properties. The copy refers to the same object as the original handle. If you change a property
value on the original object, the copied handle references the same change.

Handle Object Behavior

Here is a handle class that stores a value in its Number property. The default property value is the
number 1.

classdef NumHandle < handle
 properties
 Number = 1
 end
end

Create a NumHandle objects assigned to the variable a.

a = NumHandle

a =

 NumHandle with properties:

 Number: 1

Assign the value of a to another variable, b.

b = a

b =

 NumHandle with properties:

 Number: 1

The variables a and b refer to the same underlying object. Changing the value of the Number
property of a also changes the Number property of b. That is, a and b refer to the same object.

a.Number = 7

a =

 NumHandle with properties:

 Number: 7

b

b =

 NumHandle with properties:

 Number: 7

Modifying Handle Objects in Functions

When you pass a handle object to a function, MATLAB creates a copy of the handle in the function
workspace. Because copies of handles reference the same underlying object, functions that modify
the handle object effectively modify the object in the caller’s workspace as well. Therefore, it is not

 Comparison of Handle and Value Classes

7-5

necessary for functions that modify handle objects passed as input arguments to return the modified
object to the caller.

For more information, see “Object Modification” on page 5-50.

Deleting Handles

You can destroy handle objects by explicitly calling the handle delete method. Deleting the handle of
a handle class object makes all handles invalid. For example:

a = NumHandle;
b = a;
delete(a)
b.Number

Invalid or deleted object.

Calling delete on a handle object invokes the destructor function or functions for that object. See
“Handle Class Destructor” on page 7-13 for more information.

Initialize Properties to Contain Handle Objects

For information on the differences between initializing properties to default values in the properties
block and initializing properties from within the constructor, see “Initialize Property Values” on page
8-12 and “Initialize Arrays of Handle Objects” on page 10-9.

Determining Equality of Objects
Equality for value objects means that the objects are of the same class and have the same state.

Equality for handle objects means that the handle variables refer to the same object. You also can
identify handle variables that refer to different objects of the same class that have the same state.

Equality of Value Objects

To determine if value objects are the same size and their contents are of equal value, use isequal.
For example, use the previously defined NumValue class to create two instances and test for equality:

a = NumValue;
b = NumValue;
isequal(a,b)

ans =

 1

a and b are independent and therefore are not the same object. However each represents the same
value.

If you change the value represented by a value object, the objects are no longer equal.

a = NumValue;
b = NumValue;
b.Number = 7;
isequal(a,b)

7 Value or Handle Class — Which to Use

7-6

ans =

 0

Value classes do not have a default eq method to implement the == operation.

Equality of Handle Objects

Handle objects inherit an eq method from the handle base class. You can use == and isequal to
test for two different relationships among handle objects:

• The handles refer to the same object: == and isequal return true.
• The handles refer to objects of the same class that have the same values, but are not the same

objects — only isequal returns true.

Use the previously defined NumHandle class to create an object and copy the handle.

a = NumHandle;
b = a;

Test for equality using == and isequal.

a == b

ans =

 1

isequal(a,b)

ans =

 1

Create two instances of the NumHandle class using the default values.

a = NumHandle;
b = NumHandle;

Determine if a and b refer to the same object.

a == b

ans =

 0

Determine if a and b have the same values.

isequal(a,b)

ans =

 1

Functionality Supported by Handle Classes
Deriving from the handle class enables your class to:

 Comparison of Handle and Value Classes

7-7

• Inherit several useful methods (“Handle Class Methods” on page 7-11)
• Define events and listeners (“Events and Listeners Syntax” on page 11-17)
• Define dynamic properties (“Dynamic Properties — Adding Properties to an Instance” on page 8-

55)
• Implement set and get methods (“Implement Set/Get Interface for Properties” on page 7-22)
• Customize copy behavior (“Implement Copy for Handle Classes” on page 7-30)

See “The Handle Superclass” on page 7-11 for more information on the handle class and its
methods.

See Also

Related Examples
• “Which Kind of Class to Use” on page 7-9
• “Implement Copy for Handle Classes” on page 7-30
• “Handle Object Behavior” on page 1-7

7 Value or Handle Class — Which to Use

7-8

Which Kind of Class to Use
In this section...
“Examples of Value and Handle Classes” on page 7-9
“When to Use Value Classes” on page 7-9
“When to Use Handle Classes” on page 7-9

Examples of Value and Handle Classes
Handle and value classes are useful in different situations. For example, value classes enable you to
create array classes that have the same behavior as MATLAB numeric classes.

“Representing Polynomials with Classes” on page 19-2 and “Representing Structured Data with
Classes” on page 3-14 provides examples of value classes.

Handle classes enable you to create objects that more than one function or object can share. Handle
objects allow more complex interactions among objects because they allow objects to reference each
other.

“Implementing Linked Lists with Classes” on page 3-23 and “Developing Classes — Typical Workflow”
on page 3-6 provides examples of a handle class.

When to Use Value Classes
Value class objects behave like normal MATLAB variables. A typical use of value classes is to define
data structures. For example, suppose that you want to define a class to represent polynomials. This
class can define a property to contain a list of coefficients for the polynomial. It can implement
methods that enable you to perform various operations on the polynomial object. For example,
implement addition and multiplication without converting the object to another class.

A value class is suitable because you can copy a polynomial object and have two objects that are
identical representations of the same polynomial. For an example of value classes, see “Subclasses of
MATLAB Built-In Types” on page 12-42.

For information on MATLAB pass-by-value semantics, see “Avoid Unnecessary Copies of Data”.

When to Use Handle Classes
Handle objects are useful in specialized circumstances where an object represents a physical object
such as a graph or an external device rather than a mathematical object like a number or matrix.
Handle objects are derivations of the handle class, which provides functionality such as events and
listeners, destructor method, and support for dynamic properties.

Use a handle class when:

• No two instances of a class can have the same state, making it impossible to have exact copies.
For example:

• A copy of a graphics object (such as a line) has a different position in its parents list of children
than the object from which it was copied. Therefore, the two objects are not identical.

 Which Kind of Class to Use

7-9

• Nodes in lists or trees having specific connectivity to other nodes — no two nodes can have the
same connectivity.

• The class represents physical and unique objects like serial ports and printers.
• The class represents visible objects like graphics components.
• The class defines events and notifies listeners when an event occurs (notify is a handle class

method).
• The class creates listeners by calling the handle class addlistener method.
• The class subclasses the dynamicprops class (a subclass of handle) so that instances can define

dynamic properties.
• The class subclasses the matlab.mixin.SetGet class (a subclass of handle) so that it can

implement a graphics object style set/get interface to access property values.
• You want to create a singleton class or a class in which you track the number of instances from

within the constructor.
• Instances of a class cannot share state, such as nodes in a linked list.

See Also

Related Examples
• “Handle Compatible Classes” on page 12-33

7 Value or Handle Class — Which to Use

7-10

The Handle Superclass
In this section...
“Building on the Handle Class” on page 7-11
“Handle Class Methods” on page 7-11
“Event and Listener Methods” on page 7-11
“Relational Methods” on page 7-12
“Test Handle Validity” on page 7-12
“When MATLAB Destroys Objects” on page 7-12

Building on the Handle Class
The handle class is an abstract class. Therefore, you cannot create objects of this class directly. Use
the handle class as a superclass to implement subclasses that inherit handle behavior. MATLAB
defines several classes that derive from the handle class. These classes provide specialized
functionality to subclasses.

Specialized Handle Base Classes

To add both handle behavior and specific functionality to your class, derive your class from these
handle classes:

• matlab.mixin.SetGet — Provides set and get methods to access property values.
• dynamicprops — Enables you to define properties that are associated with an object, but not the

class in general.
• matlab.mixin.Copyable Provides a copy method that you can customize for your class.

For information on how to define subclasses, see “Design Subclass Constructors” on page 12-7 .

Handle Class Methods
When you derive a class from the handle class, the subclass inherits methods that enable you to
work more effectively with handle objects.

List the methods of a class by passing the class name to the methods function:

methods('handle')

Methods for class handle:

addlistener findobj gt lt
delete findprop isvalid ne
eq ge le notify

Event and Listener Methods
For information on how to use the notify and addlistener methods, see “Events and Listeners
Syntax” on page 11-17.

 The Handle Superclass

7-11

Relational Methods
TF = eq(H1,H2)
TF = ne(H1,H2)
TF = lt(H1,H2)
TF = le(H1,H2)
TF = gt(H1,H2)
TF = ge(H1,H2)

The handle class overloads these functions to support equality tests and sorting on handles. For each
pair of input arrays, these functions return a logical array of the same size. Each element is an
element-wise equality or comparison test result. The input arrays must be the same size or one (or
both) can be scalar. The method performs scalar expansion as required. For more information on
handle class relational methods, see relationaloperators.

Test Handle Validity
Use the isvalid handle class method to determine if a variable is a valid handle object. For
example, in the statement:

B = isvalid(H)

B is a logical array in which each element is true if, and only if, the corresponding element of H is a
valid handle. B is always the same size as H.

When MATLAB Destroys Objects
MATLAB destroys objects in the workspace of a function when the function:

• Reassigns an object variable to a new value
• Does not use an object variable for the remainder of a function
• Function execution ends

When MATLAB destroys an object, it also destroys values stored in the properties of the object.
MATLAB frees computer memory associated with the object for use by MATLAB or the operating
system.

You do not need to free memory in handle classes. However, there can be other operations that you
want to perform when destroying an object. For example, closing a file or shutting down an external
program that the object constructor started. Define a delete method in your handle subclass for
these purposes.

See “Handle Class Destructor” on page 7-13 for more information.

See Also

Related Examples
• “Comparison of Handle and Value Classes” on page 7-2

7 Value or Handle Class — Which to Use

7-12

Handle Class Destructor
In this section...
“Basic Knowledge” on page 7-13
“Syntax of Handle Class Destructor Method” on page 7-13
“Handle Object During delete Method Execution” on page 7-14
“Support Destruction of Partially Constructed Objects” on page 7-15
“When to Define a Destructor Method” on page 7-15
“Destructors in Class Hierarchies” on page 7-16
“Object Lifecycle” on page 7-16
“Restrict Access to Object Delete Method” on page 7-17
“Nondestructor Delete Methods” on page 7-18
“External References to MATLAB Objects” on page 7-18

Basic Knowledge
Class destructor – a method named delete that MATLAB calls implicitly before destroying an object
of a handle class. Also, user-defined code can call delete explicitly to destroy an object.

Nondestructor – a method named delete that does not meet the syntax requirements of a valid
destructor. Therefore, MATLAB does not call this method implicitly when destroying handle objects. A
method named delete in a value class is not a destructor. A method named delete in a value class
that sets the HandleCompatible attribute to true is not a destructor.

“Object Lifecycle” on page 7-16

“Method Attributes” on page 9-4

Syntax of Handle Class Destructor Method
MATLAB calls the destructor of a handle class when destroying objects of the class. MATLAB
recognizes a method named delete as the class destructor only if you define delete as an ordinary
method with the appropriate syntax.

To be a valid class destructor, the delete method:

• Must define one, scalar input argument, which is an object of the class.
• Must not define output arguments
• Cannot be Sealed, Static, or Abstract
• Cannot use arguments blocks for input argument validation.

In addition, the delete method should not:

• Throw errors, even if the object is invalid.
• Create new handles to the object being destroyed
• Call methods or access properties of subclasses

 Handle Class Destructor

7-13

MATLAB does not call a noncompliant delete method when destroying objects of the class. A
noncompliant delete method can prevent the destruction of the object by shadowing the handle
class delete method.

A delete method defined by a value class that is handle compatible is not a destructor, even if the
delete method is inherited by a handle subclass. For information on handle compatible classes, see
“Handle Compatible Classes” on page 12-33.

Declare delete as an ordinary method:

methods
 function delete(obj)
 % obj is always scalar
 ...
 end
end

delete Called Element-Wise on Array

MATLAB calls the delete method separately for each element in an array. Therefore, a delete
method is passed only one scalar argument with each invocation.

Calling delete on a deleted handle should not error and can take no action. This design enables
delete to work on object arrays containing a mix of valid and invalid objects.

Handle Object During delete Method Execution
Calling the delete method on an object always results in the destruction of the object. The object is
destroyed when the call to delete is made explicitly in MATLAB code or when called by MATLAB
because an object is no longer reachable from any workspace. Once called, a delete method cannot
abort or prevent object destruction.

A delete method can access properties of the object being deleted. MATLAB does not destroy these
properties until after the delete methods for the class of the object and all superclasses finish
executing.

If a delete method creates new variables that contain a handle to the object being deleted, those
handles are invalid. After the delete method finishes execution, handles to the deleted object in any
variables in any workspace are invalid.

The isvalid method returns false for the handle object within the delete method because object
destruction begins when the method is called.

MATLAB calls delete methods in the inverse of the construction order. That is, MATLAB invokes
subclass delete methods before superclass delete methods.

If a superclass expects a property to be managed by subclasses, then the superclass should not
access that property in its delete method. For example, if a subclass uses an inherited abstract
property to store an object handle, then the subclass should destroy this object in its delete method,
but the superclass should not access that property in its delete method.

7 Value or Handle Class — Which to Use

7-14

Support Destruction of Partially Constructed Objects
Errors that occur while constructing an object can result in a call to delete before the object is fully
created. Therefore, class delete methods must be able to work with partially constructed objects.

For example, the PartialObject class delete method determines if the Data property is empty
before accessing the data this property contains. If an error occurs while assigning the constructor
argument to the Name property, MATLAB passes the partially constructed object to delete.

classdef PartialObject < handle
 properties
 % Restrict the Name property
 % to a cell array
 Name cell
 Data
 end
 methods
 function h = PartialObject(name)
 if nargin > 0
 h.Name = name;
 h.Data.a = rand(10,1);
 end
 end
 function delete(h)
 % Protect against accessing properties
 % of partially constructed objects
 if ~isempty(h.Data)
 t = h.Data.a;
 disp(t)
 else
 disp('Data is empty')
 end
 end
 end
end

An error occurs if you call the constructor with a char vector, instead of the required cell array:

obj = PartialObject('Test')

MATLAB passes the partially constructed object to the delete method. The constructor did not set
the value of the Data property because the error occurred when setting the Name property.

Data is empty
Error setting 'Name' property of 'PartialObject' class:
...

When to Define a Destructor Method
Use a delete method to perform cleanup operations before MATLAB destroys the object. MATLAB
calls the delete method reliably, even if execution is interrupted with Ctrl-c or an error.

If an error occurs during the construction of a handle class, MATLAB calls the class destructor on the
object along with the destructors for any objects contained in properties and any initialized base
classes.

 Handle Class Destructor

7-15

For example, suppose that a method opens a file for writing and you want to close the file in your
delete method. The delete method can call fclose on a file identifier that the object stores in its
FileID property:

function delete(obj)
 fclose(obj.FileID);
end

Destructors in Class Hierarchies
If you create a hierarchy of classes, each class can define its own delete method. When destroying
an object, MATLAB calls the delete method of each class in the hierarchy. Defining a delete
method in a handle subclass does not override the handle class delete method. Subclass delete
methods augment the superclass delete methods.

Inheriting a Sealed Delete Method

Classes cannot define a valid destructor that is Sealed. MATLAB returns an error when you attempt
to instantiate a class that defines a Sealed delete method.

Normally, declaring a method as Sealed prevents subclasses from overriding that method. However,
a Sealed method named delete that is not a valid destructor does not prevent a subclass from
defining its own destructor.

For example, if a superclass defines a method named delete that is not a valid destructor, but is
Sealed, then subclasses:

• Can define valid destructors (which are always named delete).
• Cannot define methods named delete that are not valid destructors.

Destructors in Heterogeneous Hierarchies

Heterogeneous class hierarchies require that all methods to which heterogeneous arrays are passed
must be sealed. However, the rule does not apply to class destructor methods. Because destructor
methods cannot be sealed, you can define a valid destructor in a heterogeneous hierarchy that is not
sealed, but does function as a destructor.

For information on heterogeneous hierarchies, see “Designing Heterogeneous Class Hierarchies” on
page 10-20

Object Lifecycle
MATLAB invokes the delete method when the lifecycle of an object ends. The lifecycle of an object
ends when the object is:

• No longer referenced anywhere
• Explicitly deleted by calling delete on the handle

Inside a Function

The lifecycle of an object referenced by a local variable or input argument exists from the time the
variable is assigned until the time it is reassigned, cleared, or no longer referenced within that
function or in any handle array.

7 Value or Handle Class — Which to Use

7-16

A variable goes out of scope when you explicitly clear it or when its function ends. When a variable
goes out of scope and its value belongs to a handle class that defines a delete method, MATLAB
calls that method. MATLAB defines no ordering among variables in a function. Do not assume that
MATLAB destroys one value before another value when the same function contains multiple values.

Sequence During Handle Object Destruction

MATLAB invokes the delete methods in the following sequence when destroying an object:

1 The delete method for the class of the object
2 The delete method of each superclass class, starting with the immediate superclasses and

working up the hierarchy to the most general superclasses

MATLAB invokes the delete methods of superclasses at the same level in the hierarchy in the order
specified in the class definition. For example, the following class definition specifies supclass1
before supclass2. MATLAB calls the delete method of supclass1 before the delete method of
supclass2.

classdef myClass < supclass1 & supclass2

After calling each delete method, MATLAB destroys the property values belonging exclusively to the
class whose method was called. The destruction of property values that contain other handle objects
can cause a call the delete methods for those objects when there are no other references to those
objects.

Superclass delete methods cannot call methods or access properties belonging to a subclass.

Destruction of Objects with Cyclic References

Consider a set of objects that reference other objects of the set such that the references form a cyclic
graph. In this case, MATLAB:

• Destroys the objects if they are referenced only within the cycle
• Does not destroy the objects as long as there is an external reference to any of the objects from a

MATLAB variable outside the cycle

MATLAB destroys the objects in the reverse of the order of construction. for more information, see
“Handle Object During delete Method Execution” on page 7-14.

Restrict Access to Object Delete Method
Destroy handle objects by explicitly calling delete on the object:

delete(obj)

A class can prevent explicit destruction of an object by setting its delete method Access attribute
to private. However, a method of the class can call the private delete method.

If the class delete method Access attribute is protected, only methods of the class and of
subclasses can explicitly delete objects of that class.

However, when an object lifecycle ends, MATLAB calls the object’s delete method when destroying
the object regardless of the method’s Access attribute.

 Handle Class Destructor

7-17

Inherited Private Delete Methods

Class destructor behavior differs from the normal behavior of an overridden method. MATLAB
executes each delete method of each superclass upon destruction, even if that delete method is
not public.

When you explicitly call an object’s delete method, MATLAB checks the delete method Access
attribute in the class defining the object, but not in the superclasses of the object. A superclass with a
private delete method cannot prevent the destruction of subclass objects.

Declaring a private delete method makes most sense for sealed classes. In the case where classes are
not sealed, subclasses can define their own delete methods with public access. MATLAB calls a
private superclass delete method as a result of an explicit call to a public subclass delete method.

Nondestructor Delete Methods
A class can implement a method named delete that is not a valid class destructor. MATLAB does not
call this method implicitly when destroying an object. In this case, delete behaves like an ordinary
method.

For example, if the superclass implements a Sealed method named delete that is not a valid
destructor, then MATLAB does not allow subclasses to override this method.

A delete method defined by a value class cannot be a class destructor.

External References to MATLAB Objects
MATLAB does not manage object lifecycles that involve external languages that perform their own
object lifecycle management (aka, garbage collection). MATLAB cannot detect when it is safe to
destroy objects used in cyclic references because the external environment does not notify MATLAB
when external reference have been destroyed.

If you cannot avoid external references to MATLAB objects, explicitly break the cyclic reference by
destroying the objects in MATLAB.

The following section describes how to manage this situation when using Java objects that reference
MATLAB objects.

Java References Can Prevent Destructor Execution

Java does not support the object destructors that MATLAB objects use. Therefore, it is important to
manage the lifecycle of all objects used in applications that include both Java and MATLAB objects.

Java objects that hold references to MATLAB objects can prevent deletion of the MATLAB objects. In
these cases, MATLAB does not call the handle object delete method even when there is no handle
variable referring to that object. To ensure your delete method executes, call delete on the object
explicitly before the handle variable goes out of scope.

Problems can occur when you define callbacks for Java objects that reference MATLAB objects.

For example, the CallbackWithJava class creates a Java com.mathworks.jmi.Callback object
and assigns a class method as the callback function. The result is a Java object that has a reference to
a handle object via the function-handle callback.

7 Value or Handle Class — Which to Use

7-18

classdef CallbackWithJava < handle
 methods
 function obj = CallbackWithJava
 jo = com.mathworks.jmi.Callback;
 set(jo,'DelayedCallback',@obj.cbFunc); % Assign method as callback
 jo.postCallback
 end
 function cbFunc(obj,varargin)
 c = class(obj);
 disp(['Java object callback on class ',c])
 end
 function delete(obj)
 c = class(obj);
 disp(['ML object destructor called for class ',c])
 end
 end
end

Suppose that you create a CallbackWithJava object from within a function:

function testDestructor
 cwj = CallbackWithJava
 ...
end

Creating an instance of the CallbackWithJava class creates the com.mathworks.jmi.Callback
object and executes the callback function:

testDestructor

cwj =

 CallbackWithJava with no properties.

Java object callback on class CallbackWithJava

The handle variable, cwj, exists only in the function workspace. However, MATLAB does not call the
class delete method when the function ends. The com.mathworks.jmi.Callback object still
exists and holds a reference to the object of the CallbackWithJava class, which prevents
destruction of the MATLAB object.

clear classes

Warning: Objects of 'CallbackWithJava' class exist. Cannot clear this class or
any of its superclasses.

To avoid causing inaccessible objects, call delete explicitly before losing the handle to the MATLAB
object.

function testDestructor
 cwj = CallbackWithJava
 ...
 delete(cwj)
end

Manage Object Lifecycle in Applications

MATLAB applications that use Java or other external-language objects should manage the lifecycle of
the objects involved. A typical user interface application references Java objects from MATLAB
objects and creates callbacks on Java objects that reference MATLAB objects.

You can break these cyclic references in various ways:

 Handle Class Destructor

7-19

• Explicitly call delete on the MATLAB objects when they are no longer needed
• Unregister the Java object callbacks that reference MATLAB objects
• Use intermediate handle objects that reference both the Java callbacks and the MATLAB objects.

See Also

More About
• “Handle Object Behavior” on page 1-7

7 Value or Handle Class — Which to Use

7-20

Find Handle Objects and Properties
In this section...
“Find Handle Objects” on page 7-21
“Find Handle Object Properties” on page 7-21

Find Handle Objects
The findobj method enables you to locate handle objects that meet certain conditions.

function HM = findobj(H,<conditions>)

The findobj method returns an array of handles matching the conditions specified. You can use
regular expressions with findobj. For more information, see regexp.

Find Handle Object Properties
The findprop method returns the meta.property object for the specified object and property.

function mp = findprop(h,'PropertyName')

The property can also be a dynamic property created by the addprop method of the dynamicprops
class.

Use the returned meta.property object to obtain information about the property, such as the
settings of any of its attributes. For example, the following statements determine that the setting of
the AccountStatus property Dependent attribute is false.

ba = BankAccount(007,50,'open');
mp = findprop(ba,'AccountStatus');
mp.Dependent

ans =
 0

See Also
handle

Related Examples
• “Class Metadata” on page 16-2

 Find Handle Objects and Properties

7-21

Implement Set/Get Interface for Properties
In this section...
“The Standard Set/Get Interface” on page 7-22
“Subclass Syntax” on page 7-22
“Get Method Syntax” on page 7-22
“Set Method Syntax” on page 7-23
“Class Derived from matlab.mixin.SetGet” on page 7-23
“Set Priority for Matching Partial Property Names” on page 7-27

The Standard Set/Get Interface
Some MATLAB objects, such as graphics objects, implement an interface based on set and get
functions. These functions enable access to multiple properties on arrays of objects in a single
function call.

You can add set and get functionality to your class by deriving from one of these classes:

• matlab.mixin.SetGet — use when you want support for case-insensitive, partial property name
matching. Deriving from matlab.mixin.SetGet does not affect the exact property name
required by the use of dot notation reference to properties.

• matlab.mixin.SetGetExactNames — use when you want to support only case-sensitive full
property name matching.

Note The set and get methods referred to in this section are different from property set access and
property get access methods. See “Property Access Methods” on page 8-40 for information on
property access methods.

Subclass Syntax
Use the abstract class matlab.mixin.SetGet or matlab.mixin.SetGetExactNames as a
superclass:

classdef MyClass < matlab.mixin.SetGet
 ...
end

Because matlab.mixin.SetGet and matlab.mixin.SetGetExactNames derive from the handle
class, your subclass is also a handle class.

Get Method Syntax
The get method returns the value of an object property using the object handle and the property
name. For example, assume H is the handle to an object:

v = get(H,'PropertyName');

If you specify an array of handles with a single property name, get returns the property value for
each object as a cell array of values:

7 Value or Handle Class — Which to Use

7-22

CV = get(H,'PropertyName');

The CV array is always a column regardless of the shape of H.

If you specify a cell array of char vector property names and an array of handles, get returns a cell
array of property values. Each row in the cell corresponds to an object in the handle array. Each
column in the cell corresponds to a property name.

props = {'PropertyName1','PropertyName2'};
CV = get(H,props);

get returns an m-by-n cell array, where m = length(H) and n = length(props).

If you specify a handle array, but no property names, get returns an array of type struct in which
each structure in the array corresponds to an object in H. Each field in each structure corresponds to
a property defined by the class of H. The value of each field is the value of the corresponding property.

SV = get(H);

If you do not assign an output variable, then H must be scalar.

For an example, see “Using get with Arrays of Handles” on page 7-25.

Set Method Syntax
The set method assigns the specified value to the specified property for the object with handle H. If H
is an array of handles, MATLAB assigns the value to the property for each object in the array H.

set(H,'PropertyName',PropertyValue)

You can pass a cell array of property names and a cell array of property values to set:

props = {'PropertyName1','PropertyName2'};
vals = {Property1Value,Property2Value};
set(H,props,vals)

If length(H) is greater than one, then the property value cell array (vals) can have values for each
property in each object. For example, suppose length(H) is 2 (two object handles). You want to
assign two property values on each object:
props = {'PropertyName1','PropertyName2'};
vals = {Property11Value,Property12Value;Property21Value,Property22Value};
set(H,props,vals))

The preceding statement is equivalent to the follow two statements:
set(H(1),'PropertyName1',Property11Value,'PropertyName2',Property12Value)
set(H(2),'PropertyName1',Property21Value,'PropertyName2',Property22Value)

If you specify a scalar handle, but no property names, set returns a struct with one field for each
property in the class of H. Each field contains an empty cell array.

SV = set(h);

Class Derived from matlab.mixin.SetGet
This sample class defines a set/get interface and illustrates the behavior of the inherited methods:

 Implement Set/Get Interface for Properties

7-23

classdef LineType < matlab.mixin.SetGet
 properties
 Style = '-'
 Marker = 'o'
 end
 properties (SetAccess = protected)
 Units = 'points'
 end
 methods
 function obj = LineType(s,m)
 if nargin > 0
 obj.Style = s;
 obj.Marker = m;
 end
 end
 function set.Style(obj,val)
 if ~(strcmpi(val,'-') ||...
 strcmpi(val,'--') ||...
 strcmpi(val,'..'))
 error('Invalid line style ')
 end
 obj.Style = val;
 end
 function set.Marker(obj,val)
 if ~isstrprop(val,'graphic')
 error('Marker must be a visible character')
 end
 obj.Marker = val;
 end
 end
end

Create an instance of the class and save its handle:

h = LineType('--','*');

Query the value of any object property using the inherited get method:

get(h,'Marker')

ans =

'*'

Set the value of any property using the inherited set method:

set(h,'Marker','Q')

Property Access Methods Called with set and get

MATLAB calls property access methods (set.Style or set.Marker in the LineType class) when
you use the set and get methods.

set(h,'Style','-.-')

Error using LineType/set.Style (line 20)
Invalid line style

For more information on property access methods, see “Property Access Methods” on page 8-40

7 Value or Handle Class — Which to Use

7-24

List All Properties

Return a struct containing object properties and their current values using get:

h = LineType('--','*');
SV = get(h)

SV =

 struct with fields:

 Style: '--'
 Marker: '*'
 Units: 'points'

Return a struct containing the properties that have public SetAccess using set:

S = set(h)

S =

 struct with fields:

 Style: {}
 Marker: {}

The LineType class defines the Units property with SetAccess = protected. Therefore, S =
set(h) does not create a field for Units in S.

set cannot return possible values for properties that have nonpublic set access.

Using get with Arrays of Handles

Suppose that you create an array of LineType objects:

H = [LineType('..','z'),LineType('--','q')]

H =

 1x2 LineType with properties:

 Style
 Marker
 Units

When H is an array of handles, get returns a (length(H)-by-1) cell array of property values:

CV = get(H,'Style')

CV =

 2×1 cell array

 {'..'}
 {'--'}

When H is an array of handles and you do not specify a property name, get returns a struct array
containing fields with names corresponding to property-names. Assign the output of get to a variable
when H is not scalar.

 Implement Set/Get Interface for Properties

7-25

SV = get(H)

SV =

2x1 struct array with fields:
 Style
 Marker
 Units

Get the value of the Marker property from the second array element in the SV array of structures:

SV(2).Marker

ans =

'q'

Arrays of Handles, Names, and Values

You can pass an array of handles, a cell array of property names, and a cell array of property values
to set. The property value cell array must have one row of property values for each object in H. Each
row must have a value for each property in the property name array:

H = [LineType('..','z'),LineType('--','q')];
set(H,{'Style','Marker'},{'..','o';'--','x'})

The result of this call to set is:

H(1)

ans =

 LineType with properties:

 Style: '..'
 Marker: 'o'
 Units: 'points

H(2)

ans =

 LineType with properties:

 Style: '--'
 Marker: 'x'
 Units: 'points'

Customize the Property List

Customize the way property lists display by redefining the following methods in your subclass:

• setdisp — When you call set with no output argument and a single scalar handle input, set
calls setdisp to determine how to display the property list.

• getdisp — When you call get with no output argument and a single scalar handle input, get
calls getdisp to determine how to display the property list.

7 Value or Handle Class — Which to Use

7-26

Set Priority for Matching Partial Property Names
Classes that derive from matlab.mixin.SetGet can use the PartialMatchPriority property
attribute to specify a relative priority for partial name matching. MATLAB applies this attribute when
resolving incomplete and case-insensitive text strings that match more than one property name.

The inherited set and get methods can resolve inexact property names when there are no
ambiguities resulting from inexact name strings. When a partial property name is ambiguous because
the name matches more than one property, the PartialMatchPriority attribute value can
determine which property MATLAB matches.

The default priority is equivalent to PartialMatchPriority = 1. To reduce the relative priority of
a property, set PartialMatchPriority to a positive integer value of 2 or greater. The priority of a
property decreases as the value of PartialMatchPriority increases.

For example, in this class the Verbosity property has a higher priority for name matching than the
Version property.

classdef MyClass < matlab.mixin.SetGet
 properties
 Verbosity
 end
 properties (PartialMatchPriority = 2)
 Version
 end
end

Calling the set method with the potentially ambiguous inexact name Ver sets the Verbosity
property because of its higher relative priority. Without setting the PartialMatchPriority
attribute, the ambiguous name would cause an error.

a = MyClass;
set(a,"Ver",10)
disp(a)

 MyClass with properties:

 Verbosity: 10
 Version: []

The same name selection applies to the get method.

v = get(a,"Ver")

v =

 10

Case and Name Matching

A full name match with nonmatching case takes precedence over a partial match with a higher
priority property. For example, this class defines the BaseLine property with a priority of 1 (the
default) and a Base property with a priority of 2 (lower than 1).

classdef MyClass < matlab.mixin.SetGet
 properties
 BaseLine

 Implement Set/Get Interface for Properties

7-27

 end
 properties (PartialMatchPriority = 2)
 Base
 end
end

Calling the set method with the string base sets the Base property. BaseLine has a higher priority,
but the full name match with incorrect case takes precedence.

a = MyClass;
set(a,"base",-2)
disp(a)

 MyClass with properties:

 BaseLine: []
 Base: -2

Reduce Incompatibilities When Adding New Properties

You can use the PartialMatchPriority attribute to avoid introducing code incompatibilities when
adding a new property. For example, this class enables the set and get methods to refer to the
Distance property with the string Dis because the DiscreteSamples property has a lower
priority.

classdef Planet < matlab.mixin.SetGet
% Version 1.0
 properties
 Distance
 end
 properties(PartialMatchPriority = 2)
 DiscreteSamples
 end
end

Version 2.0 of the class introduces a property named Discontinuities. To prevent the possibility of
causing an ambiguous partial property name in existing code, use PartialMatchPriority to set
the priority of Discontinuities lower than that of previously existing properties.

classdef Planet < matlab.mixin.SetGet
% Version 2.0
 properties
 Diameter;
 NumMoons = 0
 ApparentMagnitude;
 DistanceFromSun;
 end
 properties(PartialMatchPriority = 2)
 DiscreteSamples;
 end
 properties(PartialMatchPriority = 3)
 Discontinuities = false;
 end
end

For version 1.0 of the Planet class, this call to the set method was not ambiguous.

7 Value or Handle Class — Which to Use

7-28

p = Planet;
set(p,"Disc",true)

However, with the introduction of the Discontinuities property, the string Disc becomes
ambiguous. By giving the Discontinuities property a lower priority, the string Disc continues to
match the DiscreteSamples property.

Note When writing reusable code, using complete, case-sensitive property names avoids
ambiguities, prevents incompatibilities with subsequent software releases, and produces more
readable code.

See Also
get | matlab.mixin.SetGet | matlab.mixin.SetGetExactNames | set

More About
• “Ways to Use Properties” on page 8-2

 Implement Set/Get Interface for Properties

7-29

Implement Copy for Handle Classes

In this section...
“Copy Method for Handle Classes” on page 7-30
“Customize Copy Operation” on page 7-31
“Copy Properties That Contain Handles” on page 7-32
“Exclude Properties from Copy” on page 7-33

Copy Method for Handle Classes
Copying a handle variable results in another handle variable that refers to the same object. You can
add copy functionality to your handle class by subclassing matlab.mixin.Copyable. The inherited
copy method enables you to make shallow copies of objects of the class. The CopyObj class shows
the behavior of copy operations.

classdef CopyObj < matlab.mixin.Copyable
 properties
 Prop
 end
end

Create an object of the CopyObj class and assign the handle of a line object to the property Prop.

a = CopyObj;
a.Prop = line;

Copy the object.

b = copy(a);

Confirm that the handle variables a and b refer to different objects.

a == b

ans =

 logical

 0

However, the line object referred to by a.Prop has not been copied. The handle contained in
a.Prop refers to the same object as the handle contained in b.Prop.

a.Prop == b.Prop

ans =

 logical

 1

For more detailed information on the behavior of the copy operation, see copy.

7 Value or Handle Class — Which to Use

7-30

Customize Copy Operation
Customize handle object copy behavior by deriving your class from matlab.mixin.Copyable. The
matlab.mixin.Copyable class is an abstract base class that derives from the handle class.
matlab.mixin.Copyable provides a template for customizing object copy operations by defining:

• copy — Sealed method that defines the interface for copying objects
• copyElement — Protected method that subclasses can override to customize object copy

operations for the subclass

The matlab.mixin.Copyable copy method, calls the copyElement method. Your subclass
customizes the copy operation by defining its own version of copyElement.

The default implementation of copyElement makes shallow copies of all the nondependent
properties. copyElement copies each property value and assigns it to the new (copied) property. If a
property value is a handle object, copyElement copies the handle, but not the underlying data.

To implement different copy behavior for different properties, override copyElement. For example,
the copyElement method of the SpecializedCopy class:

• Creates a new class object
• Copies the value of Prop1 to the new object
• Reinitializes the default value of Prop2 by adding a timestamp when the copy is made

classdef SpecializedCopy < matlab.mixin.Copyable
 properties
 Prop1
 Prop2 = datestr(now)
 end
 methods(Access = protected)
 function cp = copyElement(obj)
 cp = SpecializedCopy;
 cp.Prop1 = obj.Prop1;
 cp.Prop2 = datestr(now);
 end
 end
end

Create an object of the class and assign a value to Prop1:

a = SpecializedCopy;
a.Prop1 = 7

a =

 SpecializedCopy with properties:

 Prop1: 7
 Prop2: '17-Feb-2015 17:51:23'

Use the inherited copy method to create a copy of a:

b = copy(a)

b =

 Implement Copy for Handle Classes

7-31

 SpecializedCopy with properties:

 Prop1: 7
 Prop2: '17-Feb-2015 17:51:58'

The copy (object b) has the same value for Prop1, but the subclass copyElement method assigned a
new value to Prop2. Notice the different timestamp.

Copy Properties That Contain Handles
Copying an object also copies the values of object properties. Object properties can contain other
objects, including handle objects. If you simply copy the value of a property that contains a handle
object, you are actually copying the handle, not the object itself. Therefore, your copy references the
same object as the original object. Classes that derive from the matlab.mixin.Copyable class can
customize the way the copy method copies objects of the class.

Class to Support Handle Copying

Suppose that you define a class that stores a handle in an object property. You want to be able to copy
objects of the class and want each copy of an object to refer to a new handle object. Customize the
class copy behavior using these steps:

• Create a subclass of matlab.mixin.Copyable.
• Override copyElement to control how the property containing the handle is copied.
• Because the property value is a handle, create a new default object of the same class.
• Copy property values from the original handle object to the new handle object.

The “HandleCopy” on page 7-32 class customizes copy operations for the property that contains a
handle object. The “ColorProp” on page 7-33 class defines the handle object to assign to Prop2:

Create an object and assign property values:

a = HandleCopy;
a.Prop1 = 7;
a.Prop2 = ColorProp;

Make a copy of the object using the copy method inherited from matlab.mixin.Copyable:

b = copy(a);

Demonstrate that the handle objects contained by objects a and b are independent. Changing the
value on object a does not affect object b:

a.Prop2.Color = 'red';
b.Prop2.Color

ans =

blue

HandleCopy

The HandleCopy class customizes the copy operation for objects of this class.

classdef HandleCopy < matlab.mixin.Copyable
 properties

7 Value or Handle Class — Which to Use

7-32

 Prop1 % Shallow copy
 Prop2 % Handle copy
 end
 methods (Access = protected)
 function cp = copyElement(obj)
 % Shallow copy object
 cp = copyElement@matlab.mixin.Copyable(obj);
 % Get handle from Prop2
 hobj = obj.Prop2;
 % Create default object
 new_hobj = eval(class(hobj));
 % Add public property values from orig object
 HandleCopy.propValues(new_hobj,hobj);
 % Assign the new object to property
 cp.Prop2 = new_hobj;
 end
 end
 methods (Static)
 function propValues(newObj,orgObj)
 pl = properties(orgObj);
 for k = 1:length(pl)
 if isprop(newObj,pl{k})
 newObj.(pl{k}) = orgObj.(pl{k});
 end
 end
 end
 end
end

ColorProp

The ColorProp class defines a color by assigning an RGB value to its Color property.

classdef ColorProp < handle
 properties
 Color = 'blue';
 end
end

Exclude Properties from Copy
Use the NonCopyable property attribute to indicate that you do not want a copy operation to copy a
particular property value. By default, NonCopyable is false, indicating that the property value is
copyable. You can set NonCopyable to true only on properties of handle classes.

For classes that derive from matlab.mixin.Copyable, the default implementation of copyElement
honors the NonCopyable attribute. Therefore, if a property has its NonCopyable attribute set to
true, then copyElement does not copy the value of that property. If you override copyElement in
your subclass, you can choose how to use the NonCopyable attribute.

Set the Attribute to Not Copy

Set NonCopyable to true in a property block:

properties (NonCopyable)
 Prop1
end

 Implement Copy for Handle Classes

7-33

Default Values

If a property that is not copyable has a default value assigned in the class definition, the copy
operation assigns the default value to the property. For example, the CopiedClass assigns a default
value to Prop2.

classdef CopiedClass < matlab.mixin.Copyable
 properties (NonCopyable)
 Prop1
 Prop2 = datestr(now) % Assign current time
 end
end

Create an object to copy and assign a value to Prop1:

a = CopiedClass;
a.Prop1 = 7

a =

 CopiedClass with properties:

 Prop1: 7
 Prop2: '17-Feb-2015 15:19:34'

Copy a to b using the copy method inherited from matlab.mixin.Copyable:

b = copy(a)

b =

 CopiedClass with properties:

 Prop1: []
 Prop2: '17-Feb-2015 15:19:34'

In the copy b, the value of Prop1 is not copied. The value of Prop2 is set to its default value, which
MATLAB determined when first loading the class. The timestamp does not change.

Objects with Dynamic Properties

Subclasses of the dynamicprops class allow you to add properties to an object of the class. When a
class derived from dynamicprops is also a subclass of matlab.mixin.Copyable, the default
implementation of copyElement does not copy dynamic properties. The default value of
NonCopyable is true for dynamic properties.

The default implementation of copyElement honors the value of a dynamic property NonCopyable
attribute. If you want to allow copying of a dynamic property, set its NonCopyable attribute to
false. Copying a dynamic property copies the property value and the values of the property
attributes.

For example, this copy operation copies the dynamic property, DynoProp, because its NonCopyable
attribute is set to false. The object obj must be an instance of a class that derives from both
dynamicprops and matlab.mixin.Copyable:

obj = MyDynamicClass;
p = addprop(obj,'DynoProp');

7 Value or Handle Class — Which to Use

7-34

p.NonCopyable = false;
obj2 = copy(obj);

See Also
matlab.mixin.Copyable

Related Examples
• “Dynamic Properties — Adding Properties to an Instance” on page 8-55

 Implement Copy for Handle Classes

7-35

Properties — Storing Class Data

• “Ways to Use Properties” on page 8-2
• “Property Syntax” on page 8-4
• “Property Attributes” on page 8-6
• “Property Definition” on page 8-12
• “Mutable and Immutable Properties” on page 8-17
• “Validate Property Values” on page 8-19
• “Property Class and Size Validation” on page 8-24
• “Property Validation Functions” on page 8-30
• “Metadata Interface to Property Validation” on page 8-38
• “Property Access Methods” on page 8-40
• “Property Set Methods” on page 8-45
• “Property Get Methods” on page 8-48
• “Set and Get Methods for Dependent Properties” on page 8-50
• “Properties Containing Objects” on page 8-53
• “Dynamic Properties — Adding Properties to an Instance” on page 8-55
• “Set and Get Methods for Dynamic Properties” on page 8-59
• “Dynamic Property Events” on page 8-61
• “Dynamic Properties and ConstructOnLoad” on page 8-65

8

Ways to Use Properties
In this section...
“What Are Properties” on page 8-2
“Types of Properties” on page 8-2

What Are Properties
Properties encapsulate the data that belongs to instances of classes. Data contained in properties can
be public, protected, or private. This data can be a fixed set of constant values, or it can depend on
other values and calculated only when queried. You control these aspects of property behaviors by
setting property attributes and by defining property-specific access methods.

Flexibility of Object Properties

In some ways, properties are like fields of a struct object. However, storing data in an object
property provides more flexibility. Properties can:

• Define a constant value that you cannot change outside the class definition. See “Define Class
Properties with Constant Values” on page 15-2.

• Calculate its value based on the current value of other data. See “Property Get Methods” on page
8-48.

• Execute a function to determine if an attempt to assign a value meets a certain criteria. See
“Property Set Methods” on page 8-45.

• Trigger an event notification when any attempt is made to get or set its value. See “Property-Set
and Query Events” on page 11-13.

• Control access by code to the property values. See the SetAccess and GetAccess attributes
“Property Attributes” on page 8-6.

• Control whether its value is saved with the object in a MAT-file. See “Save and Load Objects” on
page 13-2.

For an example of a class that defines and uses a class, see “Create a Simple Class” on page 2-2.

Types of Properties
There are two types of properties:

• Stored properties — Use memory and are part of the object
• Dependent properties — No allocated memory and the get access method calculates the value

when queried

Features of Stored Properties

• Property value is stored when you save the object to a MAT-file
• Can assign a default value in the class definition
• Can restrict property value to a specific class and size
• Can execute validation functions to control allowed property value (default and assigned)

8 Properties — Storing Class Data

8-2

• Can use a set access method to control possible values when set

When to Use Stored Properties

• You want to be able to save the property value in a MAT-file
• The property value is not dependent on other property values

Features of Dependent Properties

Dependent properties save memory because property values that depend on other values are
calculated only when needed.

When to Use Dependent Properties

Define properties as dependent when you want to:

• Compute the value of a property from other values (for example, you can compute area from
Width and Height properties).

• Provide a value in different formats depending on other values. For example, the size of a push
button in values determined by the current setting of its Units property.

• Provide a standard interface where a particular property is or is not used, depending on other
values. For example, different computer platforms can have different components on a toolbar).

For examples of classes that use dependent properties, see “Calculate Data on Demand” on page 3-17
and “A Class Hierarchy for Heterogeneous Arrays” on page 20-2.

See Also

Related Examples
• “Property Attributes” on page 8-6
• “Validate Property Values” on page 8-19
• “Property Access Methods” on page 8-40
• “Static Properties” on page 5-53

 Ways to Use Properties

8-3

Property Syntax

In this section...
“Property Definition Block” on page 8-4
“Access Property Values” on page 8-5
“Inheritance of Properties” on page 8-5
“Specify Property Attributes” on page 8-5

Property Definition Block
The following illustration shows a typical property specification. The properties and end keywords
delineate a block of code that defines properties having the same attribute settings.

Note Properties cannot have the same name as the class.

For an example, see “Create a Simple Class” on page 2-2.

Assigning a Default Value

The preceding example shows the Coefficients property specified as having a default value of [0
0 1].

You can initialize property values with MATLAB expressions. However, these expressions cannot refer
to the class that you are defining in any way, except to call class static methods. MATLAB executes
expressions that create initial property values only when initializing the class, which occurs just
before first using the class. See “Property Default Values” on page 8-13 for more information about
how MATLAB evaluates default value expressions.

Define One Property Per Line

Property names must be listed on separate lines. MATLAB interprets a name following a property
name as the name of a class.

Restrict Property Values

You can restrict property values by associating a class with the property in the property definition.
For example, the definition of MyData requires that values assigned to this property must be of type
int32 or types that are compatible with int32.

properties
 MyData int32
end

For more information, see “Validate Property Values” on page 8-19.

8 Properties — Storing Class Data

8-4

Access Property Values
Property access syntax is like MATLAB structure field syntax. For example, if obj is an object of a
class, then you can get the value of a property by referencing the property name:

val = obj.PropertyName

Assign values to properties by putting the property reference on the left side of the equal sign:

obj.PropertyName = val

When you access a property, MATLAB executes any property set or get access method and triggering
any enabled property events.

Inheritance of Properties
When you derive one class from another class, the derived (subclass) class inherits all the properties
of the superclass. In general, subclasses define only properties that are unique to that particular
class. Superclasses define properties that are used by more than one subclass.

Specify Property Attributes
Attributes specified with the properties keyword apply to all property definitions that follow in that
block. If you want to apply attribute settings to certain properties only, reuse the properties
keyword and create another property block for those properties.

For example, the following code shows the SetAccess attribute set to private for the
IndependentVar and Order properties, but not for the Coefficients property:

For information about the properties of a specific class, use the properties function.

See Also

Related Examples
• “Validate Property Values” on page 8-19
• “Property Definition” on page 8-12
• “Property Attributes” on page 8-6

 Property Syntax

8-5

Property Attributes
In this section...
“Purpose of Property Attributes” on page 8-6
“Specifying Property Attributes” on page 8-6
“Table of Property Attributes” on page 8-6

Purpose of Property Attributes
Specifying attributes in the class definition enables you to customize the behavior of properties for
specific purposes. Control characteristics like access, data storage, and visibility of properties by
setting attributes. Subclasses do not inherit superclass member attributes.

Specifying Property Attributes
Assign property attributes on the same line as the properties keyword:

properties (Attribute1 = value1, Attribute2 = value2,...)
 ...
end

For example, give the Data property private access:

properties (Access = private)
 Data
end

For more information on attribute syntax, see “Attribute Specification” on page 5-18.

Table of Property Attributes
All properties support the attributes listed in the following table. Attribute values apply to all
properties defined within the properties...end code block that specifies the nondefault values.

8 Properties — Storing Class Data

8-6

Property Attributes

Attribute Name Class Description
AbortSet logical

default = false

If true, MATLAB does not set the property
value if the new value is the same as the
current value. MATLAB does not call the
property set method, if one exists.

For handle classes, setting AbortSet to true
also prevent the triggering of property PreSet
and PostSet events.

See “Assignment When Property Value Is
Unchanged” on page 11-34

Abstract logical

default = false

If true, the property has no implementation,
but a concrete subclass must redefine this
property without Abstract being set to true.

• Abstract properties cannot define set or get
access methods. See “Property Access
Methods” on page 8-40.

• Abstract properties cannot define initial
values. See “Assigning a Default Value” on
page 8-4.

• All subclasses must specify the same values
as the superclass for the property
SetAccess and GetAccess attributes.

• Abstract=true use with the class
attribute Sealed=false (the default).

Access (write only, cannot
query this meta.property
property. Use GetAccess and
SetAccess in queries.)

• enumeration, default =
public

• meta.class object
• cell array of meta.class

objects

Use Access to set both SetAccess and
GetAccess to the same value. Query the
values of SetAccess and GetAccess directly
(not Access).

public – unrestricted access

protected – access from class or subclasses

private – access by class members only (not
subclasses)

List of classes that have get and set access to
this property. Specify classes as meta.class
objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An

empty cell array, {}, is the same as
private access.

See “Class Members Access” on page 12-24

 Property Attributes

8-7

Attribute Name Class Description
Constant logical

default = false

Set to true if you want only one value for this
property in all instances of the class:

• Subclasses inherit constant properties, but
cannot change them.

• Constant properties cannot be
Dependent.

• SetAccess is ignored.

See “Define Class Properties with Constant
Values” on page 15-2 for more information.

Dependent logical

default = false

If false, property value is stored in object. If
true, property value is not stored in object.
The set and get functions cannot access the
property by indexing into the object using the
property name.

MATLAB does not display in the command
window the names and values of Dependent
properties that do not define a get method
(scalar object display only).

Values returned by dependent property get
methods are not considered when testing for
object equality using isequal.

• “Calculate Data on Demand” on page 3-17
• “Property Get Methods” on page 8-48
• “Avoid Property Initialization Order

Dependency” on page 13-9

8 Properties — Storing Class Data

8-8

Attribute Name Class Description
GetAccess enumeration

default = public

public — unrestricted access

protected — access from class or subclasses

private — access by class members only (not
from subclasses)

List classes that have get access to this
property. Specify classes as meta.class
objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An

empty cell array, {}, is the same as
private access.

See “Class Members Access” on page 12-24

MATLAB does not display in the command
window the names and values of properties
having protected or private GetAccess or
properties whose Hidden attribute is true.

The struct function defines fields for all
properties when converting objects to
structs.

GetObservable logical

default = false

If true, and it is a handle class property, then
you can create listeners for access to this
property. The listeners are called whenever
property values are queried. See “Property-Set
and Query Events” on page 11-13

Hidden logical

default = false

Determines if the property can be shown in a
property list (e.g., Property Inspector, call to
set or get, etc.).

MATLAB does not display in the command
window the names and values of properties
whose Hidden attribute is true or properties
having protected or private GetAccess.

NonCopyable logical

default = false

Determine if property value can be copied
when object is copied.

You can set NonCopyable to true only in
handle classes.

For more information, see “Exclude Properties
from Copy” on page 7-33

 Property Attributes

8-9

Attribute Name Class Description
PartialMatchPriority Positive integer

default = 1

Use only with subclasses of
matlab.mixin.SetGet. Define the relative
priority of partial property name matches used
in set and get methods.

For more information, see “Set Priority for
Matching Partial Property Names” on page 7-
27.

SetAccess enumeration

default = public

public — unrestricted access

protected — access from class or subclasses

private — access by class members only (not
from subclasses)

immutable — property can be set only in the
constructor.

See “Properties Containing Objects” on page 8-
53 and “Mutable and Immutable Properties”
on page 8-17

List classes that have set access to this
property. Specify classes as meta.class
objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An

empty cell array, {}, is the same as
private access.

See “Class Members Access” on page 12-24
SetObservable logical

default = false

If true, and it is a handle class property, then
you can create listeners for access to this
property. The listeners are called whenever
property values are modified. See “Property-
Set and Query Events” on page 11-13

Transient logical

default = false

If true, property value is not saved when
object is saved to a file. See “Save and Load
Process for Objects” on page 13-2 for more
about saving objects.

Framework attributes Classes that use certain framework base classes have framework-specific
attributes. See the documentation for the specific base class you are using for
information on these attributes.

8 Properties — Storing Class Data

8-10

See Also

Related Examples
• “Property Definition” on page 8-12

 Property Attributes

8-11

Property Definition

In this section...
“What You Can Define” on page 8-12
“Initialize Property Values” on page 8-12
“Property Default Values” on page 8-13
“Initializing Properties to Handle Objects” on page 8-13
“Assign Property Values in Constructor” on page 8-14
“Property Attributes” on page 8-15
“Methods to Set and Get Property Values” on page 8-15
“Reference Object Properties Using Variables” on page 8-16

What You Can Define
Control aspects of property definitions in the following ways:

• Specify a default value for each property individually, see “Property Default Values” on page 8-
13.

• Assign property values in a class constructor, see “Assign Property Values in Constructor” on page
8-14.

• Define properties with constant values, see “Named Values” on page 14-2.
• Assign property attribute values on a per block basis, see “Property Attributes” on page 8-15.
• Define methods that execute when the property is set or queried, see “Methods to Set and Get

Property Values” on page 8-15.
• Define the class and size of property values, see “Validate Property Values” on page 8-19.
• Define properties that do not store values, but whose values depend on other properties, see

“Types of Properties” on page 8-2.

Note Properties cannot have the same name as the class.

Note Always use case-sensitive property names in your MATLAB code.

Initialize Property Values
There are two basic approaches to initializing property values:

• In the property definition — MATLAB evaluates the expression only once and assigns the same
value to the property of every instance.

• In a class constructor — MATLAB evaluates the assignment expression for each instance, which
ensures that each instance has a unique value.

For more information on the evaluation of expressions that you assign as property default values, see
“When MATLAB Evaluates Expressions” on page 6-10.

8 Properties — Storing Class Data

8-12

Property Default Values
Within a properties block, you can control an individual property's default value. Assign default
values as a value or MATLAB expressions. Expressions cannot reference variables. For example:

• Prop1 — No assignment results in empty [] default value
• Prop2 — Assign character array as default value
• Prop3 — Assign result of expression as default value
• Prop4 — Assign an empty datetime object to Prop4
• Prop5 — Assign a default value that satisfies the specified restrictions of scalar positive double.

classdef ClassName
 properties
 Prop1
 Prop2 = 'some text'
 Prop3 = sin(pi/12)
 Prop4 = datetime.empty
 Prop5 (1,1) double {mustBePositive} = 1
 end
end

If the class definition does not specify a default property value, MATLAB initializes the property value
to empty double ([]). If the class specifies any class, size, or validation function restrictions on the
property value, then the class must ensure that the default value satisfies those restrictions by
assigning a valid value when an empty value is invalid.

Note Evaluation of property default values occurs only when the value is first needed, and only once
when MATLAB first initializes the class. MATLAB does not reevaluate the expression each time you
create an instance of the class.

For more information on the evaluation of expressions that you assign as property default values, see
“Evaluation of Expressions in Class Definitions” on page 6-8 and “Properties Containing Objects” on
page 8-53.

For information on class, size, and validation functions used in property definitions, see “Validate
Property Values” on page 8-19.

Initializing Properties to Handle Objects
MATLAB assigns the specified default values to properties only once when MATLAB loads the class
definition. If you use a handle class constructor to create a property default value, MATLAB calls the
constructor only when the class is first used, and then uses the same object handle as the default for
the property in all objects created. Because all of the object handles reference the same object, any
changes you make to the handle object in one instance are made to the handle object in all instances.

If you want a property value to be initialized to a new instance of a handle object each time you
create an object of your class, assign the property value in the constructor.

 Property Definition

8-13

Assign Property Values in Constructor
To assign values to a property from within the class constructor, refer to the object that the
constructor returns (the output variable obj) and the property name using dot notation:

classdef MyClass
 properties
 Prop1
 end
 methods
 function obj = MyClass(intval)
 % Initialize Prop1 for each instance
 obj.Prop1 = intval;
 end
 end
end

When you assign a property in the class constructor, MATLAB evaluates the assignment statement for
each object you create. Assign property values in the constructor if you want each object to contain a
unique value for that property.

For example, suppose that you want to assign a unique handle object to the property of another
object each time you create one of the other objects. Assign the handle object to the property in the
constructor. Call the handle object constructor to create a unique handle object with each instance of
your class.

classdef ContainsHandle
 properties
 Prop1
 end
 methods
 function obj = ContainsHandle(keySet,valueSet)
 obj.Prop1 = MyHandleClass(keySet,valueSet);
 end
 end
end

For more information on constructor methods, see “Referencing the Object in a Constructor” on page
9-19.

Default Values Evaluated Before Constructing Object

MATLAB validates property default values before the assignment of values in the constructor. It is
necessary for the default value assigned in the properties block and the property value set in a
class constructor to satisfy the specified validation. For example, this class restricts Prop to a scalar
positive double, but does not assign a valid default value. By default, MATLAB assigns a default value
of empty double, which causes a run-time error.
classdef PropInit
 properties
 % Error without valid default value
 Prop (1,1) double {mustBePositive}
 % Empty default fails mustBePositive
 end
 methods
 function obj = PropInit(positiveInput)
 obj.Prop = positiveInput;
 end
 end
end

8 Properties — Storing Class Data

8-14

Calling the class constructor with a valid value for Prop results in an error from the validation
function mustBePositive.

obj = PropInit(2);

Error using implicit default value of property 'Prop' of class 'PropInit':
Value must be positive.

Property Attributes
All properties have attributes that modify certain aspects of the property's behavior. Specified
attributes apply to all properties in a particular properties block. For example:
classdef ClassName
 properties (PropertyAttribute = value)
 Prop1
 Prop2
 end
end

For example, only methods in the same class definition can modify and query the Salary and
Password properties.

classdef EmployeeInfo
 properties (Access = private)
 Salary
 Password
 end
end

This restriction exists because the class defines these properties in a properties block with the
Access attribute set to private.

Property Attributes

For a description of property attributes you can specify, see, “Property Attributes” on page 8-6.

Methods to Set and Get Property Values
MATLAB calls whenever setting or querying a property value. Define property set access or get
access methods in methods blocks that specify no attributes and have the following syntax:

methods

 function obj = set.PropertyName(obj,value)
 ...
 end

 function value = get.PropertyName(obj)
 ...
 end

end

For specific information on access method syntax, see “Property Get Methods” on page 8-48 and
“Property Set Methods” on page 8-45.

 Property Definition

8-15

MATLAB does not call the property set access method when assigning the default value specified in
the property's definition block.

For example, the set.Password method tests the length of the character array assigned to a
property named Password. If there are fewer than seven characters in the value assigned to the
property, MATLAB returns the error. Otherwise, MATLAB assigns the specified value to the property.

function obj = set.Password(obj,pw)
 if numel(pw) < 7
 error('Password must have at least 7 characters')
 else
 obj.Password = pw;
end

For more information on property access methods, see “Property Access Methods” on page 8-40.

Reference Object Properties Using Variables
MATLAB can resolve a property name from a char variable using an expression of the form:

object.(PropertyNameVar)

where PropertyNameVar is a variable containing the name of a valid object property. Use this
syntax when passing property names as arguments. For example, the getPropValue function returns
the value of the KeyType property:

PropName = 'KeyType';
function o = getPropValue(obj,PropName)
 o = obj.(PropName);
end

See Also

Related Examples
• “Evaluation of Expressions in Class Definitions” on page 6-8
• “Ways to Use Properties” on page 8-2
• “Validate Property Values” on page 8-19

8 Properties — Storing Class Data

8-16

Mutable and Immutable Properties

In this section...
“Set Access to Property Values” on page 8-17
“Define Immutable Property” on page 8-17

Set Access to Property Values
The property SetAccess attribute enables you to determine under what conditions code can modify
object property values. There are four levels of set access that provide varying degrees of access to
object property values:

• SetAccess = public — Any code with access to an object can set public property values. There
are differences between the behavior of handle and value classes with respect to modifying object
properties.

• SetAccess = protected — Only code executing from within class methods or methods of
subclasses can set property values. You cannot change the value of an object property unless the
class or any of its subclasses defines a method to do so.

• SetAccess = private — Only the defining class can set property values. You can change the
value of an object property only if the class defines a method that sets the property.

• SetAccess = immutable — Property value is set during construction. You cannot change the
value of an immutable property after the object is created. Set the value of the property as a
default or in the class constructor. You cannot define a property set method (set.PropertyName)
for an immutable property.

For related information, see “Properties Containing Objects” on page 8-53.

Define Immutable Property
In this class definition, only the Immute class constructor can set the value of the CurrentDate
property:

classdef Immute
 properties (SetAccess = immutable)
 CurrentDate
 end
 methods
 function obj = Immute
 obj.CurrentDate = date;
 end
 end
end

a = Immute

a =

 Immute with properties:

 CurrentDate: '19-Oct-2005'

 Mutable and Immutable Properties

8-17

See Also

Related Examples
• “Property Attributes” on page 8-6
• “Object Modification” on page 5-50

8 Properties — Storing Class Data

8-18

Validate Property Values
In this section...
“Property Validation in Class Definitions” on page 8-19
“Sample Class Using Property Validation” on page 8-20
“Order of Validation” on page 8-21
“Abstract Property Validation” on page 8-22
“Objects Not Updated When Changing Validation” on page 8-22
“Validation During Load Operation” on page 8-22

Property Validation in Class Definitions
MATLAB property validation enables you to place specific restrictions on property values. You can use
validation to constrain the class and size of property values. Also, you can use functions to establish
criteria that the property value must conform to. MATLAB defines a set of validation functions and
you can write your own validation functions.

The use of property validation is optional in class definitions.

Additional Information on Property Validation

For more information on property validation, see “Property Class and Size Validation” on page 8-24,
“Property Validation Functions” on page 8-30, and “Metadata Interface to Property Validation” on
page 8-38.

Validation Syntax

The highlighted area in the following code shows the syntax for property validation.

Property validation includes any of the following:

• Size — The length of each dimension, specified as a positive integer or a colon. A colon indicates
that any length is allowed in that dimension. The value assigned to the property must conform to
the specified size or be compatible with the specified size. For more information, see “Property
Size Validation” on page 8-24.

• Class — The name of a single MATLAB class. The value assigned to the property must be of the
specified class or convertible to the specified class. Use any MATLAB class or externally defined
class that is supported by MATLAB, except for Java and COM classes. For more information, see
“Property Class Validation” on page 8-25.

 Validate Property Values

8-19

• Functions — A comma-separated list of validation function names. MATLAB passes the value
assigned to the property to each the validation functions after applying any possible class and size
conversions. Validator functions throw errors if the validation fails, but do not return values. For
more information, see “Property Validation Functions” on page 8-30.

For a list of MATLAB validation functions, see “Property Validation Functions” on page 8-30.

Using Property Validation

Use property validation for public properties to control the values user code assigns to the properties.

If you want to restrict property values to a fixed set of identifiers, create an enumeration class for
these identifiers and constrain the property to this class. For information on enumeration classes, see
“Define Enumeration Classes” on page 14-4.

MATLAB type conversion rules apply to property validation. For example, MATLAB can coerce from
one to another numeric type. Therefore, restricting a property value to a specific numeric type, such
as double does not prevent the assignment of other numeric types to the property.

To ensure that a property can be assigned only a specific type of value, restrict the property to a type
that supports only the desired type conversions or use a validation function to specify the exact class
allowed for the property instead of specifying the property type. MATLAB evaluates the type
specification before executing any validation functions. For more information, see “Order of
Validation” on page 8-21.

Specify Valid Default

Ensure that any default value assigned to the property meets the restrictions imposed by the
specified validation. If you do not specify a default value, MATLAB creates a default value by
assigning an empty object of the specified class or by calling the default constructor if size restriction
does not allow the use of an empty default value. The default constructor must return an object of the
correct size.

Sample Class Using Property Validation
The ValidateProps class defines three properties with validation.
classdef ValidateProps
 properties
 Location(1,3) double {mustBeReal, mustBeFinite}
 Label(1,:) char {mustBeMember(Label,{'High','Medium','Low'})} = 'Low'
 State(1,1) matlab.lang.OnOffSwitchState
 end
end

• Location must be a 1-by-3 array of class double whose values are real, finite numbers.
• Label must be a char vector that is either 'High', 'Medium', or 'Low'.
• State must be an enumeration member of the matlab.lang.OnOffSwitchState class (off or

on).

Validation at Instantiation

Creating an object of the ValidateProps class performs the validation on implicit and explicit
default values:

a = ValidateProps

8 Properties — Storing Class Data

8-20

a =

 ValidateProps with properties:

 Location: [0 0 0]
 Label: 'Low'
 State: off

When creating the object, MATLAB:

• Initializes the Location property value to [0 0 0] to satisfy the size and class requirements.
• Sets the Label property to its default value, 'Low'. The default value must be a member of the

allowed set of values. The empty char implicit default value would cause an error.
• Sets the State property to the off enumeration member defined by the

matlab.lang.OnOffSwitchState class.

For information on how MATLAB selects default values, see “Default Values Per Size and Class” on
page 8-29.

Order of Validation
When a value is assigned to the property, including default values that are specified in the class
definition, MATLAB performs validation in this order:

• Class validation — This validation can cause conversion to a different class, such as conversion of
a char to string. Assignment to properties follows MATLAB conversion rules for arrays.

• Size validation — This validation can cause size conversion, such as scalar expansion or
conversion of a column vector to a row vector. Assignment to a property that specifies a size
validation behaves the same as assignment to any MATLAB array. For information on indexed
assignment, see “Array Indexing”.

• Validator functions — MATLAB passes the result of the class and size validation to each validation
function, in left to right order. An error can occur before all validation functions have been called,
which ends the validation process.

• Set method — MATLAB performs property validation before calling a property set method, if one
is defined for that property. Assignment to the property within a property set or get method does
not apply the validation again. Often, you can replace property set methods using property
validation.

Property Validation Errors

The ValueProp class uses size, class, and function validation to ensure that an assignment to the
Value property is a double scalar that is not negative.

classdef ValueProp
 properties
 Value(1,1) double {mustBeNonnegative} = 0
 end
end

This statement attempts to assign a cell array to the property. This assignment violates the class
validation.

a.Value = {10,20};

 Validate Property Values

8-21

Error setting property 'Value' of class 'ValueProp':
Invalid data type. Value must be double or be convertible to double.

This statement attempts to assign a 1-by-2 double array to the property. This assignment violates the
size validation.

a.Value = [10 20];

Error setting property 'Value' of class 'ValueProp':
Size of value must be scalar.

This statement attempts to assign a scalar double to the property. This assignment fails the function
validation, which requires a nonnegative number.

a.Value = -10;

Error setting property 'Value' of class 'ValueProp':
Value must be nonnegative.

The validation process ends with the first error encountered.

Abstract Property Validation
You can define property validation for abstract properties. The validation applies to all subclasses that
implement the property. However, subclasses cannot use any validation on their implementation of
the property. When inheriting validation for a property from multiple classes, only a single Abstract
property in one superclass can define the validation. None of the superclasses can define the property
as nonAbstract.

Objects Not Updated When Changing Validation
If you change the property validation while objects of the class exist, MATLAB does not attempt to
apply the new validation to existing property values. However, MATLAB does apply the new validation
when you make assignments to the properties of existing objects.

Validation During Load Operation
When saving an object to a MAT file, MATLAB saves all nondefault property values with the object.
When loading the object, MATLAB restores these property values in the newly created object.

If a class definition changes the property validation such that the loaded property value is no longer
valid, MATLAB substitutes the currently defined default value for that property. However, the load
function suppresses the validation errors that occur before assigning the default value from the
current class definition. Therefore, validation errors are silently ignored during load operations.

To illustrate this behavior, this example creates, saves, and loads an object of the MonthTemp class.
This class restricts the AveTemp property to a cell array.

classdef MonthTemp
 properties
 AveTemp cell
 end
end

Create a MonthTemp object and assign a value to the AveTemp property.

8 Properties — Storing Class Data

8-22

a = MonthTemp;
a.AveTemp = {'May',70};

Save the object using save.

save TemperatureFile a

Edit the property definition to change the validation class for the AveTemp property from cell array to
containers.Map.

classdef MonthTemp
 properties
 AveTemp containers.Map
 end
end

Load the saved object with the new class definition on the MATLAB path. MATLAB cannot assign the
saved value to the AveTemp property because the cell array, {'May',70}, is not compatible with the
current requirement that the property value be a containers.Map object. MATLAB cannot convert
a cell array to a containers.Map.

To address the incompatibility, MATLAB sets the AveTemp property of the loaded object to the
current default value, which is an empty containers.Map object.

load TemperatureFile a
 a.AveTemp

ans =

 Map with properties:

 Count: 0
 KeyType: char
 ValueType: any

The loaded object has a different value assigned to the AveTemp property because the saved value is
now invalid. However, the load process suppresses the validation error.

To prevent loss of data when changing class definitions and reloading objects, implement a loadobj
method or class converter method that enables the saved values to satisfy the current property
validation.

For more information on saving and loading objects, see “Save and Load Process for Objects” on page
13-2.

See Also

Related Examples
• “Property Class and Size Validation” on page 8-24
• “Property Validation Functions” on page 8-30

 Validate Property Values

8-23

Property Class and Size Validation
In this section...
“Property Class and Size” on page 8-24
“Property Size Validation” on page 8-24
“Property Class Validation” on page 8-25
“Default Values Per Size and Class” on page 8-29

Property Class and Size
MATLAB applies any class and size validation defined for a property before calling validation
functions. Assignment to a property that defines size or class validation is analogous to assignment to
a MATLAB object array. MATLAB can apply class and size conversions to the right side of the
assignment to satisfy class and size validation.

For more information, see “Order of Validation” on page 8-21 and “Property Validation Functions” on
page 8-30.

Property Size Validation
Specify the property size as the row, column, and additional dimension following the property name.

classdef MyClass
 properties
 Prop(dim1,dim2,...) = defaultValue
 end
end

Assignment and Size Validation

This class defines the size of the Location property as 1-by-3. Any value assigned to this property
must conform to that size or must be convertible to that size.

classdef ValidateProps
 properties
 Location(1,3)
 end
end

The implicit default value assigned by MATLAB, [0 0 0], conforms to the specified size:

a = ValidateProps

a =

 ValidateProps with properties:

 Location: [0 0 0]

MATLAB applies scalar expansion when you assign a scalar the Location property.

a = ValidateProps;
a.Location = 1

8 Properties — Storing Class Data

8-24

a =

 ValidateProps with properties:

 Location: [1 1 1]

MATLAB converts columns to rows to match the size specification:

col = [1;1;1]

col =

 1
 1
 1

a.Location = col

a =

 ValidateProps with properties:

 Location: [1 1 1]

Colon in Size Specification

A colon in the size specification indicates that the corresponding dimension can have any length. For
example, you can assign a value of any length to the Label property in this class.

classdef ValidateProps
 properties
 Label(1,:)
 end
end

a = ValidateProps;
a.Label = 'Click to Start'

a =

 ValidateProps with properties:

 Label: 'Click to Start'

Assignment to a property that defines size validation follows the same rules as the equivalent indexed
array assignment. For information on indexing behavior of multidimensional arrays, see “Compatible
Array Sizes for Basic Operations”.

Property Class Validation
Defining the class of a property can reduce the need to test the values assigned to the property in
your code. Any value assigned to the property must be of the specified class or convertible to the
specified class.

You can specify only one class per property. Use validation functions like mustBeNumeric or
mustBeInteger to restrict properties to a broader category of classes. For more information on
validation functions, see “Property Validation Functions” on page 8-30.

 Property Class and Size Validation

8-25

You can use any MATLAB class or externally defined class that is supported by MATLAB, except Java
and COM classes.

Place the name of the class in the property definition block following the property name and optional
size specification.

classdef MyClass
 properties
 Prop ClassName = defaultValue
 end
end

If you do not specify a default value, MATLAB assigns an empty object of the specified class to the
property. If you define a size and a class, MATLAB attempts to create a default value for the property
that satisfies both the size and class requirement.

MATLAB creates the default value by calling the class constructor with no arguments. The class must
have a constructor that returns an object of the specified size when called with no input arguments or
you must specify a default value for the property that satisfies the property size restriction. For more
information, see “Default Values Per Size and Class” on page 8-29.

Using Class Validation

The PropsWithClass class defines two properties with class definitions:

• Number — Values must be of class double or convertible to double.
• Today — Values must be of class char or convertible to char. The default value is the char

vector returned by the date function.

classdef PropsWithClass
 properties
 Number double
 Today char = date
 end
end

Create an object of the PropsWithClass class.

p = PropsWithClass

p =

 PropsWithClass with properties:

 Number: []
 Today: '10-Sep-2016'

MATLAB performs conversions from any compatible class to the property class. For example, assign a
datetime array to the Today property.

p.Today = [datetime('now'),datetime('tomorrow')];
disp(class(p.Today))

ans =

char

8 Properties — Storing Class Data

8-26

Because the datetime class has a char converter, you can assign a datetime array to the Today
property.

Assigning an incompatible value to a property that uses class validation causes an error.

p.Number = datetime('now');

Error setting property 'Number' of class 'PropsWithClass':
Invalid data type. Value must be double or be convertible to double.

User-Defined Class for Validation

You can define a class to control the values assigned to a property. Enumeration classes enable users
to set property values to character vectors or string scalars with inexact name matching.

For example, suppose that there is a class that represents a three-speed mechanical pump. You can
define an enumeration class to represent the three flow rates.

classdef FlowRate < int32
 enumeration
 Low (10)
 Medium (50)
 High (100)
 end
end

The Pump class has a method to return the current flow rate in gallons per minute. Define the Speed
property as a FlowRate class.

classdef Pump
 properties
 Speed FlowRate
 end
 methods
 function getGPM(p)
 if isempty(p.Speed)
 gpm = 0;
 else
 gpm = int32(p.Speed);
 end
 fprintf('Flow rate is: %i GPM\n',gpm);
 end
 end
end

Users can set the Speed property using inexact text.

p = Pump;
p.Speed = 'm'

p =

 Pump with properties:

 Speed: Medium

The numerical value is available from the property.

getGPM(p)

 Property Class and Size Validation

8-27

Flow rate is: 50 GPM

For information about enumeration classes, see “Define Enumeration Classes” on page 14-4.

Integer Class Validation

MATLAB supports several integer classes (see “Integers”). However, restricting a property to an
integer class can result in integer overflow. The resulting value can saturate at the maximum or
minimum value in the integer’s range.

When integer overflow occurs, the value that is assigned to a property can be a value that is different
from the value from the right side of the assignment statement.

For example, suppose that you want to restrict a property value to a scalar uint8.

classdef IntProperty
 properties
 Value(1,1) uint8
 end
end

Assigning a numeric value to the Value property effectively casts the numeric value to uint8, but
does not result in an error for out-of-range values.

a = IntProperty;
a.Value = -10;
disp(a.Value)

0

Assignment to the Value property is equivalent to indexed assignment of an array. If the assigned
value is out of the range of values that uint8 can represent, MATLAB sets the value to the closest
value that it can represent using uint8.

a = uint8.empty;
a(1) = -10

a =

 uint8

 0

To avoid the potential for integer overflow, use a combination of validation functions that restrict the
value to the intended range instead of an integer class.

classdef IntProperty
 properties
 Value(1,1) {mustBeInteger, mustBeNonnegative,...
 mustBeLessThan(Value,256)}
 end
end

Because there is no conversion of the assigned value by the uint8 class, the validators catch out of
range values and throw an appropriate error.

a = IntProperty;
a.Value = -10;

8 Properties — Storing Class Data

8-28

Error setting property 'Value' of class 'IntProperty':
Value must be nonnegative.

Default Values Per Size and Class
Any default property value that you assign in the class definition must conform to the specified
validation.

Implicit Default Values

MATLAB defines a default value implicitly if you do not specify a default value in the class definition.
This table shows how size and class determine the implicit default value of MATLAB classes.

Size Class Implicit Default Assigned by
MATLAB

(m,n) Any numeric m-by-n array of zeros of
specified class.

(m,:) or (:,n) Any class m-by-0 or 0-by-n of specified
class.

(m,n) char m-by-n char array of spaces.
(m,n) cell m-by-n cell array with each cell

containing a 0-by-0 double.
(m,n) struct m-by-n struct
(m,n) string m-by-n string
(m,n) enumeration class First enumeration member

defined in the class.
(1,1) function_handle Runtime error — define a

default value in the class.

To determine the implicit default value for nonzero and explicit size specifications, MATLAB calls the
default class constructor and builds an array of the specified size using the instance returned by the
constructor call. If the class does not support a default constructor (that is, a constructor called with
no arguments), then MATLAB throws an error when instantiating the class containing the validation.

If the specified size has any zero or unrestricted (:) dimensions, MATLAB creates a default value that
is an empty array with the unrestricted dimension set to zero.

For heterogeneous arrays, MATLAB calls the getDefaultScalarElement method to get the default
object.

See Also

Related Examples
• “Validate Property Values” on page 8-19
• “Property Validation Functions” on page 8-30
• “Enumerations for Property Values” on page 14-14

 Property Class and Size Validation

8-29

Property Validation Functions

In this section...
“MATLAB Validation Functions” on page 8-30
“Validate Property Using Functions” on page 8-32
“Define Validation Functions” on page 8-35
“Add Support for Validation Functions” on page 8-36

MATLAB Validation Functions
MATLAB defines functions for use in property validation. These functions support common use
patterns for validation and provide descriptive error messages. The following tables categorize the
MATLAB validation functions and describe their use.

Numeric Value Attributes

Name Meaning Functions Called
on Inputs

mustBePositive(value) value > 0 gt, isreal,
isnumeric,
islogical

mustBeNonpositive(valu
e)

value <= 0 ge, isreal,
isnumeric,
islogical

mustBeNonnegative(valu
e)

value >= 0 ge, isreal,
isnumeric,
islogical

mustBeNegative(value) value < 0 lt, isreal,
isnumeric,
islogical

mustBeFinite(value) value has no NaN and
no Inf elements.

isfinite

mustBeNonNan(value) value has no NaN
elements.

isnan

mustBeNonzero(value) value ~= 0 eq, isnumeric,
islogical

mustBeNonsparse(value) value has no sparse
elements.

issparse

mustBeReal(value) value has no
imaginary part.

isreal

mustBeInteger(value) value ==
floor(value)

isreal,
isfinite, floor,
isnumeric,
islogical

8 Properties — Storing Class Data

8-30

Name Meaning Functions Called
on Inputs

mustBeNonmissing(value
)

value cannot contain
missing values.

ismissing

Comparison with Other Values

Name Meaning Functions Called
on Inputs

mustBeGreaterThan(valu
e,c)

value > c gt, isscalar,
isreal,
isnumeric,
islogical

mustBeLessThan(value,c
)

value < c lt, isreal,
isnumeric,
islogical

mustBeGreaterThanOrEqu
al(value,c)

value >= c ge, isreal,
isnumeric,
islogical

mustBeLessThanOrEqual(
value,c)

value <= c le, isreal,
isnumeric,
islogical

Data Types

Name Meaning Functions Called
on Inputs

mustBeA(value,classnam
es)

value must be of
specific class.

Uses class
definition
relationships

mustBeNumeric(value) value must be
numeric.

isnumeric

mustBeNumericOrLogical
(value)

value must be
numeric or logical.

isnumeric,
islogical

mustBeFloat(value) value must be
floating-point array.

isfloat

mustBeUnderlyingType(v
alue,typename)

value must have
specified underlying
type.

isUnderlyingTyp
e

Size

Name Meaning Functions Called
on Inputs

mustBeNonempty(value) value is not empty. isempty
mustBeScalarOrEmpty(va
lue)

value must be a
scalar or be empty.

isscalar,
isempty

 Property Validation Functions

8-31

Name Meaning Functions Called
on Inputs

mustBeVector(value) value must be a
vector.

isvector

Membership and Range

Name Meaning Functions Called
on Inputs

mustBeMember(value,S) value is an exact
match for a member of
S.

ismember

mustBeInRange(value,lo
wer,upper,boundflags)

value must be within
range.

gt, ge, lt, le

Text

Name Meaning Functions Called
on Inputs

mustBeFile(path) path must refer to a
file.

isfile

mustBeFolder(folder) path must refer to a
folder.

isfolder

mustBeNonzeroLengthTex
t(value)

value must be a piece
of text with nonzero
length.

Not applicable

mustBeText(value) value must be a
string array, character
vector, or cell array of
character vectors.

Not applicable

mustBeTextScalar(value
)

value must be a
single piece of text.

Not applicable

mustBeValidVariableNam
e(varname)

varname must be a
valid variable name.

isvarname

Validate Property Using Functions
Use property validation functions in class definitions to impose specific restrictions on property
values. A validation function accepts a potential property value as an argument and issues an error if
the value does not meet the specific requirement imposed by the function.

During the validation process, MATLAB passes the value to each validation function listed in the class
definition. MATLAB calls each function from left to right and throws the first error encountered. The
value passed to the validation functions is the result of any conversion applied by the class and size
specifications. For more information on class and size validation, see “Property Class and Size
Validation” on page 8-24.

For a list of MATLAB validation functions, see “MATLAB Validation Functions” on page 8-30.

8 Properties — Storing Class Data

8-32

Validation Function Syntax

Specify validation functions as a comma-separated list of function names or function calls with
arguments, enclosed in braces.

classdef MyClass
 properties
 Prop {fcn1,fcn2,...} = defaultValue
 end
end

MATLAB passes the potential property value to the validation function implicitly. However, if the
validation function requires input arguments in addition to the potential property value, then you
must include both the property and the additional arguments. Additional arguments must be literal
values and cannot reference variables. Literal values are nonsymbolic representations, such as
numbers and text.

For example, consider the function mustBeGreaterThan. It requires a limiting value as an input
parameter. This validation function requires that a property value must be greater than this limiting
value.

Pass the property as the first argument. Use the property name, but do not enclose the name in
quotation marks. This property definition restricts Prop to values greater than 10.

properties
 Prop {mustBeGreaterThan(Prop,10)}
end

Using Validation Functions

The following class specifies validation functions for each property.

• Data must be numeric and finite.
• Interp must be one of the three options listed. Specify a default value for this property to satisfy

this requirement.

classdef ValidatorFunction
 properties
 Data {mustBeNumeric, mustBeFinite}
 Interp {mustBeMember(Interp,{'linear','cubic','spline'})} = 'linear'
 end
end

Creating a default object of the class shows the initial values.

a = ValidatorFunction

a =

 ValidatorFunction with properties:

 Data: []
 Interp: 'linear'

Assigning values to properties calls the validation functions.

a.Data = 'cubic'

 Property Validation Functions

8-33

Error setting property 'Data' of class 'ValidatorFunction':
Value must be numeric.

Because the Data property validation does not include a numeric class, there is no conversion of the
char vector to a numeric value. If you change the validation of the Data property to specify the class
as double, MATLAB converts the char vector to a double array.

properties
 Data double {mustBeNumeric, mustBeFinite}
end

The assignment to the char vector does not produce an error because MATLAB converts the char
vector to class double.

a.Data = 'cubic'

a =

 ValidatorFunction with properties:

 Data: [99 117 98 105 99]
 Interp: 'linear'

Assignment to the Interp property requires an exact match.

a = ValidatorFunction;
a.Interp = 'cu'

Error setting property 'Interp' of class 'ValidatorFunction':
Value must be a member of this set
 linear
 cubic
 spline

Using an enumeration class provides inexact matching and case insensitivity.

Enumeration Class for Inexact Matching

Property validation using an enumeration class provides these advantages:

• Inexact, case-insensitive matching for unambiguous char vectors or string scalars
• Conversion of inexact matches to correct values

For example, suppose that you define the InterpMethod enumeration class for the Interp property
validation.

classdef InterpMethod
 enumeration
 linear
 cubic
 spline
 end
end

Change the Interp property validation to use the InterpMethod class.

classdef ValidatorFunction
 properties

8 Properties — Storing Class Data

8-34

 Data {mustBeNumeric, mustBeFinite}
 Interp InterpMethod
 end
end

Assign a value matching the first few letters of 'cubic'.

a = ValidatorFunction;
a.Interp = 'cu'

a =

 ValidatorFunction with properties:

 Data: []
 Interp: cubic

Define Validation Functions
Validation functions are ordinary MATLAB functions that are designed for the specific purpose of
validating property and function argument values. Functions used to validate properties:

• Accept the potential property value as an input argument
• Do not return values
• Throw errors if the validation fails

Creating your own validation function is useful when you want to provide specific validation that is
not available using the MATLAB validation functions. You can create local functions within the class
file or place the function on the MATLAB path to be available for use in any class.

For example, the ImgData class uses a local function to define a validator that restricts the Data
property to only uint8 or uint16 values, excluding subclasses and not allowing conversion from
other numeric classes. The predefined validation function mustBeInRange restricts the range of
allowed values.
classdef ImgData
 properties
 Data {mustBeImData(Data), mustBeInRange(Data,0,255)} = uint8(0)
 end
end
function mustBeImData(a)
 % Check for specific class
 if ~(strcmp(cname, 'uint8') || strcmp(cname, 'uint16'))
 eidType = 'ImData:notUint8OrUint16';
 msgType = 'Value assigned to Data property is not uint8 or uint16 data.';
 throwAsCaller(MException(eidType,msgType))
 end
end

When you create an instance of the ImgData class, MATLAB validates that the default value is a
uint8 or uint16 value, in the range 0...255, and not empty. Note that the default value must
satisfy the validation requirements like any other value assigned to the property.

a = ImgData

a =

 ImgData with properties:

 Data: 0

 Property Validation Functions

8-35

Property assignment invokes the validators in left-to-right order. Assigning a char vector to the Data
property causes an error thrown by mustBeImData.

a.Data = 'red';

Error setting property 'Data' of class 'ImgData'. Value assigned to
Data property is not uint8 or uint16 data.

Assigning a numeric value that is out of range causes an error thrown by mustBeInRange.

a.Data = uint16(312);

Error setting property 'Data' of class 'ImgData'. Value must be greater
than or equal to 0, and less than or equal to 255.

For related functions, see mustBeInteger, mustBeNumeric, and mustBePositive.

Add Support for Validation Functions
Support MATLAB validation functions for objects of your class by implementing the dependent
functions as methods of your class. To determine which methods to implement for each function, see
the validation function reference pages listed in this table “MATLAB Validation Functions” on page 8-
30.

For example, suppose that you want your class to support the mustBeGreaterThan validation
function. Overload these MATLAB functions as methods in your class:

• isreal — Always return logical true because mustBeGreaterThan does not support complex
numbers.

• gt — The second object in the comparison must be scalar, as required by mustBeGreaterThan.

The SupportmBGT class implements support for mustBeGreaterThan.

classdef SupportmBGT
 properties
 Prop(1,1) double {mustBeReal}
 end
 methods
 function obj = SupportmBGT(data)
 if nargin > 0
 obj.Prop = data;
 end
 end
 function tf = isreal(obj)
 tf = true;
 end
 function tf = gt(obj1, obj2)
 tf = [obj1(:).Prop] > obj2.Prop;
 end
 end
end

Use mustBeGreaterThan with objects of this class:

a = SupportmBGT(10);
b = SupportmBGT(12);
mustBeGreaterThan(a,b)

8 Properties — Storing Class Data

8-36

Error using mustBeGreaterThan (line 19)
Value must be greater than the comparison value.

See Also

Related Examples
• “Validate Property Values” on page 8-19
• “Property Class and Size Validation” on page 8-24

 Property Validation Functions

8-37

Metadata Interface to Property Validation
For information on property validation, see “Validate Property Values” on page 8-19.

You can determine what validation applies to a property by accessing the validation metadata.
Instances of the meta.Validation class provide the following information about property
validation.

• Class requirement of the property specified as a meta.class object
• Size requirements of the property value specified as an array of meta.FixedDimension and

meta.UnrestrictedDimension objects
• Function handles referencing validation functions applied to property values specified as a cell

array of function handles.

For example, the ValidationExample class defines a property that must be an array of doubles that
is 1-by-any number of elements and must be a real number that is greater than 10.

classdef ValidationExample
 properties
 Prop (1,:) double {mustBeReal, mustBeGreaterThan(Prop, 10)} = 200;
 end
end

Access the meta.Validation object from the property's meta.property object. Get the validation
information from the meta.Validation object properties. Collection this information into a cell
array.

• Get the size information from the Size property
• Get the class name from the Class property
• Get a cell array of function handles for the validation functions from the ValidatorFunctions

property.

mc = ?ValidationExample;
mp = findobj(mc.PropertyList,'Name','Prop');
sz = mp.Validation.Size;
len = length(sz);
dim = cell(1:len);
 for k = 1:len
 switch class(sz(k))
 case 'meta.FixedDimension'
 dim{k} = sz(k).Length;
 case 'meta.UnrestrictedDimension'
 dim{k} = ':';
 end
 end
dim{end+1} = mp.Validation.Class.Name;
dim{end+1} = mp.Validation.ValidatorFunctions;

See Also
meta.Validation | meta.property

8 Properties — Storing Class Data

8-38

Related Examples
• “Validate Property Values” on page 8-19
• “Property Class and Size Validation” on page 8-24
• “Property Validation Functions” on page 8-30

 Metadata Interface to Property Validation

8-39

Property Access Methods
In this section...
“Properties Provide Access to Class Data” on page 8-40
“Property Set and Get Methods” on page 8-40
“Set and Get Method Execution and Property Events” on page 8-42
“Access Methods and Properties Containing Arrays” on page 8-43
“Access Methods and Arrays of Objects” on page 8-43
“Modify Property Values with Access Methods” on page 8-43

Properties Provide Access to Class Data
In MATLAB, properties can have public access. Therefore, properties can provide access to data that
the class design exposes to users.

Use property access methods to provide error checking or to implement side effects resulting from
property access. Examples of access methods include functions that update other property values
when setting the property or translate the format of a property value before returning the value.

For specific information on access method syntax, see “Property Get Methods” on page 8-48 and
“Property Set Methods” on page 8-45.

You can use property validation to restrict the size, class, and other aspects of property values. For
information on property validation, see “Validate Property Values” on page 8-19.

Performance Considerations with Access Methods

Property access methods do add the overhead of a function call whenever accessing property values.
If performance-critical access to properties occurs inside methods of the class, define private
properties to store values. Use these values inside methods without any error checking. For less
frequent access from outside the class, define public Dependent properties that use access methods
for error checking.

For information on access methods used with Dependent properties, see “Set and Get Methods for
Dependent Properties” on page 8-50.

Property Set and Get Methods
Property access methods execute specific code whenever the property value is queried or assigned a
value. These methods enable you to perform various operations:

• Execute code before assigning property values to perform actions such as:

• Impose value range restrictions (“Validate Property Values” on page 8-19)
• Check for proper types and dimensions
• Provide error handling

• Execute code before returning the current values of properties to perform actions such as:

• Calculate the value of properties that do not store values (see “Calculate Data on Demand” on
page 3-17)

8 Properties — Storing Class Data

8-40

• Change the value of other properties
• Trigger events (see “Overview Events and Listeners” on page 11-2)

To control what code can access properties, see “Property Attributes” on page 8-6.

When MATLAB Calls Access Methods

Property access methods execute automatically whenever you set or query the corresponding
property values from outside the access method. MATLAB does not call access methods recursively.
That is, MATLAB does not call the set method when setting a property from within that property’s set
method, no matter what instance of the class is being modified. Similarly, MATLAB does not call the
get method when querying the property value from within that property’s own get method.

Note You cannot call property access methods directly. MATLAB calls these methods when you
access property values.

Obtain the function handle for the set and get access methods from the property meta.property
object. The meta.property SetMethod and GetMethod properties contain the function handles
that refer to these methods.

Restrictions on Access Methods

Define property access methods only:

• For concrete properties (that is, properties that are not abstract)
• Within the class that defines the property (unless the property is abstract in that class, in which

case the concrete subclass must define the access method).

MATLAB has no default set or get property access methods. Therefore, if you do not define property
access methods, MATLAB software does not invoke any methods before assigning or returning
property values.

Once defined, only the set and get methods can set and query the actual property values. See “When
Set Method Is Called” on page 8-46 for information on cases where MATLAB does not call property
set methods.

Note Property set and get access methods are not equivalent to user-callable set and get methods
used to set and query property values from an instance of the class. See “Implement Set/Get
Interface for Properties” on page 7-22 for information on user-callable set and get methods.

Access Methods Cannot Call Functions to Access Properties

You can set and get property values only from within your property set or get access method. You
cannot call another function from the set or get method and attempt to access the property value
from that function.

For example, an anonymous function that calls another function to do the actual work cannot access
the property value. Similarly, an access function cannot call another function to access the property
value.

 Property Access Methods

8-41

Defining Access Methods

Access methods have special names that include the property name. Therefore, get.PropertyName
executes whenever PropertyName is referenced and set.PropertyName executes whenever
PropertyName is assigned a value.

Define property access methods in a methods block that specifies no attributes. You cannot call these
methods directly. MATLAB calls these methods when any code accesses the properties.

Property access methods do not appear in the list of class methods returned by the methods
command and are not included in the meta.class object Methods property.

Access Method Function Handles

The property meta.property object contains function handles to the property set and get methods.
SetMethod contains a function handle to the set method. GetMethod contains a function handle to
the get method.

Obtain these handles from the meta.property object:
mc = ?ClassName;
mp = findobj(mc.PropertyList,'Name','PropertyName');
fh = mp.GetMethod;

For example, if the class MyClass defines a get method for its Text property, you can obtain a
function handle to this function from the meta.class object:

mc = ?MyClass;
mp = findobj(mc.PropertyList,'Name','Text');
fh = mp.GetMethod;

The returned value, fh, contains a function handle to the get method defined for the specified
property name for the specified class.

For information on defining function handles, see “Create Function Handle”

Set and Get Method Execution and Property Events
MATLAB software generates events before and after set and get operations. You can use these events
to inform listeners that property values have been referenced or assigned. The timing of event
generation is as follows:

• PreGet — Triggered before calling the property get method
• PostGet — Triggered after the property get method has returned its value

If a class computes a property value (Dependent = true), then the behaviors of its set events are
like the get events:

• PreSet — Triggered before calling the property set method
• PostSet — Triggered after calling the property set method

If a property is not computed (Dependent = false, the default), then the assignment statement
with the set method generates the events:

• PreSet — Triggered before assigning the new property value within the set method

8 Properties — Storing Class Data

8-42

• PostSet — Triggered after assigning the new property value within the set method

For information about using property events, see “Create Property Listeners” on page 11-31.

Access Methods and Properties Containing Arrays
You can use array indexing with properties that contain arrays without interfering with property set
and get methods.

For indexed reference:

val = obj.PropName(n);

MATLAB calls the get method to get the referenced value.

For indexed assignment:

obj.PropName(n) = val;

MATLAB:

• Invokes the get method to get the property value
• Performs the indexed assignment on the returned property
• Passes the new property value to the set method

Access Methods and Arrays of Objects
When reference or assignment occurs on an object array, MATLAB calls the set and get methods in a
loop. In this loop, MATLAB always passes scalar objects to set and get methods.

Modify Property Values with Access Methods
Property access methods are useful in cases where you want to perform some additional steps before
assigning or returning a property value. For example, the Testpoint class uses a property set
method to check the range of a value. It then applies scaling if it is within a particular range, and set
it to NaN if it is not.

The property get methods applies a scale factor before returning its current value:

classdef Testpoint
 properties
 expectedResult = []
 end
 properties(Constant)
 scalingFactor = 0.001
 end
 methods
 function obj = set.expectedResult(obj,erIn)
 if erIn >= 0 && erIn <= 100
 erIn = erIn.*obj.scalingFactor;
 obj.expectedResult = erIn;
 else
 obj.expectedResult = NaN;
 end

 Property Access Methods

8-43

 end
 function er = get.expectedResult(obj)
 er = obj.expectedResult/obj.scalingFactor;
 end
 end
end

See Also

More About
• “Property Set Methods” on page 8-45
• “Property Get Methods” on page 8-48
• “Properties Containing Objects” on page 8-53

8 Properties — Storing Class Data

8-44

Property Set Methods
In this section...
“Overview of Property Access Methods” on page 8-45
“Property Set Method Syntax” on page 8-45
“Validate Property Set Value” on page 8-45
“When Set Method Is Called” on page 8-46

Overview of Property Access Methods
For an overview of property access methods, see “Property Access Methods” on page 8-40

Property Set Method Syntax
MATLAB calls a property's set method whenever a value is assigned to the property.

Note You cannot call property access methods directly. MATLAB calls these methods when you
access property values.

Property set methods have the following syntax, where PropertyName is the name of the property.

For a value class:

methods
 function obj = set.PropertyName(obj,value)
 ...
end

• obj — Object whose property is being assigned a value
• value — The new value that is assigned to the property

Value class set functions must return the modified object to the calling function. Handle classes do
not need to return the modified object.

For a handle class:

methods
 function set.PropertyName(obj,value)
 ...
end

Use default method attributes for property set methods. The methods block defining the set method
cannot specify attributes.

Validate Property Set Value
Use the property set method to validate the value being assigned to the property. The property set
method can perform actions like error checking on the input value before taking whatever action is
necessary to store the new property value.

 Property Set Methods

8-45

classdef MyClass
 properties
 Prop1
 end
 methods
 function obj = set.Prop1(obj,value)
 if (value > 0)
 obj.Prop1 = value;
 else
 error('Property value must be positive')
 end
 end
 end
end

For an example of a property set method, see “Restrict Properties to Specific Values” on page 3-16 .

When Set Method Is Called
If a property set method exists, MATLAB calls it whenever a value is assigned to that property.
However, MATLAB does NOT call property set methods in the following cases:

• A value is assigned to a property from within its own property set method, to prevent recursive
calling of the set method. However, property assignments made from functions called by a set
method do call the set method.

• MATLAB assigns a default value to the property during initialization of an object before calling
object constructor functions.

• When MATLAB copies a value object (any object that is not a handle), MATLAB does not call the
set or get method when copying property values from one object to another.

• Any assignment made to a property value that is the same as the current value when the
property’s AbortSet attribute is true. See “Assignment When Property Value Is Unchanged” on
page 11-34 for more information on this attribute.

Setting Property Value in Constructor

Setting a property value in the constructor causes the property set method to be called. For example,
the PropertySetMethod class defines a property set method for the Prop1 property.

classdef PropertySetMethod

 properties
 Prop1 = "Default String"
 end

 methods
 function obj = PropertySetMethod(str)
 if nargin > 0
 obj.Prop1 = str;
 end
 end

 function obj = set.Prop1(obj,str)
 obj.Prop1 = str;
 fprintf('set.Prop1 method called. Prop1 = %s\n', obj.Prop1);
 end

8 Properties — Storing Class Data

8-46

 end
end

If you call the class constructor with no input arguments, MATLAB does not call the set.Prop1
method.

>> o = PropertySetMethod

o =

 PropertySetMethod with properties:

 Prop1: "Default String"

Setting the property value in the constructor results in a call to the property set method.

>> o = PropertySetMethod("New string")

set.Prop1 method called. Prop1 = New string

o =

 PropertySetMethod with properties:

 Prop1: "New string"

If you copy the object to another variable, MATLAB does not call the property set method even
though the right side object in the assignment uses a nondefault value for the property:

a = o;
a.Prop1

a.Prop1

ans =

 "New String"

See Also

Related Examples
• “Property Get Methods” on page 8-48
• “Methods to Set and Get Property Values” on page 8-15
• “Validate Property Values” on page 8-19

 Property Set Methods

8-47

Property Get Methods

In this section...
“Overview of Property Access Methods” on page 8-48
“Property Get Method Syntax” on page 8-48
“Calculate Value for Dependent Property” on page 8-48
“Errors Not Returned from Get Method” on page 8-49
“Get Method Behavior” on page 8-49

Overview of Property Access Methods
For an overview of property access methods, see “Property Access Methods” on page 8-40.

Property Get Method Syntax
MATLAB calls a property's get method whenever the property value is queried.

Note You cannot call property access methods directly. MATLAB calls these methods when you
access property values.

Property get methods have the following syntax, where PropertyName is the name of the property.
The function must return the property value.

methods
 function value = get.PropertyName(obj)
 ...
end

Calculate Value for Dependent Property
The SquareArea class defines a dependent property Area. MATLAB does not store a value for the
dependent Area property. When you query the value of the Area property, MATLAB calls the
get.Area method calculates the value based on the Width and Height properties.

classdef SquareArea
 properties
 Width
 Height
 end
 properties (Dependent)
 Area
 end
 methods
 function a = get.Area(obj)
 a = obj.Width * obj.Height;
 end
 end
end

8 Properties — Storing Class Data

8-48

Errors Not Returned from Get Method
The MATLAB default object display suppresses error messages returned from property get methods.
MATLAB does not allow an error issued by a property get method to prevent the display of the entire
object.

Use the property set method to validate the property value. Validating the value when setting a
property ensures that the object is in a valid state. Use the property get method only to return the
value that the set method has validated.

Get Method Behavior
MATLAB does NOT call property get methods in the following cases:

• Getting a property value from within its own property get method, which prevents recursive
calling of the get method

• Copying a value object (that is, not derived from the handle class). The set or get method is not
called when copying property values from one object to another.

See Also

Related Examples
• “Set and Get Methods for Dependent Properties” on page 8-50

 Property Get Methods

8-49

Set and Get Methods for Dependent Properties
In this section...
“Calculate Dependent Property Value” on page 8-51
“When to Use Set Methods with Dependent Properties” on page 8-51
“Private Set Access with Dependent Properties” on page 8-52

Dependent properties do not store data. The value of a dependent property depends on some other
value, such as the value of a nondependent property.

Dependent properties must define get-access methods (get.PropertyName) to determine a value
for the property when the property is queried.

The values returned by dependent property get methods are not considered when testing for object
equality using isequal and isequaln.

To be able to set the value of a dependent property, the property must define a set access method
(set.PropertyName). The property set access method usually assigns the value to another,
nondependent property for storage of the value.

For example, the Account class returns a value for the dependent Balance property that depends
on the value of the Currency property. The get.Balance method queries the Currency property
before calculating a value for the Balance property.

MATLAB calls the get.Balance method when the Balance property is queried. You cannot call
get.Balance explicitly.

Here is a partial listing of the class showing a dependent property and its get method:

classdef Account
 properties
 Currency
 DollarAmount
 end
 properties (Dependent)
 Balance
 end
 ...
 methods
 function value = get.Balance(obj)
 c = obj.Currency;
 switch c
 case 'E'
 v = obj.DollarAmount / 1.1;
 case 'P'
 v = obj.DollarAmount / 1.5;
 otherwise
 v = obj.DollarAmount;
 end
 format bank
 value = v;
 end
 end
end

8 Properties — Storing Class Data

8-50

Calculate Dependent Property Value
One application of a property get method is to determine the value of a property only when you need
it, and avoid storing the value. To use this approach, set the property Dependent attribute to true:

properties (Dependent = true)
 Prop
end

The get method for the Prop property determines the value of that property and assigns it to the
object from within the method:

function value = get.Prop(obj)
 value = calculateValue;
 ...
end

This get method calls a function or static method called calculateValue to calculate the property
value and returns value as a result. The property get method can take whatever action is necessary
within the method to produce the output value.

For an example of a property get method, see “Calculate Data on Demand” on page 3-17.

When to Use Set Methods with Dependent Properties
Although a dependent property does not store its value, you can define a set method for a dependent
property to enable code to set the property.

For example, suppose that you have a class that changes the name of a property from OldPropName
to NewPropName. You can continue to allow the use of the old name without exposing it to new users.
To support the old property name, define OldPropName a dependent property with set and get
methods:

properties
 NewPropName
end
properties (Dependent, Hidden)
 OldPropName
end
methods
 function obj = set.OldPropName(obj,val)
 obj.NewPropName = val;
 end
 function value = get.OldPropName(obj)
 value = obj.NewPropName;
 end
end

There is no memory wasted by storing both old and new property values. Code that accesses
OldPropName continues to work as expected. Setting the Hidden attribute of OldPropName
prevents new users from seeing the property.

Assignments made from property set methods cause the execution of any set methods defined for
properties being set. See “Calculate Data on Demand” on page 3-17 for an example.

 Set and Get Methods for Dependent Properties

8-51

Private Set Access with Dependent Properties
If you use a dependent property only to return a value, then do not define a set access method for the
dependent property. Instead, set the SetAccess attribute of the dependent property to private. For
example, consider the following get method for the MaxValue property:

methods
 function mval = get.MaxValue(obj)
 mval = max(obj.BigArray(:));
 end
end

This example uses the MaxValue property to return a value that it calculates only when queried. For
this application, define the MaxValue property as dependent and private:

properties (Dependent, SetAccess = private)
 MaxValue
end

See Also

Related Examples
• “Property Attributes” on page 8-6

8 Properties — Storing Class Data

8-52

Properties Containing Objects
In this section...
“Assigning Objects as Default Property Values” on page 8-53
“Assigning to Read-Only Properties Containing Objects” on page 8-53
“Assignment Behavior” on page 8-53

Assigning Objects as Default Property Values
MATLAB evaluates property default values only once when loading the class. MATLAB does not
reevaluate the assignment each time you create an object of that class. If you assign an object as a
default property value in the class definition, MATLAB calls the constructor for that object only once
when loading the class.

Note Evaluation of property default values occurs only when the value is first needed, and only once
when MATLAB first initializes the class. MATLAB does not reevaluate the expression each time you
create an instance of the class.

For more information on the evaluation of expressions that you assign as property default values, see
“When MATLAB Evaluates Expressions” on page 6-10.

Assigning to Read-Only Properties Containing Objects
When a class defines a property with private or protected SetAccess, and that property contains an
object which itself has properties, assignment behavior depends on whether the property contains a
handle or a value object:

• Handle object – you can set properties on handle objects contained in read-only properties
• Value object – you cannot set properties on value object contained in read-only properties.

Assignment Behavior
These classes illustrate the assignment behavior:

• ReadOnlyProps – class with two read-only properties. The class constructor assigns a handle
object of type HanClass to the PropHandle property and a value object of type ValClass to the
PropValue property.

• HanClass – handle class with public property
• ValClass – value class with public property

classdef ReadOnlyProps
 properties(SetAccess = private)
 PropHandle
 PropValue
 end
 methods
 function obj = ReadOnlyProps
 obj.PropHandle = HanClass;

 Properties Containing Objects

8-53

 obj.PropValue = ValClass;
 end
 end
end

classdef HanClass < handle
 properties
 Hprop
 end
end

classdef ValClass
 properties
 Vprop
 end
end

Create an instance of the ReadOnlyProps class:

a = ReadOnlyProps

a =

 ReadOnlyProps with properties:

 PropHandle: [1x1 HanClass]
 PropValue: [1x1 ValClass]

Use the private PropHandle property to set the property of the HanClass object it contains:

class(a.PropHandle.Hprop)

ans =

double

a.PropHandle.Hprop = 7;

Attempting to make an assignment to the value class object property is not allowed:

a.PropValue.Vprop = 11;

You cannot set the read-only property 'PropValue' of ReadOnlyProps.

See Also

More About
• “Mutable and Immutable Properties” on page 8-17

8 Properties — Storing Class Data

8-54

Dynamic Properties — Adding Properties to an Instance
In this section...
“What Are Dynamic Properties” on page 8-55
“Define Dynamic Properties” on page 8-55
“List Object Dynamic Properties” on page 8-57

What Are Dynamic Properties
You can add properties to instances of classes that derive from the dynamicprops class. These
dynamic properties are sometimes referred to as instance properties. Use dynamic properties to
attach temporary data to objects or to assign data that you want to associate with an instance of a
class, but not all objects of that class.

It is possible for more than one program to define dynamic properties on the same object. In these
cases, avoid name conflicts. Dynamic property names must be valid MATLAB identifiers (see
“Variable Names”) and cannot be the same name as a method of the class.

Characteristics of Dynamic Properties

Once defined, dynamic properties behave much like class-defined properties:

• Set and query the values of dynamic properties using dot notation. (See “Assign Data to the
Dynamic Property” on page 8-56.)

• MATLAB saves and loads dynamic properties when you save and load the objects to which they
are attached. (See “Dynamic Properties and ConstructOnLoad” on page 8-65.)

• Define attributes for dynamic property. (See “Set Dynamic Property Attributes” on page 8-56).
• By default, dynamic properties have their NonCopyable attribute set to true. If you copy an

object containing a dynamic property, the dynamic property is not copied. (See “Objects with
Dynamic Properties” on page 7-34)

• Add property set and get access methods. (See “Set and Get Methods for Dependent Properties”
on page 8-50.)

• Listen for dynamic property events. (See “Dynamic Property Events” on page 8-61.)
• Access dynamic property values from object arrays, with restricted syntax. (See “Accessing

Dynamic Properties in Arrays” on page 10-11.)
• The isequal function always returns false when comparing objects that have dynamic

properties, even if the properties have the same name and value. To compare objects that contain
dynamic properties, overload isequal for your class.

Define Dynamic Properties
Any class that is a subclass of the dynamicprops class (which is itself a subclass of the handle
class) can define dynamic properties using the addprop method. The syntax is:

P = addprop(H,'PropertyName')

where:

P is an array of meta.DynamicProperty objects

 Dynamic Properties — Adding Properties to an Instance

8-55

H is an array of handles

PropertyName is the name of the dynamic property you are adding to each object

Naming Dynamic Properties

Use only valid names when naming dynamic properties (see “Variable Names”). In addition, do not
use names that:

• Are the same as the name of a class method
• Are the same as the name of a class event
• Contain a period (.)
• Are the names of function that support array functionality: empty, transpose, ctranspose,

permute, reshape, display, disp, details, or sort.

Set Dynamic Property Attributes

To set property attributes, use the meta.DynamicProperty object associated with the dynamic
property. For example, if P is the object returned by addprop, this statement sets the property’s
Hidden attribute to true:

P.Hidden = true;

The property attributes Constant and Abstract have no meaning for dynamic properties. Setting
the value of these attributes to true has no effect.

Remove a Dynamic Property

Remove the dynamic property by deleting its meta.DynamicProperty object:

delete(P);

Assign Data to the Dynamic Property

Suppose, you are using a predefined set of user interface widget classes (buttons, sliders, check
boxes, etc.). You want to store the location of each instance of the widget class. Assume that the
widget classes are not designed to store location data for your particular layout scheme. You want to
avoid creating a map or hash table to maintain this information separately.

Assuming the button class is a subclass of dynamicprops, add a dynamic property to store your
layout data. Here is a simple class to create a uicontrol button:

classdef button < dynamicprops
 properties
 UiHandle
 end
 methods
 function obj = button(pos)
 if nargin > 0
 if length(pos) == 4
 obj.UiHandle = uicontrol('Position',pos,...
 'Style','pushbutton');
 else
 error('Improper position')
 end
 end

8 Properties — Storing Class Data

8-56

 end
 end
end

Create an instance of the button class, add a dynamic property, and set its value:

b1 = button([20 40 80 20]);
b1.addprop('myCoord');
b1.myCoord = [2,3];

Access the dynamic property just like any other property, but only on the object on which you defined
it:

b1.myCoord

ans =

 2 3

Access Attribute for Dynamic Properties

Using nonpublic Access with dynamic properties is not recommended because these properties
belong to specific instances that are often created outside of class methods. The Access attribute of a
dynamic property applies to the class of the instance that contains the dynamic property. The
dynamic property Access attribute does not necessarily apply to the class whose method adds the
dynamic property.

For example, if a base class method adds a dynamic property with private access to an instance, the
private access applies only to the class of the instance.

For more information on dynamic property attributes, see meta.DynamicProperty. Use the handle
findprop method to get the meta.DynamicProperty object.

List Object Dynamic Properties
You can list the dynamic properties for an object using the handle findprop method. Here are the
steps:

• Get the names of the object's properties using the properties function.
• Get the metadata object for each property using findprop.
• Use the isa function to determine if the metadata object is a meta.DynamicProperty object. If

so, then the property is a dynamic property.

The getDynamicPropNames function shows how to display the names of any dynamic properties
defined for the input obj.

function getDynamicPropNames(obj)
 % Find dynamic properties
 allprops = properties(obj);
 for i=1:numel(allprops)
 m = findprop(obj,allprops{i});
 if isa(m,'meta.DynamicProperty')
 disp(m.Name)
 end
 end
end

 Dynamic Properties — Adding Properties to an Instance

8-57

See Also

Related Examples
• “Set and Get Methods for Dynamic Properties” on page 8-59
• “Dynamic Property Events” on page 8-61
• “Dynamic Properties and ConstructOnLoad” on page 8-65

8 Properties — Storing Class Data

8-58

Set and Get Methods for Dynamic Properties
In this section...
“Create Access Methods for Dynamic Properties” on page 8-59
“Shared Set and Get Methods” on page 8-60

You can define property set access or get access methods for dynamic properties without creating
additional class methods. For general information on the use of access methods, see “Property Access
Methods” on page 8-40.

Create Access Methods for Dynamic Properties
Use these steps to create a property access method:

• Define a function that implements the operations you want to perform before the property set or
get occurs. These methods must have the following signatures: mySet(obj,val) or val =
myGet(obj)

• Obtain the dynamic property's corresponding meta.DynamicProperty object.
• Assign a function handle referencing your set or get property function to the

meta.DynamicProperty object's GetMethod or SetMethod property. This function does not
need to be a method of the class. You cannot use a naming scheme like set.PropertyName.
Instead, use any other valid function name.

Suppose that you want to create a property set function for the myCoord dynamic property of the
button class created in “Define Dynamic Properties” on page 8-55.

Write the function as follows.

function set_myCoord(obj,val)
 if ~(length(val) == 2)
 error('myCoords require two values')
 end
 obj.myCoord = val;
end

Because button is a handle class, the property set function does not need to return the object as an
output argument.

To get the meta.DynamicProperty object, use the handle class findprop method:

mb1 = b1.findprop('myCoord');
mb1.SetMethod = @set_myCoord;

MATLAB calls the property set function whenever you set this property:

b1.myCoord = [1 2 3] % length must be two

Error using button.set_myCoord
myCoords require two values

You can set and get the property values only from within your property access methods. You cannot
call another function from the set or get method, and then attempt to access the property value from
that function.

 Set and Get Methods for Dynamic Properties

8-59

Shared Set and Get Methods
You can assign the same function handle for the set or get method of multiple dynamic properties.
MATLAB passes only the object and the value to the assigned set function.

Reference or assignment to a property from within its set or get method does not invoke the set or
get method again. Therefore, if you use a handle to the same function for multiple dynamic
properties, that function is not invoked when accessing any of those properties from within that
function.

See Also

Related Examples
• “Dynamic Properties — Adding Properties to an Instance” on page 8-55

8 Properties — Storing Class Data

8-60

Dynamic Property Events

In this section...
“Dynamic Properties and Ordinary Property Events” on page 8-61
“Dynamic-Property Events” on page 8-61
“Listen for a Specific Property Name” on page 8-62
“PropertyAdded Event Callback Execution” on page 8-63
“PropertyRemoved Event Callback Execution” on page 8-63
“How to Find meta.DynamicProperty Objects” on page 8-63

Dynamic Properties and Ordinary Property Events
Dynamic properties support property set and get events so you can define listeners for these
properties. Listeners are bound to the particular dynamic property for which they are defined.

If you delete a dynamic property, and then create another dynamic property with the same name, the
listeners do not respond to events generated by the new property. A listener defined for a dynamic
property that has been deleted does not cause an error, but the listener callback is never executed.

“Property-Set and Query Events” on page 11-13 provides more information on how to define
listeners for these events.

Dynamic-Property Events
To respond to the addition and removal of dynamic properties, attach listeners to objects containing
the dynamic properties. The dynamicprops class defines events for this purpose:

• PropertyAdded — Triggered when you add a dynamic property to an object derived from the
dynamicprops class.

• PropertyRemoved — Triggered when you delete the object or the meta.DynamicProperty
object associated with a dynamic property.

• ObjectBeingDestroyed — Triggered when the object is destroyed. This event is inherited from
the handle class.

These events have public listen access (ListenAccess attribute) and private notify access
(NotifyAccess attribute).

The PropertyAdded and PropertyRemoved events pass an event.DynamicPropertyEvent
object to listener callbacks. The event data object has three properties:

• PropertyName — Name of the dynamic property that is added or removed
• Source — Handle to the object that is the source of the event
• EventName — Name of the event (PropertyAdded, PropertyRemoved, or

ObjectBeingDestroyed)

 Dynamic Property Events

8-61

Listen for a Specific Property Name
Suppose that you have an application that creates a dynamic property under certain conditions. You
want to:

• Set the value of a hidden property to true when a property named SpecialProp is added.
• Set the value of the hidden property to false when SpecialProp is removed.

Use the event.DynamicPropertyEvent event data to determine the name of the property and
whether it is added or deleted.

The DynamTest class derives from dynamicprops. It defines a hidden property, HiddenProp.

classdef DynamTest < dynamicprops
 properties (Hidden)
 HiddenProp
 end
end

Define a callback function that uses the EventName property of the event data to determine if a
property is added or removed. Obtain the name of the property from the PropertyName property of
the event data. If a dynamic property is named SpecialProp, change the value of the hidden
property.

function DyPropEvtCb(src,evt)
 switch evt.EventName
 case 'PropertyAdded'
 switch evt.PropertyName
 case 'SpecialProp'
 % Take action based on the addition of this property
 %...
 %...
 src.HiddenProp = true;
 disp('SpecialProp added')
 otherwise
 % Other property added
 % ...
 disp([evt.PropertyName,' added'])
 end
 case 'PropertyRemoved'
 switch evt.PropertyName
 case 'SpecialProp'
 % Take action based on the removal of this property
 %...
 %...
 src.HiddenProp = false;
 disp('SpecialProp removed')
 otherwise
 % Other property removed
 % ...
 disp([evt.PropertyName,' removed'])
 end
 end
end

Create an object of the DynamTest class.

8 Properties — Storing Class Data

8-62

dt = DynamTest;

Add a listener for both PropertyAdded and PropertyRemoved events.

lad = addlistener(dt,'PropertyAdded',@DyPropEvtCb);
lrm = addlistener(dt,'PropertyRemoved',@DyPropEvtCb);

PropertyAdded Event Callback Execution
Adding a dynamic property triggers the PropertyAdded event. This statement adds a dynamic
property to the object and saves the returned meta.DynamicProperty object.

ad = addprop(dt,'SpecialProp');

The addition of the dynamic property causes the listener to execute its callback function,
DyPropEvtCb. The callback function assigns a value of true to the HiddenProp property.

dt.HiddenProp

ans =

 1

PropertyRemoved Event Callback Execution
Remove a dynamic property by calling delete on the meta.DynamicProperty object that is
returned by the addprop method. Removing the meta.DynamicProperty object triggers the
PropertyRemoved event.

Delete the meta.DynamicProperty object returned when adding the dynamic property
SpecialProp.

delete(ad)

The callback executes:

SpecialProp removed

The value of HiddenProp is now false.

dt.HiddenProp

ans =

 0

How to Find meta.DynamicProperty Objects
You can obtain the meta.DynamicProperty object for a dynamic property using findprop. Use
findprop if you do not have the object returned by addprop.

ad = findprop(dt,'SpecialProp');

 Dynamic Property Events

8-63

See Also

Related Examples
• “Dynamic Properties — Adding Properties to an Instance” on page 8-55

8 Properties — Storing Class Data

8-64

Dynamic Properties and ConstructOnLoad
Setting the class ConstructOnLoad attribute to true causes MATLAB to call the class constructor
when loading the class. MATLAB saves and restores dynamic properties when loading an object.

If you create dynamic properties from the class constructor, you can cause a conflict if you also set
the class ConstructOnLoad attribute to true. Here is the sequence:

• A saved object saves the names and values of properties, including dynamic properties
• When loaded, a new object is created and all properties are restored to the values at the time the

object was saved
• Then, the ConstructOnLoad attribute causes a call to the class constructor, which would create

another dynamic property with the same name as the loaded property. See “Save and Load
Objects” on page 13-2 for more on the load sequence.

• MATLAB prevents a conflict by loading the saved dynamic property, and does not execute
addprop when calling the constructor.

If you use ConstructOnLoad, add dynamic properties from the class constructor, and want the
constructor to call addprop at load time, then set the dynamic property Transient attribute to
true. This setting prevents the property from being saved. For example:

classdef (ConstructOnLoad) MyClass < dynamicprops
 function obj = MyClass
 P = addprop(obj,'DynProp');
 P.Transient = true;
 ...
 end
end

See Also

Related Examples
• “Dynamic Properties — Adding Properties to an Instance” on page 8-55

 Dynamic Properties and ConstructOnLoad

8-65

Methods — Defining Class Operations

• “Methods in Class Design” on page 9-2
• “Method Attributes” on page 9-4
• “Ordinary Methods” on page 9-6
• “Methods in Separate Files” on page 9-8
• “Method Invocation” on page 9-11
• “Class Constructor Methods” on page 9-16
• “Static Methods” on page 9-24
• “Overload Functions in Class Definitions” on page 9-26
• “Class Support for Array-Creation Functions” on page 9-29
• “Object Precedence in Method Invocation” on page 9-36
• “Dominant Argument in Overloaded Graphics Functions” on page 9-38
• “Class Methods for Graphics Callbacks” on page 9-41

9

Methods in Class Design
In this section...
“Class Methods” on page 9-2
“Examples and Syntax” on page 9-2
“Kinds of Methods” on page 9-2
“Method Naming” on page 9-3

Class Methods
Methods are functions that implement the operations performed on objects of a class. Methods, along
with other class members support the concept of encapsulation—class instances contain data in
properties and class methods operate on that data. This design allows the internal workings of
classes to be hidden from code outside of the class, and thereby enabling the class implementation to
change without affecting code that is external to the class.

Methods have access to private members of their class including other methods and properties. This
encapsulation enables you to hide data and create special interfaces that must be used to access the
data stored in objects.

Examples and Syntax
For an example to get started writing classes, see “Create a Simple Class” on page 2-2

For sample code and syntax, see “Define Class Methods and Functions” on page 5-13

For a discussion of how to create classes that modify standard MATLAB behavior, see “Methods That
Modify Default Behavior” on page 17-2 .

For information on the use of @ and path directors and packages to organize your class files, see
“Class Files and Folders” on page 5-2

For the syntax to use when defining classes in more than one file, see “Methods in Separate Files” on
page 9-8

Kinds of Methods
There are specialized kinds of methods that perform certain functions or behave in particular ways:

• Ordinary methods are functions that act on one or more objects and return some new object or
some computed value. These methods are like ordinary MATLAB functions that cannot modify
input arguments. Ordinary methods enable classes to implement arithmetic operators and
computational functions. These methods require an object of the class on which to operate. See
“Ordinary Methods” on page 9-6.

• Constructor methods are specialized methods that create objects of the class. A constructor
method must have the same name as the class and typically initializes property values with data
obtained from input arguments. The class constructor method must declare at least one output
argument, which is the object being constructed. The first output is always the object being
constructed. See “Class Constructor Methods” on page 9-16

9 Methods — Defining Class Operations

9-2

• Destructor methods are called automatically when the object is destroyed, for example if you call
delete(object) or there are no longer any references to the object. See “Handle Class
Destructor” on page 7-13

• Property access methods enable a class to define code to execute whenever a property value is
queried or set. See “Property Access Methods” on page 8-40

• Static methods are functions that are associated with a class, but do not necessarily operate on
class objects. These methods do not require an instance of the class to be referenced during
invocation of the method, but typically perform operations in a way specific to the class. See
“Static Methods” on page 9-24

• Conversion methods are overloaded constructor methods from other classes that enable your class
to convert its own objects to the class of the overloaded constructor. For example, if your class
implements a double method, then this method is called instead of the double class constructor
to convert your class object to a MATLAB double object. See “Object Converters” on page 17-10
for more information.

• Abstract methods define a class that cannot be instantiated itself, but serves as a way to define a
common interface used by numerous subclasses. Classes that contain abstract methods are often
referred to as interfaces. See “Abstract Classes and Class Members” on page 12-70 for more
information and examples.

Method Naming
The name of a function that implements a method can contain dots (for example,
set.PropertyName) only if the method is one of the following:

• Property set/get access method (see “Property Access Methods” on page 8-40)
• Conversion method that converts to a package-qualified class, which requires the use of the

package name (see “Packages Create Namespaces” on page 6-20)

You cannot define property access or conversion methods as local functions, nested functions, or
separately in their own files. Class constructors and package-scoped functions must use the
unqualified name in the function definition; do not include the package name in the function
definition statement.

See Also

Related Examples
• “Method Attributes” on page 9-4
• “Rules for Naming to Avoid Conflicts” on page 9-28

 Methods in Class Design

9-3

Method Attributes
In this section...
“Purpose of Method Attributes” on page 9-4
“Specifying Method Attributes” on page 9-4
“Table of Method Attributes” on page 9-4

Purpose of Method Attributes
Specifying attributes in the class definition enables you to customize the behavior of methods for
specific purposes. Control characteristics like access, visibility, and implementation by setting method
attributes. Subclasses do not inherit superclass member attributes.

Specifying Method Attributes
Assign method attributes on the same line as the methods keyword:

methods (Attribute1 = value1, Attribute2 = value2,...)
 ...
end

For more information on attribute syntax, see “Attribute Specification” on page 5-18.

Table of Method Attributes
Attributes enable you to modify the behavior of methods. All methods support the attributes listed in
the following table.

Attribute values apply to all methods defined within the methods...end code block that specifies
the nondefault values.

9 Methods — Defining Class Operations

9-4

Method Attributes

Attribute Name Class Description
Abstract logical Default =

false
If true, the method has no implementation. The method has a syntax
line that can include arguments that subclasses use when
implementing the method:

• Subclasses are not required to define the same number of input
and output arguments. However, subclasses generally use the
same signature when implementing their version of the method.

• The method can have comments after the function line.
• The method does not contain function or end keywords, only

the function syntax (e.g., [a,b] = myMethod(x,y))
Access • enumeration,

default = public
• meta.class

object
• cell array of

meta.class
objects

Determines what code can call this method:

• public — Unrestricted access
• protected — Access from methods in class or subclasses
• private — Access by class methods only (not from subclasses)
• List classes that have access to this method. Specify classes as

meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell array, {}, is

the same as private access.

See “Class Members Access” on page 12-24
Hidden logical Default =

false
When false, the method name shows in the list of methods
displayed using the methods or methodsview commands. If set to
true, the method name is not included in these listings and
ismethod does not return true for this method name.

Sealed logical Default =
false

If true, the method cannot be redefined in a subclass. Attempting to
define a method with the same name in a subclass causes an error.

Static logical Default =
false

Specify as true to define a method that does not depend on an
object of the class and does not require an object argument. Use the
class name to call the method: classname.methodname or an
instance of the class: obj.methodname

“Static Methods” on page 9-24 provides more information.
Framework
attributes

Classes that use certain framework base classes have framework-specific attributes. See the
documentation for the specific base class you are using for information on these attributes.

See Also
meta.method | metaclass

More About
• “Methods”

 Method Attributes

9-5

Ordinary Methods
In this section...
“Ordinary Methods Operate on Objects” on page 9-6
“Methods Inside classdef Block” on page 9-6
“Method Files” on page 9-7

Ordinary Methods Operate on Objects
Ordinary methods define functions that operate on objects of the class. Therefore, one of the input
arguments must be an object or array of objects of the defining class. These methods can compute
values based on object data, can overload MATLAB built-in functions, and can call other methods and
functions. Ordinary methods can return modified objects.

Methods Inside classdef Block
This example shows the definition of a method (methodName) within the classdef and methods
blocks:

classdef ClassName
 methods (AttributeName = value,...)
 function methodName(obj,args)
 % method code
 ...
 end
 ...
 end % end of method block
 ...
end

Method attributes apply only to that particular methods block, which is terminated by the end
statement.

Note Nonstatic methods must include an explicit object variable as a function argument. The
MATLAB language does not support an implicit reference in the method function definition.

Example of a Method

The addData method adds a value to the Data property of MyData objects. The mustBeNumeric
function restricts the value of the Data property to numeric values. The property has a default value
of 0.

The addData method returns the modified object, which you can reassign to the same variable.

classdef MyData
 properties
 Data {mustBeNumeric} = 0
 end
 methods
 function obj = addData(obj,val)
 if isnumeric(val)

9 Methods — Defining Class Operations

9-6

 newData = obj.Data + val;
 obj.Data = newData;
 end
 end
 end
end

a = MyData;
a = addData(a,75)

a =

 MyData with properties:

 Data: 75

Calling Methods

Either of the following statements is correct syntax for calling a method, where obj is an object of
the class defining the methodName method:

obj.methodName(arg)
methodName(obj,arg)

Method Files
You can define methods:

• Inside the class definition block
• In a separate file in the class folder (that is, @ClassName folder)

For more information on class folders, see “Folders Containing Class Definitions” on page 6-13.

See Also

More About
• “Methods in Separate Files” on page 9-8
• “Determining Which Method Is Invoked” on page 9-11
• “Operator Overloading” on page 17-38

 Ordinary Methods

9-7

Methods in Separate Files
In this section...
“Class Folders” on page 9-8
“Define Method in Function File” on page 9-8
“Specify Method Attributes in classdef File” on page 9-9
“Methods You Must Define in the classdef File” on page 9-10

Class Folders
You can define class methods in files that are separate from the class definition file, with certain
exceptions (see “Methods You Must Define in the classdef File” on page 9-10).

To use multiple files for class definitions, put the class files in a folder having a name beginning with
the @ character followed by the name of the class (this is called a class folder). Ensure that the parent
folder of the class folder is on the MATLAB path.

If the class folder is contained in one or more package folders, then the top-level package folder must
be on the MATLAB path.

For example, the folder @MyClass must contain the file MyClass.m (which contains the classdef
block) and contains other methods and function defined in files having a .m extension. The folder
@MyClass can contain a number of files:

@MyClass/MyClass.m
@MyClass/subsref.m
@MyClass/subsasgn.m
@MyClass/horzcat.m
@MyClass/vertcat.m
@MyClass/myFunc.m

Types of Method Files

MATLAB treats any function file in the class folder as a method of the class. Function files can be
MATLAB code (.m), Live Code file format (.mlx), MEX functions (platform dependent extensions),
and P-code files (.p). The base name of the file must be a valid MATLAB function name. Valid function
names begin with an alphabetic character, and can contain letters, numbers, or underscores.

For information on defining methods as C++ MEX functions, see “Using MEX Functions for MATLAB
Class Methods”.

Define Method in Function File
To define a method in a separate file in the class folder, create the function in a file. Do not use the
method-end keywords in that file. Name the file with the function name, as with any function.

In the myFunc.m file, implement the method:

function output = myFunc(obj,arg1,arg2)
 ...% code here
end

9 Methods — Defining Class Operations

9-8

It is a good practice to declare the function signature in the classdef file in a methods block:

classdef MyClass
 methods
 output = myFunc(obj,arg1,arg2)
 end
 ...
end

Specify Method Attributes in classdef File
If you specify method attributes for a method that you define in a separate function file, include the
method signature in a methods block in the classdef file. This methods block specifies the
attributes that apply to the method.

For example, the following code shows a method with Access set to private in the methods block.
The method implementation resides in a separate file. Do not include the function or end keywords
in the methods block. Include only the function signature showing input and output arguments.

classdef MyClass
 methods (Access = private)
 output = myFunc(obj,arg1,arg2)
 end
end

In a file named myFunc.m, in the @MyClass folder, define the function:

function output = myFunc(obj,arg1,arg2)
 ...
end

Static Methods in Separate Files

To create a static method, set the method Static attribute to true and list the function signature in
a static methods block in the classdef file. Include the input and output arguments with the
function name. For example:

classdef MyClass
...
 methods (Static)
 output = staticFunc1(arg1,arg2)
 staticFunc2
 end
 ...
end

Define the functions in separate files using the same function signature. For example, in the file
@MyClass/staticFunc1.m:

function output = staticFunc1(arg1,arg2)
 ...
end

and in @Myclass/staticFunc2.m:

 Methods in Separate Files

9-9

function staticFunc2
 ...
end

Methods You Must Define in the classdef File
Define the following methods in the classdef file. You cannot define these methods in separate files:

• Class constructor
• All functions that use dots in their names, including:

• Converter methods that must use the package name as part of the class name because the
class is contained in packages

• Property set and get access methods

Related Information

• “Converters for Package Classes” on page 17-10
• “Property Access Methods” on page 8-40

See Also

Related Examples
• “Folders Containing Class Definitions” on page 6-13
• “Live Code File Format (.mlx)”
• “MEX File Functions”
• “Using MEX Functions for MATLAB Class Methods”
• “Protect Your Source Code”

9 Methods — Defining Class Operations

9-10

Method Invocation

In this section...
“Determining Which Method Is Invoked” on page 9-11
“Referencing Names with Expressions—Dynamic Reference” on page 9-13
“Index into Result of Method Call” on page 9-14
“Controlling Access to Methods” on page 9-14
“Invoking Superclass Methods in Subclass Methods” on page 9-15
“Invoking Built-In Functions” on page 9-15

Determining Which Method Is Invoked
When MATLAB invokes an ordinary method that has an argument list, it uses the following criteria to
determine which method to call

• The class of the leftmost argument whose class is not specified as inferior to any other argument's
class is chosen as the dominant class and its method is invoked.

• If this class does not define the called method, then a function with that name that is on the
MATLAB path is invoked.

• If no such function exists, MATLAB issues an error indicating that the dominant class does not
define the named method.

Dominant Argument

MATLAB uses dominant argument dispatching to determine which version of a method to call. During
method dispatching, MATLAB determines the dominant class from among the arguments in the call.
In general, all MATLAB classes defined using the classdef syntax have equal precedence for
purposes of method dispatching.

Classes defined using the classdef syntax take precedence over these MATLAB classes:

double, single, int64, uint64, int32, uint32, int16, uint16, int8, uint8, char, string,
logical, cell, struct, and function_handle.

In general, when two or more objects are part of the argument list, the method defined for the class
of the left-most object is invoked. However, user-defined classes can specify the relative dominance of
specific classes. For information, see “Class Precedence” on page 6-18.

For example, suppose classA defines classB as inferior and suppose that both classes define a
method called combine.

Calling the method with an object of classB and classA:

combine(B,A)

actually calls the combine method of classA because A is the dominant argument.

 Method Invocation

9-11

Dot Notation vs. Function Notation

MATLAB classes support both function and dot notation syntax for calling methods. For example, if
setColor is a method of the class of object X, then calling setColor with function notation would
be:

X = setColor(X,'red');

The equivalent method call using dot notation is:

X = X.setColor('red')

However, in certain cases, the results for dot notation can differ with respect to how MATLAB
dispatching works:

• If there is an overloaded subsref, it is invoked whenever using dot notation. That is, the
statement is first tested to see if it is subscripted assignment.

• If there is no overloaded subsref, then setColor must be a method of X. An ordinary function or
a class constructor is never called using this notation.

• Only the argument X (to the left of the dot) is used for dispatching. No other arguments, even if
dominant, are considered. Therefore dot notation can call only methods of X; methods of other
argument are never called.

Case Where Result Is Different

Here is an example of a case where dot and function notation can give different results. Suppose that
you have the following classes:

• classA defines a method called methodA that requires an object of classB as one of its
arguments

• classB defines classA as inferior to classB

classdef (InferiorClasses = {?classA}) classB
 ...
end

The methodA method is defined with two input arguments, one of which is an object of classB:

classdef classA
methods
 function methodA(obj,obj_classB)
 ...
 end
end

classB does not define a method with the same name as methodA. Therefore, the following syntax
causes MATLAB to search the path for a function with the same name as methodA because the
second argument is an object of a dominant class. If a function with that name exists on the path,
then MATLAB attempts to call this function instead of the method of classA and most likely returns
a syntax error.

obj = classA(...);
methodA(obj,obj_classB)

Dot notation is stricter in its behavior. For example, this call to methodA:

9 Methods — Defining Class Operations

9-12

obj = classA(...);
obj.methodA(obj_classB)

can call only methodA of the class of obj.

Referencing Names with Expressions—Dynamic Reference
You can reference an object's properties or methods using an expression in dot-parentheses syntax:

obj.(expression)

The expression must evaluate to a char vector that is the name of a property or a method. For
example, the following statements are equivalent:

obj.Property1
obj.('Property1')

In this case, obj is an object of a class that defines a property called Property1. Therefore, you can
pass a char variable in the parentheses to reference to property:

propName = 'Property1';
obj.(propName)

You can call a method and pass input arguments to the method using another set of parentheses:

obj.(expression)(arg1,arg2,...)

Using this notation, you can make dynamic references to properties and methods in the same way
you can create dynamic references to the fields of structs.

As an example, suppose that an object has methods corresponding to each day of the week. These
methods have the same names as the days of the week (Monday, Tuesday, and so on). Also, the
methods take as char vector input arguments, the current day of the month (the date). Now suppose
that you write a function in which you want to call the correct method for the current day.

Use an expression created with the date and datestr functions:

obj.(datestr(date,'dddd'))(datestr(date,'dd'))

The expression datestr(date,'dddd') returns the current day as a char vector. For example:

datestr(date,'dddd')

ans =

Tuesday

The expression datestr(date,'dd') returns the current date as a char vector. For example:

datestr(date,'dd')

ans =

11

Therefore, the expression using dot-parentheses (called on Tuesday the 11th) is the equivalent of:

obj.Tuesday('11')

 Method Invocation

9-13

Index into Result of Method Call
You can use dot indexing into the result of a method call to obtain a value. For example, this class
defines a property and a constructor method. The constructor sets the property value after evaluating
an expression using the input argument.

classdef polyEval
 properties
 Result
 end
 methods
 function obj = polyEval(x)
 if nargin
 obj.Result = 2*x.^3 + 7*x.^2 + 2*x + 7;
 end
 end
 end
end

You can index into the result of a call the constructor method to access the value of the property. For
example, this call to polyEval() returns the value that is assigned to the property. The instance of
the polyEval class is created as a temporary variable and is not saved in the workspace.

 polyEval(-3.5).Result

ans =

 0

In this case, the expression, polyEval(-3.5).Result represents the value 0 (the value -3.5 is a
root of the polynomial). You can assign the result of evaluating this expression to a variable or use it
in other expressions.

You can dot index into the result of any method that returns a result for which dot indexing is defined,
such as an object or structure which can be indexed using a property or field name. You must include
the parentheses in all indexing expressions even if there are no arguments. For example, to index into
the result of a call to the polyEval() constructor with no inputs, use this expression.

 polyEval().Result

For more information on indexing into the result of function calls, see “Indexing into Function Call
Results”.

Controlling Access to Methods
There can be situations where you want to create methods for internal computation within the class,
but do not want to publish these methods as part of the public interface to the class. In these cases,
you can use the Access attribute to set the access to one of the following options:

• public — Any code having access to an object of the class can access this method (the default).
• private — Restricts method access to the defining class, excluding subclasses. Subclasses do not

inherit private methods.
• protected — Restricts method access to the defining class and subclasses derived from the
defining class. Subclasses inherit this method.

9 Methods — Defining Class Operations

9-14

• Access list — Restricts method access to classes in access list. For more information, see “Class
Members Access” on page 12-24

Local and nested functions inside the method files have the same access as the method. Local
functions inside a class-definition file have private access to the class defined in the same file.

Invoking Superclass Methods in Subclass Methods
A subclass can override the implementation of a method defined in a superclass. If the subclass
method needs to execute additional code instead of completely replacing the superclass method.
MATLAB classes can use a special syntax for invocation of superclass methods from a subclass
implementation for the same-named method.

The syntax to call a superclass method in a subclass class uses the @ symbol:

MethodName@SuperclassName

For example, the following disp method is defined for a Stock class that is derived from an Asset
class. The method first calls the Asset class disp method, passing the Stock object so that the
Asset components of the Stock object can be displayed. After the Asset disp method returns, the
Stock disp method displays the two Stock properties:

classdef Stock < Asset
 methods
 function disp(s)
 disp@Asset(s) % Call base class disp method first
 fprintf(1,'Number of shares: %g\nShare price: %3.2f\n',...
 s.NumShares,s.SharePrice);
 end % disp
 end
end

Limitations of Use

The following restrictions apply to calling superclass methods. You can use this notation only within:

• A method having the same name as the superclass method you are invoking
• A class that is a subclass of the superclass whose method you are invoking

Invoking Built-In Functions
The MATLAB builtin function enables you to call the built-in version of a function that has been
overloaded by a method.

See Also

More About
• “Object Precedence in Method Invocation” on page 9-36
• “Class Precedence” on page 6-18

 Method Invocation

9-15

Class Constructor Methods
In this section...
“Purpose of Class Constructor Methods” on page 9-16
“Basic Structure of Constructor Methods” on page 9-16
“Guidelines for Constructors” on page 9-17
“Default Constructor” on page 9-18
“When to Define Constructors” on page 9-18
“Related Information” on page 9-18
“Initializing Objects in Constructor” on page 9-18
“No Input Argument Constructor Requirement” on page 9-19
“Subclass Constructors” on page 9-19
“Implicit Call to Inherited Constructor” on page 9-21
“Errors During Class Construction” on page 9-22
“Output Object Suppressed” on page 9-22

Purpose of Class Constructor Methods
A constructor method is a special function that creates an instance of the class. Typically, constructor
methods accept input arguments to assign the data stored in properties and return an initialized
object.

For a basic example, see “Create a Simple Class” on page 2-2.

MATLAB classes that do not explicitly define any class constructors have a default constructor
method. This method returns an object of the class that is created with no input arguments. A class
can define a constructor method that overrides the default constructor. An explicitly defined
constructor can accept input arguments, initialize property values, call other methods, and perform
other operations necessary to create objects of the class.

Basic Structure of Constructor Methods
Constructor methods can be structured into three basic sections:

• Pre-initialization — Compute arguments for superclass constructors.
• Object initialization — Call superclass constructors.
• Post initialization — Perform any operations related to the subclass, including referencing and

assigning to the object, call class methods, passing the object to functions, and so on.

This code illustrates the basic operations performed in each section:

classdef ConstructorDesign < BaseClass1
 properties
 ComputedValue
 end
 methods
 function obj = ConstructorDesign(a,b,c)

9 Methods — Defining Class Operations

9-16

 %% Pre Initialization %%
 % Any code not using output argument (obj)
 if nargin == 0
 % Provide values for superclass constructor
 % and initialize other inputs
 a = someDefaultValue;
 args{1} = someDefaultValue;
 args{2} = someDefaultValue;
 else
 % When nargin ~= 0, assign to cell array,
 % which is passed to supclass constructor
 args{1} = b;
 args{2} = c;
 end
 compvalue = myClass.staticMethod(a);

 %% Object Initialization %%
 % Call superclass constructor before accessing object
 % You cannot conditionalize this statement
 obj = obj@BaseClass1(args{:});

 %% Post Initialization %%
 % Any code, including access to object
 obj.classMethod(arg);
 obj.ComputedValue = compvalue;
 ...
 end
 ...
 end
...
end

Call the constructor like any function, passing arguments and returning an object of the class.

obj = ConstructorDesign(a,b,c);

Guidelines for Constructors
• The constructor has the same name as the class.
• The constructor can return multiple arguments, but the first output must be the object created.
• If you do not want to assign the output argument, you can clear the object variable in the

constructor (see “Output Object Suppressed” on page 9-22).
• If you create a class constructor, ensure it can be called with no input arguments. See “No Input

Argument Constructor Requirement” on page 9-19.
• If your constructor makes an explicit call to a superclass constructor, this call must occur before

any other reference to the constructed object and cannot occur after a return statement.
• Calls to superclass constructors cannot be conditional. You cannot place superclass construction

calls in loops, conditions, switches, try/catch, or nested functions. See “No Conditional Calls to
Superclass Constructors” on page 9-20 for more information.

 Class Constructor Methods

9-17

Default Constructor
If a class does not define a constructor, MATLAB supplies a default constructor that takes no
arguments and returns a scalar object whose properties are initialized to property default values. The
default constructor supplied by MATLAB also calls all superclass constructors with no arguments or
with any argument passed to the default subclass constructor.

When a subclass does not define a constructor, the default constructor passes its inputs to the direct
superclass constructor. This behavior is useful when there is no need for a subclass to define a
constructor, but the superclass constructor does require input arguments.

When to Define Constructors
Define a constructor method to perform object initialization that a default constructor cannot
perform. For example, when creating an object of the class requires:

• Input arguments
• Initializing object state, such as property values, for each instance of the class
• Calling the superclass constructor with values that are determined by the subclass constructor

Related Information
For information specific to constructing enumerations, see “Enumeration Class Constructor Calling
Sequence” on page 14-7.

For information on creating object arrays in the constructor, see “Construct Object Arrays” on page
10-2.

If the class being created is a subclass, MATLAB calls the constructor of each superclass class to
initialize the object. Implicit calls to the superclass constructor are made with no arguments. If
superclass constructors require arguments, call them from the subclass constructor explicitly. See
“Control Sequence of Constructor Calls” on page 12-11

Initializing Objects in Constructor
Constructor methods return an initialized object as an output argument. The output argument is
created when the constructor executes, before executing the first line of code.

For example, the following constructor can assign the value of the object's property A as the first
statement because the object obj has already been assigned to an instance of MyClass.

function obj = MyClass(a,b,c)
 obj.A = a;
 ...
end

You can call other class methods from the constructor because the object is already initialized.

The constructor also creates an object whose properties have their default values — either empty
([]) or the default value specified in the property definition block.

For example, this constructor operates on the input arguments to assign the value of the Value
property.

9 Methods — Defining Class Operations

9-18

function obj = MyClass(a,b,c)
 obj.Value = (a + b) / c;
 ...
end

Referencing the Object in a Constructor

When initializing the object, for example, by assigning values to properties, use the name of the
output argument to refer to the object within the constructor. For example, in the following code the
output argument is obj and the object is reference as obj:

% obj is the object being constructed
function obj = MyClass(arg)
 obj.propert1 = arg*10;
 obj.method1;
 ...
end

For more information on defining default property values, see “Property Default Values” on page 8-
13.

No Input Argument Constructor Requirement
There are cases where the constructor must be able to be called with no input argument:

• When loading objects into the workspace, if the class ConstructOnLoad attribute is set to true,
the load function calls the class constructor with no arguments.

• When creating or expanding an object array such that not all elements are given specific values,
the class constructor is called with no arguments to fill in unspecified elements (for example,
x(10,1) = MyClass(a,b,c);). In this case, the constructor is called once with no arguments
to populate the empty array elements (x(1:9,1)) with copies of this one object.

If there are no input arguments, the constructor creates an object using only default properties
values. A good practice is to add a check for zero arguments to the class constructor to prevent an
error if either of these two cases occur:

function obj = MyClass(a,b,c)
 if nargin > 0
 obj.A = a;
 obj.B = b;
 obj.C = c;
 ...
 end
end

For ways to handle superclass constructors, see “Basic Structure of Constructor Methods” on page 9-
16.

Subclass Constructors
Subclass constructors can call superclass constructors explicitly to pass arguments to the superclass
constructor. The subclass constructor must specify these arguments in the call to the superclass
constructor and must use the constructor output argument to form the call. Here is the syntax:

classdef MyClass < SuperClass
 methods

 Class Constructor Methods

9-19

 function obj = MyClass(a,b,c,d)
 obj@SuperClass(a,b);
 ...
 end
 end
end

The subclass constructor must make all calls to superclass constructors before any other references
to the object (obj). This restriction includes assigning property values or calling ordinary class
methods. Also, a subclass constructor can call a superclass constructor only once.

Reference Only Specified Superclasses

If the classdef does not specify the class as a superclass, the constructor cannot call a superclass
constructor with this syntax. That is, subclass constructor can call only direct superclass constructors
listed in the classdef line.

classdef MyClass < SuperClass1 & SuperClass2

MATLAB calls any uncalled constructors in the left-to-right order in which they are specified in the
classdef line. MATLAB passes no arguments with these calls.

No Conditional Calls to Superclass Constructors

Calls to superclass constructors must be unconditional. There can be only one call for a given
superclass. Initialize the superclass portion of the object by calling the superclass constructors before
using the object (for example, to assign property values or call class methods).

To call a superclass constructor with different arguments that depend on some condition, build a cell
array of arguments and provide one call to the constructor.

For example, the Cube class constructor calls the superclass Shape constructor using default values
when the Cube constructor is called with no arguments. If the Cube constructor is called with four
input arguments, then pass upvector and viewangle to the superclass constructor:

classdef Cube < Shape
 properties
 SideLength = 0
 Color = [0 0 0]
 end
 methods
 function cubeObj = Cube(length,color,upvector,viewangle)
 % Assemble superclass constructor arguments
 if nargin == 0
 super_args{1} = [0 0 1];
 super_args{2} = 10;
 elseif nargin == 4
 super_args{1} = upvector;
 super_args{2} = viewangle;
 else
 error('Wrong number of input arguments')
 end

 % Call superclass constructor
 cubeObj@Shape(super_args{:});

 % Assign property values if provided

9 Methods — Defining Class Operations

9-20

 if nargin > 0
 cubeObj.SideLength = length;
 cubeObj.Color = color;
 end
 ...
 end
 ...
 end
end

Zero or More Superclass Arguments

To support a syntax that calls the superclass constructor with no arguments, provide this syntax
explicitly.

Suppose in the case of the Cube class example, all property values in the Shape superclass and the
Cube subclass have default values specified in the class definitions. Then you can create an instance
of Cube without specifying any arguments for the superclass or subclass constructors.

Here is how you can implement this behavior in the Cube constructor:

methods
 function cubeObj = Cube(length,color,upvector,viewangle)
 % Assemble superclass constructor arguments
 if nargin == 0
 super_args = {};
 elseif nargin == 4
 super_args{1} = upvector;
 super_args{2} = viewangle;
 else
 error('Wrong number of input arguments')
 end

 % Call superclass constructor
 cubeObj@Shape(super_args{:});

 % Assign property values if provided
 if nargin > 0
 cubeObj.SideLength = length;
 cubeObj.Color = color;
 end
 ...
 end
end

More on Subclasses

See “Design Subclass Constructors” on page 12-7 for information on creating subclasses.

Implicit Call to Inherited Constructor
MATLAB passes arguments implicitly from a default subclass constructor to the superclass
constructor. This behavior eliminates the need to implement a constructor method for a subclass only
to pass arguments to the superclass constructor.

For example, the following class constructor requires one input argument (a datetime object), which
the constructor assigns to the CurrentDate property.

 Class Constructor Methods

9-21

classdef BaseClassWithConstr
 properties
 CurrentDate datetime
 end
 methods
 function obj = BaseClassWithConstr(dt)
 obj.CurrentDate = dt;
 end
 end
end

Suppose that you create a subclass of BaseClassWithConstr, but your subclass does not require an
explicit constructor method.

classdef SubclassDefaultConstr < BaseClassWithConstr
 ...
end

You can construct an object of the SubclassDefaultConstr by calling its default constructor with
the superclass argument:

obj = SubclassDefaultConstr(datetime);

For information on subclass constructors, see “Subclass Constructors” on page 9-19 and “Default
Constructor” on page 9-18.

Errors During Class Construction
For handle classes, MATLAB calls the delete method when an error occurs under the following
conditions:

• A reference to the object is present in the code prior to the error.
• An early return statement is present in the code before the error.

MATLAB calls the delete method on the object, the delete methods for any objects contained in
properties, and the delete methods for any initialized base classes.

Depending on when the error occurs, MATLAB can call the class destructor before the object is fully
constructed. Therefore class delete methods must be able to operate on partially constructed
objects that might not have values for all properties. For more information, see “Support Destruction
of Partially Constructed Objects” on page 7-15.

For information on how objects are destroyed, see “Handle Class Destructor” on page 7-13.

Output Object Suppressed
You can suppress the assignment of the class instance to the ans variable when no output variable is
assigned in a call to the constructor. This technique is useful for apps that creates graphical interface
windows that hold onto the constructed objects. These apps do not need to return the object.

Use nargout to determine if the constructor has been called with an output argument. For example,
the class constructor for the MyApp class clears the object variable, obj, if called with no output
assigned:

classdef MyApp
 methods

9 Methods — Defining Class Operations

9-22

 function obj = MyApp
 ...
 if nargout == 0
 clear obj
 end
 end
 ...
 end
end

When a class constructor does not return an object, MATLAB does not trigger the meta.class
InstanceCreated event.

See Also

Related Examples
• “Simplifying the Interface with a Constructor” on page 3-16
• “Subclass Constructor Implementation” on page 12-8

 Class Constructor Methods

9-23

Static Methods
In this section...
“What Are Static Methods” on page 9-24
“Why Define Static Methods” on page 9-24
“Defining Static Methods” on page 9-24
“Calling Static Methods” on page 9-24
“Inheriting Static Methods” on page 9-25

What Are Static Methods
Static methods are associated with a class, but not with specific instances of that class. These
methods do not require an object of the class as an input argument. Therefore, you can call static
methods without creating an object of the class.

Why Define Static Methods
Static methods are useful when you do not want to create an instance of the class before executing
some code. For example, suppose you want to set up the MATLAB environment or use the static
method to calculate data required to create class instances.

Suppose that a class needs a value for pi calculated to particular tolerances. The class could define its
own version of the built-in pi function for use within the class. This approach maintains the
encapsulation of the class's internal workings, but does not require an instance of the class to return
a value.

Defining Static Methods
To define a method as static, set the methods block Static attribute to true. For example:

classdef MyClass
 methods(Static)
 function p = pi(tol)
 [n d] = rat(pi,tol);
 p = n/d;
 end
 end
end

Calling Static Methods
Invoke static methods using the name of the class followed by dot (.), then the name of the method:

classname.staticMethodName(args,...)

Calling the pi method of MyClass in the previous section would require this statement:

value = MyClass.pi(.001);

You can also invoke static methods using an instance of the class, like any method:

9 Methods — Defining Class Operations

9-24

obj = MyClass;
value = obj.pi(.001);

Inheriting Static Methods
Subclasses can redefine static methods unless the method's Sealed attribute is also set to true in
the superclass.

See Also

Related Examples
• “Implementing the AccountManager Class” on page 3-11

 Static Methods

9-25

Overload Functions in Class Definitions

In this section...
“Why Overload Functions” on page 9-26
“Implementing Overloaded MATLAB Functions” on page 9-26
“Rules for Naming to Avoid Conflicts” on page 9-28

Why Overload Functions
Classes can redefine MATLAB functions by implementing methods having the same name.
Overloading is useful when defining specialized types that you want to behave like existing MATLAB
types. For example, you can implement relational operations, plotting functions, and other commonly
used MATLAB functions to work with objects of your class.

You can also modify default behaviors by implementing specific functions that control these
behaviors. For more information on functions that modify default behaviors, see “Methods That
Modify Default Behavior” on page 17-2.

Implementing Overloaded MATLAB Functions
Class methods can provide implementations of MATLAB functions that operate only on instances of
the class. This restriction is possible because MATLAB can always identify to which class an object
belongs.

MATLAB uses the dominant argument to determine which version of a function to call. If the
dominant argument is an object, then MATLAB calls the method defined by the object's class, if one
exists.

In cases where a class defines a method with the same name as a global function, the class's
implementation of the function is said to overload the original global implementation.

To overload a MATLAB function:

• Define a method with the same name as the function you want to overload.
• Ensure that the method argument list accepts an object of the class, which MATLAB uses to

determine which version to call.
• Perform the necessary steps in the method to implement the function. For example, access the

object properties to manipulate data.

Generally, the method that overloads a function produces results similar to the MATLAB function.
However, there are no requirements regarding how you implement the overloading method. The
overloading method does not need to match the signature of the overloaded function.

Note MATLAB does not support overloading functions using different signatures for the same
function name.

9 Methods — Defining Class Operations

9-26

Overload the bar Function

It is convenient to overload commonly used functions to work with objects of your class. For example,
suppose that a class defines a property that stores data that you often graph. The MyData class
overrides the bar function and adds a title to the graph:

classdef MyData
 properties
 Data
 end
 methods
 function obj = MyData(d)
 if nargin > 0
 obj.Data = d;
 end
 end
 function bar(obj)
 y = obj.Data;
 bar(y,'EdgeColor','r');
 title('My Data Graph')
 end
 end
end

The MyData bar method has the same name as the MATLAB bar function. However, the MyData bar
method requires a MyData object as input. Because the method is specialized for MyData objects, it
can extract the data from the Data property and create a specialized graph.

To use the bar method, create an object:

y = rand(1,10);
md = MyData(y);

Call the method using the object:

bar(md)

You can also use dot notation:

md.bar

Implementing MATLAB Operators

Classes designed to implement new MATLAB data types typically define certain operators, such as
addition, subtraction, or equality.

For example, standard MATLAB addition (+) cannot add two polynomials because this operation is not
defined by simple addition. However, a polynomial class can define its own plus method that the
MATLAB language calls to perform addition of polynomial objects when you use the + symbol:

p1 + p2

For information on overloading operators, see “Operator Overloading” on page 17-38.

 Overload Functions in Class Definitions

9-27

Rules for Naming to Avoid Conflicts
The names of methods, properties, and events are scoped to the class. Therefore, adhere to the
following rules to avoid naming conflicts:

• You can reuse names that you have used in unrelated classes.
• You can reuse names in subclasses if the member does not have public or protected access. These

names then refer to entirely different methods, properties, and events without affecting the
superclass definitions

• Within a class, all names exist in the same name space and must be unique. A class cannot define
two methods with the same name and a class cannot define a local function with the same name as
a method.

• The name of a static method is considered without its class prefix. Thus, a static method name
without its class prefix cannot match the name of any other method.

See Also

Related Examples
• “Dominant Argument in Overloaded Graphics Functions” on page 9-38
• “Class Support for Array-Creation Functions” on page 9-29

9 Methods — Defining Class Operations

9-28

Class Support for Array-Creation Functions
In this section...
“Extend Array-Creation Functions for Your Class” on page 9-29
“Which Syntax to Use” on page 9-30
“Implement Support for Array-Creation Functions” on page 9-30

Extend Array-Creation Functions for Your Class
There are several MATLAB functions that create arrays of a specific size and type, such as ones and
zeros. User-defined classes can add support for array-creation functions without requiring the use of
overloaded method syntax.

Class support for any of the array-creation functions enables you to develop code that you can share
with built-in and user-defined data types. For example, the class of the variable x in the following
code can be a built-in type during initial development, and then be replaced by a user-defined class
that transparently overloads zeros:

cls = class(x);
zArray = zeros(m,n,cls);

Array-creation functions create arrays of a specific type in two ways:

• Class name syntax — Specify class name that determines the type of array elements.
• Prototype object syntax — Provide a prototype object that the function uses to determine the type

and other characteristics of the array elements.

For example:

zArray = zeros(2,3,'uint8');

p = uint8([1 3 5 ; 2 4 6]);
zArray = zeros(2,3,'like',p);

After adding support for these functions to a class named MyClass, you can use similar syntax with
that class:

zArray = zeros(2,3,'MyClass');

Or pass an object of your class:

p = MyClass(...);
zArray = zeros(size(p),'like',p);

MATLAB uses these arguments to dispatch to the appropriate method in your class.

Array-Creation Functions That Support Overloading

The following functions support this kind of overloading.

Array-Creation Functions
ones

 Class Support for Array-Creation Functions

9-29

Array-Creation Functions
zeros
eye
nan (lowercase)
inf
true
false
cast
rand
randn
randi

Which Syntax to Use
To create an array of default objects, which require no input arguments for the constructor, then use
the class name syntax.

To create an array of objects with specific property values or if the constructor needs other inputs,
use the prototype object to provide this information.

Classes can support both the class name and the prototype object syntax.

You can implement a class name syntax with the true and false functions even though these
functions do not support that syntax by default.

Class Name Method Called If Prototype Method Does Not Exist

If your class implements a class name syntax, but does not implement a prototype object syntax for a
particular function, you can still call both syntaxes. For example, if you implement a static zeros
method only, you can call:

zeros(...,'like',MyClass(...))

In the case in which you call the prototype object syntax, MATLAB first searches for a method named
zerosLike. If MATLAB cannot find this method, it calls for the zeros static method.

This feature is useful if you only need the class name to create the array. You do not need to
implement both methods to support the complete array-creation function syntax. When you
implement only the class name syntax, a call to a prototype object syntax is the same as the call to the
class name syntax.

Implement Support for Array-Creation Functions
Use two separate methods to support an array-creation function. One method implements the class
name syntax and the other implements the prototype object syntax.

For example, to support the zeros function:

• Implement the class name syntax:

9 Methods — Defining Class Operations

9-30

zeros(...,'ClassName')

As a Static method:

methods (Static)
 function z = zeros(varargin)
 ...
 end
end

• Implement the prototype object syntax:

zeros(...,'like',obj)

As a Hidden method with the char vector 'Like' appended to the name.

methods (Hidden)
 function z = zerosLike(obj,varargin)
 ...
 end
end

How MATLAB Interprets the Function Call

The special support for array-creation functions results from the interpretation of the syntax.

• A call to the zeros function of this form:

zeros(...,'ClassName')

Calls the class static method with this syntax:

ClassName.zeros(varargin{1:end-1})

• A call to the zeros function of this form:

zeros(...,'like',obj)

Calls the class method with this syntax:

zerosLike(obj,varargin{1:end-2})

Support All Function Inputs

The input arguments to an array-creation function can include the dimensions of the array the
function returns and possibly other arguments. In general, there are three cases that your methods
must support:

• No dimension input arguments resulting in the return of a scalar. For example:

z = zeros('MyClass');

• One or more dimensions equal to or less than zero, resulting in an empty array. For example:

z = zeros(2,0,'MyClass');

• Any number of valid array dimensions specifying the size of the array. For example:

z = zeros(2,3,5,'MyClass');

 Class Support for Array-Creation Functions

9-31

When the array-creation function calls your class method, it passes the input arguments, excluding
the class name or the literal 'like' and the object variable to your method. You can implement your
methods with these signatures:

• zeros(varargin) for “class name” methods
• zeros(obj,varargin) for “like prototype object” methods

Sample Class

The Color class represents a color in a specific color space, such as, RGB, HSV, and so on. The
discussions in “Class Name Method Implementations” on page 9-32 and “Prototype Object Method
Implementation” on page 9-33 use this class as a basis for the overloaded method implementations.

classdef Color
 properties
 ColorValues = [0,0,0]
 ColorSpace = 'RGB'
 end
 methods
 function obj = Color(cSpace,values)
 if nargin > 0
 obj.ColorSpace = cSpace;
 obj.ColorValues = values;
 end
 end
 end
end

Class Name Method Implementations

The zeros function strips the final ClassName char vector and uses it to form the call to the static
method in the Color class. The arguments passed to the static method are the array dimension
arguments.

Here is an implementation of a zeros method for the Color class. This implementation:

• Defines the zeros method as Static (required)
• Returns a scalar Color object if the call to zeros has no dimension arguments
• Returns an empty array if the call to zeros has any dimensions arguments equal to 0.
• Returns an array of default Color objects. Use repmat to create an array of the dimensions
specified by the call to zeros.

classdef Color
 ...
 methods (Static)
 function z = zeros(varargin)
 if (nargin == 0)
 % For zeros('Color')
 z = Color;
 elseif any([varargin{:}] <= 0)
 % For zeros with any dimension <= 0
 z = Color.empty(varargin{:});
 else
 % For zeros(m,n,...,'Color')
 % Use property default values

9 Methods — Defining Class Operations

9-32

 z = repmat(Color,varargin{:});
 end
 end
 end
end

The zeros method uses default values for the ColorValues property because these values are
appropriate for this application. An implementation of a ones method can set the ColorValues
property to [1,1,1], for example.

Suppose that you want to overload the randi function to achieve the following objectives:

• Define each ColorValue property as a 1-by-3 array in the range of 1 to a specified maximum
value (for example, 1–255).

• Accommodate scalar, empty, and multidimensional array sizes.
• Return an array of Color objects of the specified dimensions, each with random ColorValues.

classdef Color
 ...
 methods (Static)
 function r = randi(varargin)
 if (nargin == 0)
 % For randi('ClassName')
 r = Color('RGB',randi(255,[1,3]));
 elseif any([varargin{2:end}] <= 0)
 % For randi with any dimension <= 0
 r = Color.empty(varargin{2:end});
 else
 % For randi(max,m,n,...,'ClassName')
 if numel([varargin{:}]) < 2
 error('Not enough input arguments')
 end
 dims = [varargin{2:end}];
 r = zeros(dims,'Color');
 for k = 1:prod(dims)
 r(k) = Color('RGB',randi(varargin{1},[1,3]));
 end
 end
 end
 end
end

Prototype Object Method Implementation

The objective of a method that returns an array of objects that are “like a prototype object” depends
on the requirements of the class. For the Color class, the zeroLike method creates objects that
have the ColorSpace property value of the prototype object, but the ColorValues are all zero.

Here is an implementation of a zerosLike method for the Color class. This implementation:

• Defines the zerosLike method as Hidden
• Returns a scalar Color object if the call to the zeros function has no dimension arguments
• Returns an empty array if the call to the zeros function has any dimension arguments that are

negative or equal to 0.
• Returns an array of Color objects of the dimensions specified by the call to the zeros function.

 Class Support for Array-Creation Functions

9-33

classdef Color
 ...
 methods (Hidden)
 function z = zerosLike(obj,varargin)
 if nargin == 1
 % For zeros('like',obj)
 cSpace = obj.ColorSpace;
 z = Color;
 z.ColorSpace = cSpace;
 elseif any([varargin{:}] <= 0)
 % For zeros with any dimension <= 0
 z = Color.empty(varargin{:});
 else
 % For zeros(m,n,...,'like',obj)
 if ~isscalar(obj)
 error('Prototype object must be scalar')
 end
 obj = Color(obj.ColorSpace,zeros(1,3,'like',obj.ColorValues));
 z = repmat(obj,varargin{:});
 end
 end
 end
end

Full Class Listing

Here is the Color class definition with the overloaded methods.

Note In actual practice, the Color class requires error checking, color space conversions, and so on.
This overly simplified version illustrates the implementation of the overloaded methods.

classdef Color
 properties
 ColorValues = [0,0,0]
 ColorSpace = 'RGB'
 end
 methods
 function obj = Color(cSpace,values)
 if nargin > 0
 obj.ColorSpace = cSpace;
 obj.ColorValues = values;
 end
 end
 end
 methods (Static)
 function z = zeros(varargin)
 if (nargin == 0)
 % For zeros('ClassName')
 z = Color;
 elseif any([varargin{:}] <= 0)
 % For zeros with any dimension <= 0
 z = Color.empty(varargin{:});
 else
 % For zeros(m,n,...,'ClassName')
 % Use property default values
 z = repmat(Color,varargin{:});
 end
 end
 function r = randi(varargin)
 if (nargin == 0)
 % For randi('ClassName')
 r = Color('RGB',randi(255,[1,3]));
 elseif any([varargin{2:end}] <= 0)
 % For randi with any dimension <= 0
 r = Color.empty(varargin{2:end});
 else
 % For randi(max,m,n,...,'ClassName')
 if numel([varargin{:}]) < 2

9 Methods — Defining Class Operations

9-34

 error('Not enough input arguments')
 end
 dims = [varargin{2:end}];
 r = zeros(dims,'Color');
 for k = 1:prod(dims)
 r(k) = Color('RGB',randi(varargin{1},[1,3]));
 end
 end
 end
 end
 methods (Hidden)
 function z = zerosLike(obj,varargin)
 if nargin == 1
 % For zeros('like',obj)
 cSpace = obj.ColorSpace;
 z = Color;
 z.ColorSpace = cSpace;
 elseif any([varargin{:}] <= 0)
 % For zeros with any dimension <= 0
 z = Color.empty(varargin{:});
 else
 % For zeros(m,n,...,'like',obj)
 if ~isscalar(obj)
 error('Prototype object must be scalar')
 end
 obj = Color(obj.ColorSpace,zeros(1,3,'like',obj.ColorValues));
 z = repmat(obj,varargin{:});
 end
 end
 end
end

See Also

Related Examples
• “Construct Object Arrays” on page 10-2

 Class Support for Array-Creation Functions

9-35

Object Precedence in Method Invocation
In this section...
“Object Precedence” on page 9-36
“Defining Precedence” on page 9-36

Object Precedence
Establishing an object precedence enables MATLAB to determine which of possibly many versions of
an operator or function to call in a given situation.

For example, consider the expression

objectA + objectB

Ordinarily, objects have equal precedence and the method associated with the leftmost object is
called. However, there are two exceptions:

• Classes defined with the classdef syntax have precedence over these MATLAB classes:

double, single, int64, uint64, int32, uint32, int16, uint16, int8, uint8, char, string,
logical, cell, struct, and function_handle.

• Classes defined with the classdef syntax can specify their relative precedence with respect to
other classes using the InferiorClasses attribute.

Consider the example in “Representing Polynomials with Classes” on page 19-2. The DocPolynom
class defines a plus method that enables the addition of DocPolynom objects. Given the object p:

p = DocPolynom([1 0 -2 -5])
p =
 x^3-2*x-5

the expression:

1 + p
ans =
 x^3-2*x-4

calls the DocPolynom plus method (which converts the double, 1, to a DocPolynom object and
then implements the addition of two polynomials). The DocPolynom class has precedence over the
built-in double class.

Defining Precedence
You can specify the relative precedence of classes defined with the classdef syntax by listing
inferior classes in a class attribute. The InferiorClasses property places a class below other
classes in the precedence hierarchy. Define the InferiorClasses property in the classdef
statement:
classdef (InferiorClasses = {?class1,?class2}) myClass

This attribute establishes a relative priority of the class being defined with the order of the classes
listed.

9 Methods — Defining Class Operations

9-36

Location in the Hierarchy

If objectA is above objectB in the precedence hierarchy, then the expression

objectA + objectB

calls @classA/plus.m. Conversely, if objectB is above objectA in the precedence hierarchy, then
MATLAB calls @classB/plus.m.

See Also

More About
• “Dominant Argument in Overloaded Graphics Functions” on page 9-38
• “Class Precedence” on page 6-18

 Object Precedence in Method Invocation

9-37

Dominant Argument in Overloaded Graphics Functions
In this section...
“Graphics Object Precedence” on page 9-38
“Dominant Argument” on page 9-38
“Defining Class Precedence” on page 9-38
“Calls to Inferior-Class Methods” on page 9-39

Graphics Object Precedence
MATLAB graphics objects have the same precedence as objects of classes defined using the
classdef syntax. If you want to implement a method that accepts a graphics object as its first
argument (for example, an axes handle), but dispatches to the method of your class, define the
MATLAB graphics class as inferior to your class.

Dominant Argument
When evaluating expression involving objects of more than one class, MATLAB uses the dominant
argument to determine which method or function to call.

Here is how MATLAB dispatches in response to a function call:

• Determine the dominant argument based on the class of arguments.
• If there is a dominant argument, call the method of the dominant class.
• If arguments are of equal precedence, use the leftmost argument as the dominant argument.
• If the class of the dominant argument does not define a method with the name of the called

function, call the first function on the path with that name.

Defining Class Precedence
Specify the relative precedence of MATLAB classes using the InferiorClasses class attribute.
Here is the basic syntax:

classdef (InferiorClasses = {?class1,?class2}) ClassName

The following definition of the TemperatureData class implements a specialized version of plot to
graph temperature data. The class plot method supports a variable number of input arguments to
allow an axes handle as the first argument:

plot(obj)
plot(ax,obj)

obj is an instance of the TemperatureData class and ax is an axes handle.

MATLAB calls the plot method in both cases because the TemperatureData class specifies the
matlab.graphics.axis.Axes as inferior.
classdef (InferiorClasses = {?matlab.graphics.axis.Axes}) TemperatureData
 properties
 Time
 Temperature

9 Methods — Defining Class Operations

9-38

 end
 methods
 function obj = TemperatureData(x,y)
 obj.Time = x;
 obj.Temperature = y;
 end
 function plot(varargin)
 if nargin == 1
 obj = varargin{1};
 plot(obj.Time,obj.Temperature)
 elseif nargin == 2
 ax = varargin{1};
 obj = varargin{2};
 plot(ax,obj.Time,obj.Temperature)
 elseif nargin > 2
 ax = varargin{1};
 obj = varargin{2};
 plot(ax,obj.Time,obj.Temperature,varargin{3:end})
 end
 datetick('x')
 xlabel('Time')
 ylabel('Temperature')
 end
 end
end

The following call to plot dispatches to the TemperatureData plot method, not the built-in plot
function, because the TemperatureData object is dominant over the axes object.

x = 1:10;
y = rand(1,10)*100;
ax = axes;
td = TemperatureData(x,y);
plot(ax,td)

Calls to Inferior-Class Methods
When you declare a class as inferior to your class, and both classes define a method with the same
name, MATLAB dispatches to your class method regardless of argument order.

Suppose the TemperatureData class that is described in the previous section defines a set method.
If you attempt to assign an object of the TemperatureData class to the UserData property of an
axes object:

td = TemperatureData(x,y);
set(gca,'UserData',td)

The results is a call to the TemperatureData set method. MATLAB does not call the built-in set
function.

To support the use of a set function with inferior classes, implement a set method in your class that
calls the built-in set function when the first argument is an object of the inferior class.

function set(varargin)
 if isa(varargin{1},'matlab.graphics.axis.Axes')
 builtin('set',varargin{:})
 else
 ...
end

 Dominant Argument in Overloaded Graphics Functions

9-39

See Also

More About
• “Object Precedence in Method Invocation” on page 9-36

9 Methods — Defining Class Operations

9-40

Class Methods for Graphics Callbacks
In this section...
“Referencing the Method” on page 9-41
“Syntax for Method Callbacks” on page 9-41
“Use a Class Method for a Slider Callback” on page 9-42

Referencing the Method
To use an ordinary class method as callback for a graphics object, specify the callback property as a
function handle referencing the method. For example,

uicontrol('Style','slider','Callback',@obj.sliderCallback)

Where your class defines a method called sliderCallback and obj is an instance of your class.

To use a static method as a callback, specify the callback property as a function handle that includes
the class name that is required to refer to a static method:

uicontrol('Style','slider','Callback',@MyClass.sliderCallback)

Syntax for Method Callbacks
For ordinary methods, use dot notation to pass an instance of the class defining the callback as the
first argument:

@obj.methodName

Define the callback method with the following input arguments:

• An instance of the defining class as the first argument
• The event source handle
• The event data

The function signature would be of this form:

function methodName(obj,src,eventData)
 ...
end

For static methods, the required class name ensures MATLAB dispatches to the method of the
specified class:

@MyClass.methodName

Define the static callback method with two input arguments — the event source handle and the event
data

The function signature would be of this form:

function methodName(src,eventData)

 Class Methods for Graphics Callbacks

9-41

Passing Extra Arguments

If you want to pass arguments to your callback in addition to the source and event data arguments
passed by MATLAB, you can use an anonymous function. The basic syntax for an anonymous function
that you assign to the graphic object's Callback property includes the object as the first argument:

@(src,event)callbackMethod(object,src,eventData,arg1,...argn)

The function signature would be of this form:

function methodName(obj,src,eventData,varargin)
 ...
end

Use a Class Method for a Slider Callback
This example shows how to use a method of your class as a callback for an uicontrol slider.

The SeaLevelSlider class creates a slider that varies the color limits of an indexed image to give
the illusion of varying the sea level.

Class Definition

Define SeaLevelSlider as a handle class with the following members:

• The class properties store figure and axes handles and the calculated color limits.
• The class constructor creates the graphics objects and assigns the slider callback.
• The callback function for the slider accepts the three required arguments — a class instance, the

handle of the event source, and the event data. The event data argument is empty and not used.
• The uicontrol callback uses dot notation to reference the callback

method: ...'Callback',@obj.sliderCallback.

classdef SeaLevelSlider < handle
 properties
 Figure
 Axes
 CLimit
 end

 methods
 function obj = SeaLevelSlider(x,map)
 obj.Figure = figure('Colormap',map,...
 'Position',[100,100,560,580],...
 'Resize','off');
 obj.Axes = axes('DataAspectRatio',[1,1,1],...
 'XLimMode','manual','YLimMode','manual',...
 'Parent',obj.Figure);
 image(x,'CDataMapping','scaled',...
 'Parent',obj.Axes);
 obj.CLimit = get(obj.Axes,'CLim');
 uicontrol('Style','slider',...
 'Parent',obj.Figure,...
 'Max',obj.CLimit(2)-10,...
 'Min',obj.CLimit(1)-1,...
 'Value',obj.CLimit(1),...

9 Methods — Defining Class Operations

9-42

 'Units','normalized',...
 'Position',[0.9286,0.1724,0.0357,0.6897],...
 'SliderStep',[0.003,0.005],...
 'Callback',@obj.sliderCallback);
 end

 function sliderCallback(obj,src,~)
 minVal = get(src,'Value');
 maxVal = obj.CLimit(2);
 obj.Axes.CLim = [minVal maxVal];
 end
 end
end

Using the SeaLevelAdjuster Class

The class uses the cape image that is included with the MATLAB product. To obtain the image data,
use the load command:

load cape X map

After loading the data, create a SeaLevelSlider object for the image:

slaObj = SeaLevelSlider(X,map);

Move the slider to change the color mapping and visualize a rise in sea level.

See Also

More About
• “Listener Callback Syntax” on page 11-23

 Class Methods for Graphics Callbacks

9-43

Object Arrays

• “Construct Object Arrays” on page 10-2
• “Initialize Object Arrays” on page 10-5
• “Empty Arrays” on page 10-7
• “Initialize Arrays of Handle Objects” on page 10-9
• “Accessing Dynamic Properties in Arrays” on page 10-11
• “Implicit Class Conversion” on page 10-13
• “Concatenating Objects of Different Classes” on page 10-15
• “Designing Heterogeneous Class Hierarchies” on page 10-20
• “Heterogeneous Array Constructors” on page 10-27

10

Construct Object Arrays
In this section...
“Build Arrays in the Constructor” on page 10-2
“Referencing Property Values in Object Arrays” on page 10-2

Build Arrays in the Constructor
A class constructor can create an array by building the array and returning it as the output argument.

For example, the ObjectArray class creates an object array that is the same size as the input array.
Then it initializes the Value property of each object to the corresponding input array value.

classdef ObjectArray
 properties
 Value
 end
 methods
 function obj = ObjectArray(F)
 if nargin ~= 0
 m = size(F,1);
 n = size(F,2);
 obj(m,n) = obj;
 for i = 1:m
 for j = 1:n
 obj(i,j).Value = F(i,j);
 end
 end
 end
 end
 end
end

To preallocate the object array, assign the last element of the array first. MATLAB fills the first to
penultimate array elements with the ObjectArray object.

After preallocating the array, assign each object Value property to the corresponding value in the
input array F. To use the class:

• Create 5-by-5 array of magic square numbers
• Create a 5-by-5 object array

F = magic(5);
A = ObjectArray(F);
whos

 Name Size Bytes Class Attributes

 A 5x5 304 ObjectArray
 F 5x5 200 double

Referencing Property Values in Object Arrays
Given an object array objArray in which each object has a property PropName:

10 Object Arrays

10-2

• Reference the property values of specific objects using array indexing:

objArray(ix).PropName

• Reference all values of the same property in an object array using dot notation. MATLAB returns a
comma-separated list of property values.

objArray.PropName

• To assign the comma-separated list to a variable, enclose the right-side expression in brackets:

values = [objArray.PropName]

For example, given the ObjProp class:

classdef ObjProp
 properties
 RegProp
 end
 methods
 function obj = ObjProp
 obj.RegProp = randi(100);
 end
 end
end

Create an array of ObjProp objects:

for k = 1:5
 objArray(k) = ObjProp;
end

Access the RegProp property of the second element of the object array using array indexing:

objArray(2).RegProp

ans =

 91

Assign the values of all RegProp properties to a numeric array:

propValues = [objArray.RegProp]

propValues =

 82 91 13 92 64

Use standard indexing operations to access the values of the numeric array. For more information on
numeric arrays, see “Matrices and Arrays”.

See Also

Related Examples
• “Initialize Object Arrays” on page 10-5
• “Initialize Arrays of Handle Objects” on page 10-9

 Construct Object Arrays

10-3

• “Class Constructor Methods” on page 9-16

10 Object Arrays

10-4

Initialize Object Arrays
In this section...
“Calls to Constructor” on page 10-5
“Initial Value of Object Properties” on page 10-6

Calls to Constructor
During the creation of object arrays, MATLAB can call the class constructor with no arguments, even
if the constructor does not build an object array. For example, suppose that you define the following
class:

classdef SimpleValue
 properties
 Value
 end
 methods
 function obj = SimpleValue(v)
 obj.Value = v;
 end
 end
end

Execute the following statement to create an array:

a(1,7) = SimpleValue(7)

Error using SimpleValue (line 7)
Not enough input arguments.

This error occurs because MATLAB calls the constructor with no arguments to initialize elements 1
through 6 in the array.

Your class must support the no input argument constructor syntax. A simple solution is to test
nargin and let the case when nargin == 0 execute no code, but not error:

classdef SimpleValue
 properties
 Value
 end
 methods
 function obj = SimpleValue(v)
 if nargin > 0
 obj.Value = v;
 end
 end
 end
end

Using the revised class definition, the previous array assignment statement executes without error:

a(1,7) = SimpleValue(7)

a =

 Initialize Object Arrays

10-5

 1x7 SimpleValue array with properties:

 Value

The object assigned to array element a(1,7) uses the input argument passed to the constructor as
the value assigned to the property:

a(1,7)

ans =
 SimpleValue with properties:

 Value: 7

MATLAB created the objects contained in elements a(1,1:6) with no input argument. The default
value for properties empty []. For example:

a(1,1)

ans =
 SimpleValue with properties:

 Value: []

MATLAB calls the SimpleValue constructor once and copies the returned object to each element of
the array.

Initial Value of Object Properties
When MATLAB calls a constructor with no arguments to initialize an object array, one of the following
assignments occurs:

• If property definitions specify default values, MATLAB assigns these values.
• If the constructor assigns values in the absence of input arguments, MATLAB assigns these values.
• If neither of the preceding situations apply, MATLAB assigns the value of empty double (that is,

[]) to the property.

See Also

Related Examples
• “Initialize Arrays of Handle Objects” on page 10-9

10 Object Arrays

10-6

Empty Arrays
In this section...
“Creating Empty Arrays” on page 10-7
“Assigning Values to an Empty Array” on page 10-7

Creating Empty Arrays
Empty arrays have no elements, but are of a certain class. All nonabstract classes have a static
method named empty that creates an empty array of the same class. The empty method enables you
to specify the dimensions of the output array. However, at least one of the dimensions must be 0. For
example, define the SimpleValue class:

classdef SimpleValue
 properties
 Value
 end
 methods
 function obj = SimpleValue(v)
 if nargin > 0
 obj.Value = v;
 end
 end
 end
end

Create a 5–by–0 empty array of class SimpleValue.

ary = SimpleValue.empty(5,0)

ary =

 5x0 SimpleValue array with properties:

 Value

Calling empty with no arguments returns a 0–by–0 empty array.

Assigning Values to an Empty Array
An empty object defines the class of an array. To assign nonempty objects to an empty array, MATLAB
calls the class constructor to create default instances of the class for every other array element. Once
you assign a nonempty object to an array, all array elements must be nonempty objects.

Note A class constructor must avoid returning empty objects by default.

For example, using the SimpleValue defined in the “Initialize Object Arrays” on page 10-5 section,
create an empty array:

ary = SimpleValue.empty(5,0);
class(ary)

 Empty Arrays

10-7

ans =

SimpleValue

ary is an array of class SimpleValue. However, it is an empty array:

ary(1)

Index exceeds matrix dimensions.

If you make an assignment to a property value, MATLAB calls the SimpleClass constructor to grow
the array to the require size:

ary(5).Value = 7;
ary(5).Value

ans =

 7

ary(1).Value

ans =

 []

MATLAB populates array elements one through five with SimpleValue objects created by calling the
class constructor with no arguments. Then MATLAB assigns the property value 7 to the object at
ary(5).

See Also

Related Examples
• “Initialize Arrays of Handle Objects” on page 10-9

10 Object Arrays

10-8

Initialize Arrays of Handle Objects
When initializing an array of handle objects, MATLAB fills in the empty elements of an array with a
default object. To create the default object, MATLAB:

• Calls the class constructor once to obtain an object
• Creates unique handles for each element in the array
• Copies the property values from the constructed default object without calling the constructor

again.

The InitHandleArray class illustrates this behavior.

classdef InitHandleArray < handle
 properties
 RandNumb
 end
 methods
 function obj = InitHandleArray
 obj.RandNumb = randi(100);
 end
 end
end

The property RandNumb contains a random number that the InitHandleArray constructor assigns.

Consider what happens when MATLAB initialize an array created by assigning to the last element in
the array. (The last element is the one with the highest index values). Suppose the value of the
RandNumb property of the InitHandleArray object assigned to the element A(4,5) is 59:

A(4,5) = InitHandleArray;
A(4,5).RandNumb

ans =

 59

The element in the index location A(4,5) is an instance of the InitHandleArray class. The default
object used for element A(1,1) is also an instance of the InitHandleArray class, but its RandNumb
property is set to a different random number.

To fill in the preceding array elements, MATLAB calls the class constructor to create a single object.
MATLAB copies this object to all the remaining array elements. Calling the constructor to create the
default object resulted in another call to the randi function, which returns a new random number:

A(1,1).RandNumb

ans =

 10

MATLAB copies this second instance to all remaining array elements:

A(2,2).RandNumb

ans =

 10

 Initialize Arrays of Handle Objects

10-9

A(2,3).RandNumb

ans =

 10

When initializing an object array, MATLAB assigns a copy of a single object to the empty elements in
the array. MATLAB gives each object a unique handle so that later you can assign different property
values to each object. The objects are not equivalent:

A(1,1) == A(2,2)

ans =

 0

That is, the handle A(1,1) does not refer to the same object as A(2,2). The creation of an array
with a statement such as:

A(4,5) = InitHandleArray;

results in two calls to the class constructor. The first creates the object for array element A(4,5).
The second creates a default object that MATLAB copies to all remaining empty array elements.

Related Information
For information on array manipulation, see “Multidimensional Arrays”

See “Initializing Properties to Handle Objects” on page 8-13 for information on assigning values to
properties.

See “Object Array Indexing” on page 17-12 for information on implementing subsasgn methods for
your class.

10 Object Arrays

10-10

Accessing Dynamic Properties in Arrays
You cannot reference all the dynamic properties in an object array using a single statement, as you
can with ordinary properties. For example, the ObjectArrayDynamic class subclasses the
dynamicprops class.

classdef ObjectArrayDynamic < dynamicprops
 properties
 RegProp
 end
 methods
 function obj = ObjectArrayDynamic
 obj.RegProp = randi(100);
 end
 end
end

You can add dynamic properties to objects of the ObjectArrayDynamic class. Create an object
array and add dynamic properties to each member of the array. Define elements 1 and 2 as
ObjectArrayDynamic objects:

a(1) = ObjectArrayDynamic;
a(2) = ObjectArrayDynamic;

Add dynamic properties to each object and assign a value.

a(1).addprop('DynoProp');
a(1).DynoProp = 1;
a(2).addprop('DynoProp');
a(2).DynoProp = 2;

Get the values of the ordinary properties, as with any array.

a.RegProp

ans =

 4

ans =

 85

However, MATLAB returns an error if you try to access the dynamic properties of all array elements
using this syntax.

a.DynoProp

No appropriate method, property, or field 'DynoProp' for class
'ObjectArrayDynamic'.

Refer to each object individually to access dynamic property values:

a(1).DynoProp

ans =

 1

 Accessing Dynamic Properties in Arrays

10-11

a(2).DynoProp

ans =

 2

For information about classes that can define dynamic properties, see “Dynamic Properties — Adding
Properties to an Instance” on page 8-55 .

10 Object Arrays

10-12

Implicit Class Conversion

In this section...
“Class Conversion Mechanism” on page 10-13
“Concatenation” on page 10-13
“Subscripted Assignment” on page 10-13

Class Conversion Mechanism
When you create or modify object arrays using concatenation or subscripted assignment, MATLAB
attempts to convert unlike types to conform to the class of the array. MATLAB performs this
conversion implicitly.

To perform the conversion, MATLAB attempts to call a converter method defined by the class to be
converted. A converter method has the same name as the destination class. For example, if a class
defines a method named double, this method converts an object of the class to an object of class
double.

If no converter exists in the source object's class, then this call resolves to a call to the constructor of
the destination class.

Both concatenation and subscripted assignment can cause MATLAB to apply this class conversion
mechanism. The conversion can be successful or can result in an error if the conversion is not
possible.

Concatenation
In concatenation operations, the dominant object determines the class of the resulting array. MATLAB
determines the dominant object as follows:

• User-defined classes are dominant over built-in classes such as double.
• If there is no defined dominance relationship between any two objects, then the leftmost object

dominates

For example, in the statement C = [A,B], if A is the dominant object, MATLAB attempts to convert B
to the class of A.

Subscripted Assignment
In subscripted assignment, the left side of the assignment statement defines the class of the array. If
you assign array elements when the right side is a different class than the left side, MATLAB attempts
to convert to the class of the left side.

For example, assigning an object of ClassB to an element of array A requires conversion.

A = ClassA;
B = ClassB;
A(2) = B;

 Implicit Class Conversion

10-13

MATLAB first looks for a converter method defined by the class of the source object B. This converter
method must have the name ClassA in this case. The subscripted assignment is effectively a call to
the converter defined by ClassB:

A(2) = ClassA(B) % Call method of ClassB

If no converter method exists, this call resolves to a call to the destination class constructor:

A(2) = ClassA(B) % Call ClassA constructor

See Also

Related Examples
• “Valid Combinations of Unlike Classes”
• “Concatenating Objects of Different Classes” on page 10-15
• “Object Converters” on page 17-10
• “Function Argument Validation”

10 Object Arrays

10-14

Concatenating Objects of Different Classes
In this section...
“Basic Knowledge” on page 10-15
“MATLAB Concatenation Rules” on page 10-15
“Concatenating Objects” on page 10-15
“Calling the Dominant-Class Constructor” on page 10-16
“Converter Methods” on page 10-17

Basic Knowledge
The material presented in this section builds on an understanding of the information presented in the
following sections.

• “Construct Object Arrays” on page 10-2
• “Valid Combinations of Unlike Classes”

MATLAB Concatenation Rules
MATLAB follows these rules for concatenating objects:

• MATLAB always attempts to convert all objects to the dominant class.
• User-defined classes take precedence over built-in classes like double.
• If there is no defined dominance relationship between any two objects, then the leftmost object

dominates (see “Class Precedence” on page 6-18).

When converting to a dominant class during concatenation or subscripted assignment, MATLAB
searches the non-dominant class for a conversion method that is the same name as the dominant
class. If such a conversion method exists, MATLAB calls it. If a conversion method does not exist,
MATLAB calls the dominant class constructor on the non-dominant object.

It is possible for the dominant class to define horzcat, vertcat, or cat methods that modify the
default concatenation process.

Note MATLAB does not convert objects to a common superclass unless those objects are part of a
heterogeneous hierarchy. For more information, see “Designing Heterogeneous Class Hierarchies” on
page 10-20.

Concatenating Objects
Concatenation combines objects into arrays:

ary = [obj1,obj2,obj3,...,objn];

The size of ary is 1-by-n.

ary = [obj1;obj2;obj3;...;objn];

The size of ary is n-by-1.

 Concatenating Objects of Different Classes

10-15

The class of the arrays is the same as the class of the objects being concatenated. Concatenating
objects of different classes is possible if MATLAB can convert objects to the dominant class. MATLAB
attempts to convert unlike objects by:

• Calling the inferior object converter method, if one exists.
• Passing an inferior object to the dominant class constructor to create an object of the dominant

class.

If conversion of the inferior object is successful, MATLAB returns an array that is of the dominant
class. If conversion is not possible, MATLAB returns an error.

Calling the Dominant-Class Constructor
MATLAB calls the dominant class constructor to convert an object of an inferior class to the dominant
class. MATLAB passes the inferior object to the constructor as an argument. If the class design
enables the dominant class constructor to accept objects of inferior classes as input arguments, then
concatenation is possible without implementing a separate converter method.

If the constructor simply assigns this argument to a property, the result is an object of the dominant
class with an object of an inferior class stored in a property. If this assignment is not a desired result,
then ensure that class constructors include adequate error checking.

For example, consider the class ColorClass and two subclasses, RGBColor and HSVColor:

classdef ColorClass
 properties
 Color
 end
end

The class RGBColor inherits the Color property from ColorClass. RGBColor stores a color value
defined as a three-element vector of red, green, and blue (RGB) values. The constructor does not
restrict the value of the input argument. It assigns this value directly to the Color property.

classdef RGBColor < ColorClass
 methods
 function obj = RGBColor(rgb)
 if nargin > 0
 obj.Color = rgb;
 end
 end
 end
end

The class HSVColor also inherits the Color property from ColorClass. HSVColor stores a color
value defined as a three-element vector of hue, saturation, brightness value (HSV) values.

classdef HSVColor < ColorClass
 methods
 function obj = HSVColor(hsv)
 if nargin > 0
 obj.Color = hsv;
 end
 end
 end
end

10 Object Arrays

10-16

Create an instance of each class and concatenate them into an array. The RGBColor object is
dominant because it is the leftmost object and neither class defines a dominance relationship:

crgb = RGBColor([1 0 0]);
chsv = HSVColor([0 1 1]);
ary = [crgb,chsv];
class(ary)

ans =

RGBColor

You can combine these objects into an array because MATLAB can pass the inferior object of class
HSVColor to the constructor of the dominant class. However, notice that the Color property of the
second RGBColor object in the array actually contains an HSVColor object, not an RGB color
specification:

ary(2).Color

ans =

 HSVColor with properties:

 Color: [0 1 1]

Avoid this undesirable behavior by:

• Implementing converter methods
• Performing argument checking in class constructors before assigning values to properties

Converter Methods
If your class design requires object conversion, implement converter methods for this purpose.

The ColorClass class defines converter methods for RGBColor and HSVColor objects:

classdef ColorClass
 properties
 Color
 end
 methods
 function rgbObj = RGBColor(obj)
 if isa(obj,'HSVColor')
 rgbObj = RGBColor(hsv2rgb(obj.Color));
 end
 end
 function hsvObj = HSVColor(obj)
 if isa(obj,'RGBColor')
 hsvObj = HSVColor(rgb2hsv(obj.Color));
 end
 end
 end
end

Create an array of RGBColor and HSVColor objects with the revised superclass:

crgb = RGBColor([1 0 0]);
chsv = HSVColor([0 1 1]);

 Concatenating Objects of Different Classes

10-17

ary = [crgb,chsv];
class(ary)

ans =

RGBColor

MATLAB calls the converter method for the HSVColor object, which it inherits from the superclass.
The second array element is now an RGBColor object with an RGB color specification assigned to the
Color property:

ary(2)

ans =

 RGBColor with properties:

 Color: [1 0 0]

ary(2).Color

ans =

 1 0 0

If the leftmost object is of class HSVColor, the array ary is also of class HSVColor, and MATLAB
converts the Color property data to HSV color specification.

ary = [chsv crgb]

ary =

 1x2 HSVColor

 Properties:
 Color

ary(2).Color

ans =

 0 1 1

Defining a converter method in the superclass and adding better argument checking in the subclass
constructors produces more predictable results. Here is the RGBColor class constructor with
argument checking:

classdef RGBColor < ColorClass
 methods
 function obj = RGBColor(rgb)
 if nargin == 0
 rgb = [0 0 0];
 else
 if ~(isa(rgb,'double')...
 && size(rgb,2) == 3 ...
 && max(rgb) <= 1 && min(rgb) >= 0)
 error('Specify color as RGB values')
 end
 end

10 Object Arrays

10-18

 obj.Color = rgb;
 end
 end
end

Your applications can require additional error checking and other coding techniques. The classes in
these examples are designed only to demonstrate concepts.

See Also

More About
• “Implicit Class Conversion” on page 10-13
• “Object Converters” on page 17-10
• “Hierarchies of Classes — Concepts” on page 12-2

 Concatenating Objects of Different Classes

10-19

Designing Heterogeneous Class Hierarchies
In this section...
“Creating Classes That Support Heterogeneous Arrays” on page 10-20
“MATLAB Arrays” on page 10-20
“Heterogeneous Hierarchies” on page 10-20
“Heterogeneous Arrays” on page 10-21
“Heterogeneous Array Concepts” on page 10-21
“Nature of Heterogeneous Arrays” on page 10-22
“Unsupported Hierarchies” on page 10-24
“Default Object” on page 10-25
“Conversion During Assignment and Concatenation” on page 10-26
“Empty Arrays of Heterogeneous Abstract Classes” on page 10-26

Creating Classes That Support Heterogeneous Arrays
This topic describes the concepts involved in defining classes that support the formation of
heterogeneous arrays. For information on the concatenation of existing MATLAB objects, see these
topics.

• “Concatenating Objects of Different Classes” on page 10-15
• “Valid Combinations of Unlike Classes”

For an example that uses heterogeneous arrays, see “A Class Hierarchy for Heterogeneous Arrays” on
page 20-2.

MATLAB Arrays
MATLAB determines the class of an array by the class of the objects contained in the array. MATLAB
is unlike some languages in which you define an array of object pointers or references. In these other
languages, the type of the array is different from the type of an object in the array. You can access the
elements of the array and dispatch to methods on those elements, but you cannot call an object
method on the whole array, as you can in MATLAB.

Object arrays in MATLAB are homogeneous in class. Because of this homogeneity, you can perform
operations on whole arrays, such as multiplying numeric matrices. You can form heterogeneous
arrays by defining a hierarchy of classes that derive from a common superclass. Cell arrays provide
option for an array type that can hold different kinds of unrelated objects.

Heterogeneous Hierarchies
You can form arrays of objects that are subclasses of a common superclass when these classes are
part of a heterogeneous hierarchy. A MATLAB heterogeneous class hierarchy:

• Derives from matlab.mixin.Heterogeneous
• Defines a single root superclass that derives directly from matlab.mixin.Heterogeneous

10 Object Arrays

10-20

• Seals methods that are inherited by subclasses.

For example, in the following diagram, Shape is the root of the heterogeneous hierarchy.

Heterogeneous Arrays
A heterogeneous array is an array of objects that differ in their specific class, but all objects derive
from or are instances of a common superclass. The common superclass forms the root of the
hierarchy of classes that you can combine into heterogeneous arrays.

The common superclass must derive from matlab.mixin.Heterogeneous. Methods that you can
call on the array as a whole must have the same definitions for all subclasses.

Heterogeneous hierarchies are useful to:

• Create arrays of objects that are of different classes, but part of a related hierarchy.
• Call methods of the most specific common superclass on the array as a whole
• Access properties of the most specific common superclass using dot notation with the array
• Use common operators that are supported for object arrays
• Support array indexing (scalar or nonscalar) that returns arrays of the most specific class

Heterogeneous Array Concepts
• Heterogeneous array — An array in which two or more elements belong to different specific

classes. All elements derive from the same root superclass.
• Root superclass — Class derived directly from matlab.mixin.Heterogeneous. The root

superclass can be abstract or concrete. Only concrete subclasses of the root superclass can form
heterogeneous arrays.

• Most specific common superclass — The most specific class in the inheritance hierarchy from
which all the objects in a heterogeneous array derive. The most specific common superclass can
be the root superclass or a more specific superclass shared by the objects currently in the array.

• Class of a heterogeneous array — The most specific common superclass from which all objects in
the heterogeneous array derive. Adding and removing objects from a heterogeneous array can
change the most specific superclass shared by the instances. This change results in a change in
the class of a heterogeneous array. The most specific common superclass can be abstract.

 Designing Heterogeneous Class Hierarchies

10-21

Nature of Heterogeneous Arrays
The heterogeneous hierarchy in this diagram illustrates the characteristics of heterogeneous arrays
concerning:

• Array class
• Property access
• Method invocation

Class of Heterogeneous Arrays

The class of a heterogeneous array is that of the most specific superclass shared by the objects of the
array.

If the following conditions are true, the concatenation and subscripted assignment operations return
a heterogeneous array:

• The objects on the right side of the assignment statement are of different classes
• All objects on the right side of the assignment statement derive from a common subclass of

matlab.mixin.Heterogeneous

For example, form an array by concatenating objects of these classes. The class of a1 is ClassA:

a1 = [SpecificA,SpecificB];
class(a1)

10 Object Arrays

10-22

ans =

ClassA

If the array includes an object of the class SpecificC, the class of a2 is RootSuperclass:

a2 = [SpecificA,SpecificB,SpecificC];
class(a2)

ans =

RootSuperclass

If you assigned an object of the class SpecificC to array a1 using indexing, the class of a1 becomes
RootSuperclass:

a1(3) = SpecificC;
class(a1)

ans =

RootSuperclass

If the array contains objects of only one class, then the array is not heterogeneous. For example, the
class of a is SpecificA.

a = [SpecificA,SpecificA];
class(a)

ans =

SpecificA

Property Access

Access array properties with dot notation when the class of the array defines the properties. The
class of the array is the most specific common superclass, which ensures all objects inherit the same
properties.

For example, suppose ClassA defines a property called Prop1.

a1 = [SpecificA,SpecificB];
a1.Prop1

Referring to Prop1 using dot notation returns the value of Prop1 for each object in the array.

Invoking Methods

To invoke a method on a heterogeneous array, the class of the array must define or inherit the method
as Sealed. For example, suppose RootSuperclass defines a Sealed method called superMethod.

Call the method on all objects in the array a2:

a2 = [SpecificA,SpecificB,SpecificC];
a2.superMethod

Sealing the method (so that it cannot be overridden in a subclass) ensures that the same method
definition exists for all elements of the array. Calling that method on a single element of the array
invokes the same method implementation as calling the method on the whole array.

 Designing Heterogeneous Class Hierarchies

10-23

Unsupported Hierarchies
Heterogeneous hierarchies cannot have ambiguities when obtaining default objects, determining the
class of the array, and converting class objects to other types. Members of the hierarchy can derive
from only one root superclass (that is, from only one direct subclass of
matlab.mixin.Heterogeneous).

This diagram shows a hierarchy that is not allowed:

ClassA derives from two classes that are subclasses of matlab.mixin.Heterogeneous.

The next diagram shows two separate heterogeneous hierarchies. ClassA has only one root
superclass (called OtherBaseClass). The heterogeneous hierarchy is no longer ambiguous:

10 Object Arrays

10-24

Default Object
A default object is the object returned by calling the class constructor with no arguments. MATLAB
uses default objects in these situations:

• Indexed assignment creates an array with gaps in array elements. For example, assign the first
element of array h to index 5:

h(5) = ClassA(arg1,arg2);

MATLAB fills the unassigned positions with default objects.
• Loading a heterogeneous array from a MAT-file when the class definition of a specific object in the

array is not available. MATLAB replaces the object with the default object.

Heterogeneous hierarchies enable you to define the default object for that hierarchy. The
matlab.mixin.Heterogeneous class provides a default implementation of a method called
getDefaultScalarElement. This method returns an instance of the root class of the
heterogeneous hierarchy, unless the root superclass is abstract.

If the root superclass is abstract or is not appropriate for a default object, override the
getDefaultScalarElement method. Implement the getDefaultScalarElement override in the
root superclass, which derives directly from matlab.mixin.Heterogeneous.

getDefaultScalarElement must return a scalar object that is derived from the root superclass.
For specific information on how to implement this method, see getDefaultScalarElement.

 Designing Heterogeneous Class Hierarchies

10-25

Conversion During Assignment and Concatenation
If you create a heterogeneous array that contains objects that are not derived from the same root
superclass, MATLAB attempts to call a method called convertObject. Implement convertObject
to convert objects to the appropriate class. There is no default implementation of this method.

To support the formation of heterogeneous arrays using objects that are not part of the
heterogeneous hierarchy, implement a convertObject method in the root superclass. The
convertObject method must convert the nonmember object to a valid member of the
heterogeneous hierarchy.

For details on implementing the convertObject method, see matlab.mixin.Heterogeneous.

Empty Arrays of Heterogeneous Abstract Classes
For homogeneous arrays, MATLAB does not allow you to initialize an empty array of an abstract class.
However, if the class is part of a heterogeneous hierarchy, you can initialize empty arrays of an
abstract class. Initializing an empty heterogeneous array is useful in cases in which you do not know
the class of the concrete elements in advance.

For example, suppose RootSuperclass is an abstract class that is the root of a heterogeneous
hierarchy. Initialize an array using the empty static method:

ary = RootSuperclass.empty;

See Also

Related Examples
• “A Class Hierarchy for Heterogeneous Arrays” on page 20-2
• “Handle-Compatible Classes and Heterogeneous Arrays” on page 12-40

10 Object Arrays

10-26

Heterogeneous Array Constructors
In this section...
“Building Arrays in Superclass Constructors” on page 10-27
“When Errors Can Occur” on page 10-27
“Initialize Array in Superclass Constructor” on page 10-27
“Sample Implementation” on page 10-28
“Potential Error” on page 10-30

Building Arrays in Superclass Constructors
When a subclass in a heterogeneous class hierarchy calls its superclass to construct an array of
objects, you must ensure that the superclass constructor does not return a heterogeneous array to
the subclass. The following programming patterns show how to avoid the errors caused by returning
the wrong class to the subclass constructor.

When Errors Can Occur
Constructors must return objects that are the same class as the defining class. When working with
objects from a heterogeneous class hierarchy, the class of an object array can change as you add
array elements of different classes. As a result, heterogeneous superclass constructors can change
the class of object arrays when the class design requires all the following techniques:

• Building object arrays in subclass constructors
• Calling superclass constructors from subclass constructors to pass arguments
• Creating object arrays in the superclass constructor

In addition, either of the following is true:

• The root superclass is not abstract and does not implement a getDefaultScalarElement
method.

• The root superclass implements a getDefaultScalarElement method that returns an object
that is not the same class as the subclass.

When assigning to object arrays, MATLAB uses the default object to fill in unassigned array elements.
In a heterogeneous hierarchy, the default object can be the superclass that is called by the subclass
constructor. Therefore, building an array in the superclass constructor can create a heterogeneous
array.

If a superclass constructor returns a heterogeneous array to the subclass constructor, MATLAB
generates an error (see “Potential Error” on page 10-30).

Initialize Array in Superclass Constructor
To avoid errors, initialize the object array explicitly in the superclass constructor. For example, use
repelem in the superclass constructor to initialize the array before initializing the superclass part of
the objects. Initializing the array ensures that all elements assigned into the array are of the same
class as the obj argument.

 Heterogeneous Array Constructors

10-27

In this code, the superclass constructor creates one object for each element in the input argument,
arg:

method
 function obj = SuperClass(arg)
 ...
 n = numel(arg);
 obj = repelem(obj,1,n);
 for k = 1:n
 obj(k).SuperProp = arg(k);
 end
 ...
 end
end

The subclass constructor calls the superclass constructor to pass the required argument array, a:

method
 function obj = SubClass(a)
 obj = obj@SuperClass(a);
 for k = 1:numel(a)
 obj(k).SubProp = a(k);
 end
 end
end

Sample Implementation
The following class hierarchy defines a subclass that builds object arrays in its constructor. The root
superclass of the hierarchy initializes the superclass part of the objects in the array.

This class hierarchy represents members of an engineering team. The classes in the hierarchy
include:

• TeamMembers — Superclass for specific team member classes, like ProjectEngineer.
TeamMembers defines the Name and PhoneX properties and derives from
matlab.mixin.Heterogeneous.

• ProjectEngineer — Team members that are engineers. Each instance inherits a Name and
PhoneX property and defines a billing Rate property.

• Other members — Other types of team members not implemented for this example for simplicity.

10 Object Arrays

10-28

The TeamMembers class is the root of the heterogeneous hierarchy and is a concrete class. Before
assigning values to the Name and PhoneX properties, the constructor initializes an array of subclass
(ProjectEngineer) objects.

The ProjectEngineer constructor provides the obj argument for the call to repelem with this
statement:

obj = obj@TeamMembers(varargin{1:2});

Here is the TeamMembers class:

classdef TeamMembers < matlab.mixin.Heterogeneous
 properties
 Name
 PhoneX
 end
 methods
 function obj = TeamMembers(nme,ext)
 if nargin > 0
 n = numel(nme);
 obj = repelem(obj,1,n);
 for k = 1:n
 obj(k).Name = nme{k};
 obj(k).PhoneX = ext(k);
 end
 else
 obj.Name = '';
 end
 end
 end
end

 Heterogeneous Array Constructors

10-29

The ProjectEngineer class represents one type of team member. This class supports array inputs
and returns an array of objects.

classdef ProjectEngineer < TeamMembers
 % Inputs: {Name}, [PhoneX], {Rate}
 properties
 Rate
 end
 methods
 function obj = ProjectEngineer(varargin)
 obj = obj@TeamMembers(varargin{1:2});
 for k = 1:numel(varargin{1})
 obj(k).Rate = varargin{3}{k};
 end
 end
 end
end

The ProjectEngineer class requires a cell array of names, a numeric array of phone extensions,
and a cell array of billing rates for each engineer in the team.

nm = {'Fred','Nancy','Claudette'};
px = [8112,8113,8114];
rt = {'C2','B1','A2'};
tm = ProjectEngineer(nm,px,rt)

tm =

 1x3 ProjectEngineer array with properties:

 Rate
 Name
 PhoneX

Potential Error
The TeamMembers constructor initializes the object array with this statement:

obj = repelem(obj,1,n);

Because the obj argument to repelem is a ProjectEngineer object, the array returned is of the
same class.

Without this statement, the TeamMembers constructor would create default objects to fill in array
elements in the for loop. The resulting heterogeneous array would be of the class of the common
superclass (TeamMembers in this case). If the superclass returns this heterogeneous array to the
subclass constructor, it is a violation of the rule that class constructors must preserve the class of the
returned object.

MATLAB issues this error:
When constructing an instance of class 'ProjectEngineer', the constructor must
preserve the class of the returned object.

Error in ProjectEngineer (line 8)
 obj = obj@TeamMembers(varargin{1:2});

10 Object Arrays

10-30

See Also

More About
• “Designing Heterogeneous Class Hierarchies” on page 10-20

 Heterogeneous Array Constructors

10-31

Events — Sending and Responding to
Messages

• “Overview Events and Listeners” on page 11-2
• “Define Custom Event Data” on page 11-5
• “Observe Changes to Property Values” on page 11-8
• “Implement Property Set Listener” on page 11-10
• “Event and Listener Concepts” on page 11-12
• “Event Attributes” on page 11-15
• “Events and Listeners Syntax” on page 11-17
• “Listener Lifecycle” on page 11-22
• “Listener Callback Syntax” on page 11-23
• “Callback Execution” on page 11-26
• “Determine If Event Has Listeners” on page 11-28
• “Listen for Changes to Property Values” on page 11-31
• “Assignment When Property Value Is Unchanged” on page 11-34
• “Techniques for Using Events and Listeners” on page 11-38

11

Overview Events and Listeners
In this section...
“Why Use Events and Listeners” on page 11-2
“Events and Listeners Basics” on page 11-2
“Event Syntax” on page 11-2
“Create Listener” on page 11-3

Why Use Events and Listeners
Events are notices that objects broadcast in response to something that happens, such as a property
value changing or a user interaction with an application program. Listeners execute functions when
notified that the event of interest occurs. Use events to communicate changes to objects. Listeners
respond by executing the callback function.

For more information, see “Event and Listener Concepts” on page 11-12.

Events and Listeners Basics
When using events and listeners:

• Only handle classes can define events and listeners.
• Define event names in the events block of a class definition (“Events and Listeners Syntax” on

page 11-17).
• Use event attributes to specify access to the event (“Event Attributes” on page 11-15).
• Call the handle notify method to trigger the event. The event notification broadcasts the named

event to all listeners registered for this event.
• Use the handle addlistener method to couple a listener to the event source object. MATLAB

destroys the listener when the source of the event is destroyed.
• Use the handle listener method to create listeners that are not coupled to the lifecycle of the

event source object. This approach is useful when the event source and the listeners are defined in
different components that you want to be able to add, remove, or modify independently. Your
application code controls the listener object lifecycle.

• Listener callback functions must define at least two input arguments — the event source object
handle and the event data (See “Listener Callback Syntax” on page 11-23 for more information).

• Modify the data passed to each listener callback by subclassing the event.EventData class.

Predefined Events

MATLAB Defines events for listening to property sets and queries. For more information, see “Listen
for Changes to Property Values” on page 11-31.

All handle objects define an event named ObjectBeingDestroyed. MATLAB triggers this event
before calling the class destructor.

Event Syntax
Define an event name in the events code block:

11 Events — Sending and Responding to Messages

11-2

classdef ClassName < handle
 ...
 events
 EventName
 end
 ...
end

For example, MyClass defines an event named StateChange:

classdef MyClass < handle
 events
 StateChange
 end
end

Trigger an event using the handle class notify method:

classdef ClassName < handle
 ...
 events
 EventName
 end
 ...
 methods
 function anyMethod(obj)
 ...
 notify(obj,'EventName');
 end
 end
end

Any function or method can trigger the event for a specific instance of the class defining the event.
For example, the triggerEvent method calls notify to trigger the StateChange event:

classdef MyClass < handle
 events
 StateChange
 end
 methods
 function triggerEvent(obj)
 notify(obj,'StateChange')
 end
 end
end

Trigger the StateChange event with the triggerEvent method:

obj = MyClass;
obj.triggerEvent

For more information, see “Events and Listeners Syntax” on page 11-17.

Create Listener
Define a listener using the handle class addlisteneror listener method. Pass a function handle
for the listener callback function using one of these syntaxes:

 Overview Events and Listeners

11-3

• addlistener(SourceOfEvent,'EventName',@functionName) — for an ordinary function.
• addlistener(SourceOfEvent,'EventName',@Obj.methodName) — for a method of Obj.
• addlistener(SourceOfEvent,'EventName',@ClassName.methodName) — for a static

method of the class ClassName.

ListenerObject = addlistener(SourceOfEvent,'EventName',@listenerCallback);

addlistener returns the listener object. The input arguments are:

• SourceOfEvent — An object of the class that defines the event. The event is triggered on this
object.

• EventName — The name of the event defined in the class events code block.
• @listenerCallback — a function handle referencing the function that executes in response to

the event.

For example, create a listener object for the StateChange event:

function lh = createListener(src)
 lh = addlistener(src,'StateChange',@handleStateChange)
end

Define the callback function for the listener. The callback function must accept as the first two
arguments the event source object and an event data object: Use the event source argument to
access the object that triggered the event. Find information about the event using the event data
object.

function handleStateChange(src,eventData)
 % src - handle to object that triggered the event
 % eventData - event.EventData object containing
 % information about the event.
 ...
end

For more information, see “Listener Callback Syntax” on page 11-23.

See Also
event.EventData | handle

Related Examples
• “Listener Lifecycle” on page 11-22
• “Implement Property Set Listener” on page 11-10

11 Events — Sending and Responding to Messages

11-4

Define Custom Event Data
In this section...
“Class Event Data Requirements” on page 11-5
“Define and Trigger Event” on page 11-5
“Define Event Data” on page 11-6
“Create Listener for Overflow Event” on page 11-6

Class Event Data Requirements
Suppose that you want to create a listener callback function that has access to specific information
when the event occurs. This example shows how by creating custom event data.

Events provide information to listener callback functions by passing an event data argument to the
specified function. By default, MATLAB passes an event.EventData object to the listener callback.
This object has two properties:

• EventName — Name of the event triggered by this object.
• Source — Handle of the object triggering the event.

Provide additional information to the listener callback by subclassing the event.EventData class.

• Define properties in the subclass to contain the additional data.
• Define a constructor that accepts the additional data as arguments.
• Set the ConstructOnLoad class attribute.
• Use the subclass constructor as an argument to the notify method to trigger the event.

Define and Trigger Event
The SimpleEventClass defines a property set method (see “Property Set Methods” on page 8-45)
from which it triggers an event if the property is set to a value exceeding a certain limit. The property
set method performs these operations:

• Saves the original property value
• Sets the property to the specified value
• If the specified value is greater than 10, the set method triggers an Overflow event
• Passes the original property value, and other event data, in a SpecialEventDataClass object to

the notify method.

classdef SimpleEventClass < handle
 properties
 Prop1 = 0
 end
 events
 Overflow
 end
 methods
 function set.Prop1(obj,value)
 orgvalue = obj.Prop1;

 Define Custom Event Data

11-5

 obj.Prop1 = value;
 if (obj.Prop1 > 10)
 % Trigger the event using custom event data
 notify(obj,'Overflow',SpecialEventDataClass(orgvalue));
 end
 end
 end
end

Define Event Data
Event data is always contained in an event.EventData object. The SpecialEventDataClass adds
the original property value to the event data by subclassing event.EventData:

classdef (ConstructOnLoad) SpecialEventDataClass < event.EventData
 properties
 OrgValue = 0
 end
 methods
 function eventData = SpecialEventDataClass(value)
 eventData.OrgValue = value;
 end
 end
end

Create Listener for Overflow Event
To listen for the Overflow event, attach a listener to an instance of the SimpleEventClass class.
Use the addlistener method to create the listener. Also, you must define a callback function for the
listener to execute when the event is triggered.

The function setupSEC instantiates the SimpleEventClass class and adds a listener to the object.
In this example, the listener callback function displays information that is contained in the
eventData argument (which is a SpecialEventDataClass object).

function sec = setupSEC
 sec = SimpleEventClass;
 addlistener(sec,'Overflow',@overflowHandler)
 function overflowHandler(eventSrc,eventData)
 disp('The value of Prop1 is overflowing!')
 disp(['Its value was: ' num2str(eventData.OrgValue)])
 disp(['Its current value is: ' num2str(eventSrc.Prop1)])
 end
end

Create the SimpleEventClass object and add the listener:

sec = setupSEC;
sec.Prop1 = 5;
sec.Prop1 = 15; % listener triggers callback

The value of Prop1 is overflowing!
Its value was: 5
Its current value is: 15

11 Events — Sending and Responding to Messages

11-6

See Also

Related Examples
• “Observe Changes to Property Values” on page 11-8

 Define Custom Event Data

11-7

Observe Changes to Property Values
This example shows how to listen for changes to a property value. This example uses:

• PostSet event predefined by MATLAB
• SetObservable property attribute to enable triggering the property PostSet event.
• addlistener handle class method to create the listener

classdef PropLis < handle
 % Define a property that is SetObservable
 properties (SetObservable)
 ObservedProp = 1
 end
 methods
 function attachListener(obj)
 %Attach a listener to a PropListener object
 addlistener(obj,'ObservedProp','PostSet',@PropLis.propChange);
 end
 end
 methods (Static)
 function propChange(metaProp,eventData)
 % Callback for PostSet event
 % Inputs: meta.property object, event.PropertyEvent
 h = eventData.AffectedObject;
 propName = metaProp.Name;
 disp(['The ',propName,' property has changed.'])
 disp(['The new value is: ',num2str(h.ObservedProp)])
 disp(['Its default value is: ',num2str(metaProp.DefaultValue)])
 end
 end
end

The PropLis class uses an ordinary method (attachListener) to add the listener for the
ObservedProp property. If the PropLis class defines a constructor, the constructor can contain the
call to addlistener.

The listener callback is a static method (propChange). MATLAB passes two arguments when calling
this function:

• metaProp — a meta.property object for ObservedProp
• eventData — an event.PropertyEvent object contain event-specific data.

These arguments provide information about the property and the event.

Use the PropLis class by creating an instance and calling its attachListener method:

plObj = PropLis;
plObj.ObservedProp

ans =

 1

plObj.attachListener
plObj.ObservedProp = 2;

11 Events — Sending and Responding to Messages

11-8

The ObservedProp property has changed.
The new value is: 2
Its default value is: 1

See Also
addlistener | event.proplistener | listener

Related Examples
• “Listener Lifecycle” on page 11-22
• “Implement Property Set Listener” on page 11-10

 Observe Changes to Property Values

11-9

Implement Property Set Listener
This example shows how to define a listener for a property set event. The listener callback triggers
when the value of a specific property changes. The class defined for this example uses a method for a
push-button callback and a static method for the listener callback. When the push-button callback
changes the value of a property, the listener executes its callback on the PreSet event.

This example defines a class (PushButton) with these design elements:

• ResultNumber – Observable property
• uicontrol pushbutton – Push-button object used to generate a new graph when its callback

executes
• A listener that responds to a change in the observable property

PushButton Class Design
The PushButton class creates figure, uicontrol, axes graphics objects, and a listener object in
the class constructor.

The push button's callback is a class method (named pressed). When the push button is activated,
the following sequence occurs:

1 MATLAB executes the pressed method, which graphs a new set of data and increments the
ResultNumber property.

2 Attempting to set the value of the ResultNumber property triggers the PreSet event, which
executes the listener callback before setting the property value.

3 The listener callback uses the event data to obtain the handle of the callback object (an instance
of the PushButton class), which then provides the handle of the axes object that is stored in its
AxHandle property.

4 The listener callback updates the axes Title property, after the callback completes execution,
MATLAB sets the ResultsNumber property to its new value.

classdef PushButton < handle
 properties (SetObservable)
 ResultNumber = 1
 end
 properties
 AxHandle
 end
 methods
 function buttonObj = PushButton
 myFig = figure;
 buttonObj.AxHandle = axes('Parent',myFig);
 uicontrol('Parent',myFig,...
 'Style','pushbutton',...
 'String','Plot Data',...
 'Callback',@(src,evnt)pressed(buttonObj));
 addlistener(buttonObj,'ResultNumber','PreSet',...
 @PushButton.updateTitle);
 end
 end
 methods
 function pressed(obj)

11 Events — Sending and Responding to Messages

11-10

 scatter(obj.AxHandle,randn(1,20),randn(1,20),'p')
 obj.ResultNumber = obj.ResultNumber + 1;
 end
 end
 methods (Static)
 function updateTitle(~,eventData)
 h = eventData.AffectedObject;
 set(get(h.AxHandle,'Title'),'String',['Result Number: ',...
 num2str(h.ResultNumber)])
 end
 end
end

The scatter graph looks similar to this graph after three push-button clicks.

buttonObj = PushButton;

See Also

Related Examples
• “Listen for Changes to Property Values” on page 11-31

 Implement Property Set Listener

11-11

Event and Listener Concepts
In this section...
“The Event Model” on page 11-12
“Limitations” on page 11-12
“Default Event Data” on page 11-13
“Events Only in Handle Classes” on page 11-13
“Property-Set and Query Events” on page 11-13
“Listeners” on page 11-14

The Event Model
Events represent changes or actions that occur within objects. For example,

• Modification of class data
• Execution of a method
• Querying or setting a property value
• Destruction of an object

Basically, any activity that you can detect programmatically can generate an event and communicate
information to other objects.

MATLAB classes define a process that communicates the occurrence of events to other objects that
respond to the events. The event model works this way:

• A handle class declares a name used to represent an event. “Name Events” on page 11-17
• After creating an object of the event-declaring class, attach listener to that object. “Control

Listener Lifecycle” on page 11-22
• A call to the handle class notify method broadcasts a notice of the event to listeners. The class

user determines when to trigger the event. “Trigger Events” on page 11-17
• Listeners execute a callback function when notified that the event has occurred. “Specifying

Listener Callbacks” on page 11-23
• You can bind listeners to the lifecycle of the object that defines the event, or limit listeners to the

existence and scope of the listener object. “Control Listener Lifecycle” on page 11-22

The following diagram illustrates the event model.

Limitations
There are certain limitations to the use of events:

• The event source cannot guarantee that listeners exist when triggering the event.
• A listener cannot prevent other listeners from being notified that the event occurred.
• The order in which listeners execute is not defined.

11 Events — Sending and Responding to Messages

11-12

• Listeners should not modify the event data object passed to the listener callback, because other
listeners are passed this same handle object.

Default Event Data
Events provide information to listener callbacks by passing an event data argument to the callback
function. By default, MATLAB passes an event.EventData object to the listener callback. This
object has two properties:

• EventName — The event name as defined in the class event block
• Source — The object that is the source of the event

MATLAB passes the source object to the listener callback in the required event data argument. Use
the source object to access any of the object's public properties from within your listener callback
function.

Customize Event Data

You can create a subclass of the event.EventData class to provide additional information to
listener callback functions. The subclass would define properties to contain the additional data and
provide a method to construct the derived event data object so it can be passed to the notify
method.

“Define Event-Specific Data” on page 11-20 provides an example showing how to customize this
data.

Events Only in Handle Classes
You can define events only in handle classes. This restriction exists because a value class is visible
only in a single MATLAB workspace so no callback or listener can have access to the object that
triggered the event. The callback could have access to a copy of the object. However, accessing a
copy is not useful because the callback cannot access the current state of the object that triggered
the event or effect any changes in that object.

“Comparison of Handle and Value Classes” on page 7-2 provides general information on handle
classes.

“Events and Listeners Syntax” on page 11-17 shows the syntax for defining a handle class and
events.

Property-Set and Query Events
There are four predefined events related to properties:

• PreSet — Triggered just before the property value is set, before calling its set access method
• PostSet — Triggered just after the property value is set
• PreGet — Triggered just before a property value query is serviced, before calling its get access

method
• PostGet — Triggered just after returning the property value to the query

These events are predefined and do not need to be listed in the class events block.

 Event and Listener Concepts

11-13

When a property event occurs, the callback is passed an event.PropertyEvent object. This object
has three properties:

• EventName — The name of the event described by this data object
• Source — The source object whose class defines the event described by the data object
• AffectedObject — The object whose property is the source for this event (that is,

AffectedObject contains the object whose property was either accessed or modified).

You can define your own property-change event data by subclassing the event.EventData class.
The event.PropertyEvent class is a sealed subclass of event.EventData.

See “Listen for Changes to Property Values” on page 11-31 for a description of the process for
creating property listeners.

See “The PostSet Event Listener” on page 11-45 for an example.

See “Property Access Methods” on page 8-40 for information on methods that control access to
property values.

Listeners
Listeners encapsulate the response to an event. Listener objects belong to the event.listener
class, which is a handle class that defines the following properties:

• Source — Handle or array of handles of the object that generated the event
• EventName — Name of the event
• Callback — Function to execute when an enabled listener receives event notification
• Enabled — Callback function executes only when Enabled is true. See “Enable and Disable

Listeners” on page 11-46 for an example.
• Recursive — Allow listener to trigger the same event that caused execution of the callback.

Recursive is false by default. If the callback triggers the event for which it is defined as the
callback, the listener cannot execute recursively. Therefore, set Recursive to false if the
callback must trigger its own event. Setting the Recursive property to true can create a
situation where infinite recursion reaches the recursion limit and triggers an error.

“Control Listener Lifecycle” on page 11-22 provides more specific information.

11 Events — Sending and Responding to Messages

11-14

Event Attributes

Specify Event Attributes
The following table lists the attributes you can set for events. To specify a value for an attribute,
assign the attribute value on the same line as the event keyword. For example, all the events defined
in the following events block have protected ListenAccess and private NotifyAccess.

events (ListenAccess = protected, NotifyAccess = private)
 EventName1
 EventName2
end

To define other events in the same class definition that have different attribute settings, create
another events block.

 Event Attributes

11-15

Event Attributes

Attribute Name Class Description
Hidden logical Default =

false
If true, event does not appear in list of events returned by
events function (or other event listing functions or viewers).

ListenAccess • enumeration, default
= public

• meta.class object
• cell array of

meta.class objects

Determines where you can create listeners for the event.

• public — Unrestricted access
• protected — Access from methods in class or subclasses
• private — Access by class methods only (not from

subclasses)
• List classes that have listen access to this event. Specify

classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell array,

{}, is the same as private access.

See “Class Members Access” on page 12-24
NotifyAccess • enumeration, default

= public
• meta.class object
• cell array of

meta.class objects

Determines where code can trigger the event

• public — Any code can trigger event
• protected — Can trigger event from methods in class or

derived classes
• private — Can trigger event by class methods only (not from

derived classes)
• List classes that have notify access to this event. Specify

classes as meta.class objects in the form:

• A single meta.class object
• A cell array of meta.class objects. An empty cell array,

{}, is the same as private access.

See “Class Members Access” on page 12-24
Framework
attributes

Classes that use certain framework base classes have framework-specific attributes. See the
documentation for the specific base class you are using for information on these attributes.

See Also

Related Examples
• “Events and Listeners Syntax” on page 11-17

11 Events — Sending and Responding to Messages

11-16

Events and Listeners Syntax
In this section...
“Components to Implement” on page 11-17
“Name Events” on page 11-17
“Trigger Events” on page 11-17
“Listen to Events” on page 11-18
“Define Event-Specific Data” on page 11-20

Components to Implement
Implementation of events and listeners involves these components:

• Specification of the name of an event in a handle class — “Name Events” on page 11-17.
• A function or method to trigger the event when the action occurs — “Trigger Events” on page 11-

17.
• Listener objects to execute callback functions in response to the triggered event — “Listen to

Events” on page 11-18.
• Default or custom event data that the event passes to the callback functions — “Define Event-
Specific Data” on page 11-20.

Name Events
Define an event by declaring an event name inside an events block. For example, this class creates
an event called ToggledState:

classdef ToggleButton < handle
 properties
 State = false
 end
 events
 ToggledState
 end
end

Trigger Events
The OnStateChange method calls notify to trigger the ToggledState event. Pass the handle of
the object that is the source of the event and the name of the event to notify.

classdef ToggleButton < handle
 properties
 State = false
 end
 events
 ToggledState
 end
 methods
 function OnStateChange(obj,newState)
 if newState ~= obj.State

 Events and Listeners Syntax

11-17

 obj.State = newState;
 notify(obj,'ToggledState');
 end
 end
 end
end

Listen to Events
After the call to notify triggers an event, MATLAB broadcasts a message to all listeners that are
defined for that event and source object. There are two ways to create listeners: using the handle
class addlistener or listener method.

Use addlistener for Persistent Listeners

If you want the listener to persist beyond the normal variable scope, use addlistener to create it.
The event source object holds a reference to the listener object. When the event source object is
destroyed, MATLAB destroys the listener.

This code defines a listener for the ToggleState event:

lh = addlistener(obj,'ToggleState',@RespondToToggle.handleEvnt);

addlistener has these arguments:

• obj — The object that is the source of the event
• ToggleState — The event name passed as a char vector
• @RespondToToggle.handleEvnt — A function handle to the callback function (see the following
definition “Define Listener” on page 11-19).

Use handle.listener to Decouple Listener and Source

Use the listener method to create listeners when you want to manage the lifecycle of the listener
and do not want a coupling between the event source and listener object. MATLAB does not destroy
listeners created with listener when the event source is destroyed. However, your code must keep
the listener object handle in scope when creating listeners using listener.

The listener method requires the same arguments as addlistener: the event-naming object, the
event name, and a function handle to the callback. listener returns the handle to the listener
object.

lh = listener(obj,'EventName',@callbackFunction)

For example, this code uses the ToggleState event discussed previously:

lh = listener(obj,'ToggleState',@RespondToToggle.handleEvnt)

Callback Function

The listener callback function must accept a minimum of two arguments, which MATLAB
automatically passes to the callback. Here are the required arguments:

• The source of the event — that is, obj in the call to addlistener or event.listener.
• An event.EventData object or a subclass of event.EventData, such as the

ToggleEventData object described in, “Define Event-Specific Data” on page 11-20.

11 Events — Sending and Responding to Messages

11-18

Define the callback function to accept the source object and event data arguments.

function callbackFunction(src,evtdata)
 ...
end

For more information on callback syntax, see “Listener Callback Syntax” on page 11-23.

Define Listener

The RespondToToggle class defines objects that listen for the ToggleState event defined in the
ToggleButton class.
classdef RespondToToggle < handle
 methods
 function obj = RespondToToggle(toggle_button_obj)
 addlistener(toggle_button_obj,'ToggledState',@RespondToToggle.handleEvnt);
 end
 end
 methods (Static)
 function handleEvnt(src,~)
 if src.State
 disp('ToggledState is true')
 else
 disp('ToggledState is false')
 end
 end
 end
end

The class RespondToToggle adds the listener in its constructor. In this case, the class defines the
callback (handleEvnt) as a static method that accepts the two required arguments:

• src — The handle of the object triggering the event (that is, a ToggleButton object)
• evtdata — An event.EventData object

For example, this code creates objects of both classes:

tb = ToggleButton;
rtt = RespondToToggle(tb);

Whenever you call the OnStateChange method of the ToggleButton object, notify triggers the
event. For this example, the callback displays the value of the State property:

tb.OnStateChange(true)

ToggledState is true

tb.OnStateChange(false)

ToggledState is false

Remove Listeners

Remove a listener object by calling delete on its handle. For example, if the class
RespondToToggle saved the listener handle as a property, you could delete the listener.
classdef RespondToToggle < handle
 properties
 ListenerHandle % Property for listener handle
 end
 methods
 function obj = RespondToToggle(toggle_button_obj)

 Events and Listeners Syntax

11-19

 hl = addlistener(toggle_button_obj,'ToggledState',@RespondToToggle.handleEvnt);
 obj.ListenerHandle = hl; % Save listener handle
 end
 end
 methods (Static)
 function handleEvnt(src,~)
 if src.State
 disp('ToggledState is true')
 else
 disp('ToggledState is false')
 end
 end
 end
end

With this code change, you can remove the listener from an instance of the RespondToToggle class.
For example:

tb = ToggleButton;
rtt = RespondToToggle(tb);

The object rtt is listening for the ToggleState event triggered by object tb. To remove the listener,
call delete on the property containing the listener handle.

delete(rtt.ListenerHandle)

To deactivate a listener temporarily, see “Temporarily Deactivate Listeners” on page 11-22.

Define Event-Specific Data
Suppose that you want to pass the state of the toggle button as a result of the event to the listener
callback. You can add more data to the default event data by subclassing the event.EventData
class and adding a property to contain this information. Then you can pass this object to the notify
method.

Note To save and load objects that are subclasses of event.EventData, such as
ToggleEventData, enable the ConstructOnLoad class attribute for the subclass.

classdef (ConstructOnLoad) ToggleEventData < event.EventData
 properties
 NewState
 end

 methods
 function data = ToggleEventData(newState)
 data.NewState = newState;
 end
 end
end

The call to notify can use the ToggleEventData constructor to create the necessary argument.

evtdata = ToggleEventData(newState);
notify(obj,'ToggledState',evtdata);

11 Events — Sending and Responding to Messages

11-20

See Also

Related Examples
• “Listener Callback Syntax” on page 11-23
• “Listen for Changes to Property Values” on page 11-31
• “Techniques for Using Events and Listeners” on page 11-38

 Events and Listeners Syntax

11-21

Listener Lifecycle
In this section...
“Control Listener Lifecycle” on page 11-22
“Temporarily Deactivate Listeners” on page 11-22
“Permanently Delete Listeners” on page 11-22

Control Listener Lifecycle
There are two ways to create listeners:

• addlistener creates a coupling between the listener and event source object. The listener object
persists until you delete it or until the event object is destroyed. When the event source object is
destroyed, MATLAB automatically destroys the listener object.

• listener constructs listener objects that are not coupled to the lifecycle of the event source
object. The listener is active as long as the listener object remains in scope and is not explicitly
deleted. Therefore, your application must maintain a reference to the listener object by storing the
listener handle. The advantage of uncoupling the listener and event objects is that you can define
and destroy each independently.

For more information, see “Events and Listeners Syntax” on page 11-17.

Temporarily Deactivate Listeners
The addlistener method returns the listener object so that you can set its properties. For example,
you can temporarily disable a listener by setting its Enabled property to false:

ListenerHandle.Enabled = false;

To reenable the listener, set Enabled to true.

ListenerHandle.Enabled = true;

Permanently Delete Listeners
Calling delete on a listener object destroys it and permanently removes the listener:

delete(ListenerHandle)

Note Do not use the pack command with objects that define events and listeners. The pack
command causes the destruction of any listeners defined for the objects in the workspace. For
information on restoring listeners when saving objects, see “Restore Listeners” on page 13-26.

See Also

Related Examples
• “Enable and Disable Listeners” on page 11-46

11 Events — Sending and Responding to Messages

11-22

Listener Callback Syntax
In this section...
“Specifying Listener Callbacks” on page 11-23
“Input Arguments for Callback Function” on page 11-23
“Additional Arguments for Callback Function” on page 11-24

Specifying Listener Callbacks
Callbacks are functions that execute when the listener receives notification of the event. Pass a
function handle referencing the callback function to addlistener or listener when creating the
listener.

All callback functions must accept at least two arguments:

• The handle of the object that is the source of the event
• An event.EventData object or an object that is derived from the event.EventData class.

Syntax to Reference Callback

For a function: functionName
lh = addlistener(eventSourceObj,'EventName',@functionName)

For an ordinary method called with an object of the class: obj.methodName
lh = addlistener(eventSourceObj,'EventName',@obj.methodName)

For a static method:ClassName.methodName
lh = addlistener(eventSourceObj,'EventName',@ClassName.methodName)

For a function in a package:PackageName.functionName
lh = addlistener(eventSourceObj,'EventName',@PackageName.functionName)

Input Arguments for Callback Function
Define the callback function to accept the required arguments:

function callbackFunction(src,evnt)
 ...
end

If you do not use the event source and event data arguments, you can define the function to ignore
these inputs:

function callbackFunction(~,~)
 ...
end

For a method:

function callbackMethod(obj,src,evnt)
 ...
end

 Listener Callback Syntax

11-23

Additional Arguments for Callback Function
To pass arguments to your callback in addition to the source and event data arguments passed by
MATLAB, use an anonymous function. Anonymous functions can use any variables that are available
in the current workspace.

Syntax Using Anonymous Function

Here is the syntax for an ordinary method. The input arguments (arg1,...argn) must be defined in
the context in which you call addlistener.
lh = addlistener(src,'EventName',@(src,evnt)obj.callbackMethod(src,evnt,arg1,...argn)

Use varargin to define the callback function.

function callbackMethod(src,evnt,varargin)
 arg1 = varargin{1};
 ...
 argn = varargin{n};
 ...
end

For general information on anonymous function, see “Anonymous Functions”.

Using Methods for Callbacks

The TestAnonyFcn class shows the use of an anonymous function with an additional argument. The
listener callback displays the inputs arguments to show how MATLAB calls the callback method.

classdef TestAnonyFcn < handle
 events
 Update
 end
 methods
 function obj = TestAnonyFcn
 t = datestr(now);
 addlistener(obj,'Update',@(src,evnt)obj.evntCb(src,evnt,t));
 end
 function triggerEvnt(obj)
 notify(obj,'Update')
 end
 end
 methods (Access = private)
 function evntCb(~,~,evnt,varargin)
 disp(['Number of inputs: ',num2str(nargin)])
 disp(evnt.EventName)
 disp(varargin{:})
 end
 end
end

Create an object and trigger the event by calling the triggerEvt method:

obj = TestAnonyFcn;
obj.triggerEvnt;

Number of inputs: 4
Update
01-Jul-2008 17:19:36

11 Events — Sending and Responding to Messages

11-24

See Also

Related Examples
• “Callback Execution” on page 11-26
• “Create Function Handle”

 Listener Callback Syntax

11-25

Callback Execution
In this section...
“When Callbacks Execute” on page 11-26
“Listener Order of Execution” on page 11-26
“Callbacks That Call notify” on page 11-26
“Manage Callback Errors” on page 11-26
“Invoke Functions from Function Handles” on page 11-26

When Callbacks Execute
Listeners execute their callback function when notified that the event has occurred. Listeners are
passive observers in the sense that errors in the execution of a listener callback do not prevent the
execution of other listeners responding to the same event, or execution of the function that triggered
the event.

Callback function execution continues until the function completes. If an error occurs in a callback
function, execution stops and control returns to the calling function. Then any remaining listener
callback functions execute.

Listener Order of Execution
The order in which listeners callback functions execute after the firing of an event is undefined.
However, all listener callbacks execute synchronously with the event firing.

The handle class notify method calls all listeners before returning execution to the function that
called notify.

Callbacks That Call notify
Do not modify and reuse or copy and reuse the event data object that you pass to notify, which is
then passed to the listener callback.

Listener callbacks can call notify to trigger events, including the same event that invoked the
callback. When a function calls notify, MATLAB sets the property values of the event data object
that is passed to callback functions. To ensure that these properties have appropriate values for
subsequently called callbacks, always create a new event data object if you call notify with custom
event data.

Manage Callback Errors
If you want to control how your program responds to errors, use a try/catch statement in your
listener callback function to handle errors.

Invoke Functions from Function Handles
When you create a function handle inside a class method, the context of the method determines the
context in which the function executes. This context gives the function access to private and
protected methods that are accessible to that class.

11 Events — Sending and Responding to Messages

11-26

For example, the UpdateEvt class defines an event named Update and a listener for that event. The
listener callback is the private method evtCb.

classdef UpdateEvt < handle
 events
 Update
 end
 methods
 function obj = UpdateEvt
 addlistener(obj,'Update',@evtCb);
 end
 end
 methods (Access = private)
 function obj = evtCb(obj,varargin)
 disp('Updated Event Triggered')
 end
 end
end

Private methods are normally accessible only by class methods. However, because the function
handle is created in a class method, notify can execute the callback from outside of the class:

a = UpdateEvt;
a.notify('Update')

Updated Event Triggered

See Also

Related Examples
• “Listener Callback Syntax” on page 11-23

 Callback Execution

11-27

Determine If Event Has Listeners
In this section...
“Do Listeners Exist for This Event?” on page 11-28
“Why Test for Listeners” on page 11-28
“Coding Patterns” on page 11-28
“Listeners in Heterogeneous Arrays” on page 11-28

Do Listeners Exist for This Event?
Use the event.hasListener function to determine if a specific event has listeners.
event.hasListener accepts an array of event source objects and an event name as input
arguments. It returns an array of logical values indicating if listeners exist for the specified event on
each object in the array.

Note When called, event.hasListener must have NotifyAccess for the event. That is, call
event.hasListener in a context in which you can call notify for the event in question.

Why Test for Listeners
Use event.hasListener to avoid sending event notifications when there are no listeners for the
event. For example, if creating custom event data consumes significant resources, or if events are
triggered repeatedly, use event.hasListener to test for listeners before performing these steps.

Coding Patterns
• Conditionalize the creation of event data and the call to notify using event.hasListener. For

an object array a, determine if there are listeners before creating event data and triggering the
event:

if any(event.hasListener(a,'NameOfEvent'))
 evt = MyCustomEventData(...);
 notify(a,'NameOfEvent',evt)
end

• Trigger events selectively using logical indexing with the values returned by
event.hasListener. Send event notifications only for array elements that have listeners:

ind = event.hasListeners(a,'NameOfEvent');
notify(a(ind),'NameOfEvent',evt)

Listeners in Heterogeneous Arrays
If the input object array is heterogeneous, the class of the array must define the specified event. You
can query the listeners only for events that all objects in the array define.

For example, in the following diagram, the class of a heterogeneous array formed with objects of
classes SpecificA, SpecificB, and SpecificC is RootSuperclass. Therefore,
event.hasListener can find listeners only for the RootEvent event, because it is the only event
common to all array elements.

11 Events — Sending and Responding to Messages

11-28

Create a heterogeneous array with the three most specific classes:

het = [SpecificA,SpecificB,SpecificC];
class(het)

ans

RootSuperclass

events(het)

Events for class RootSuperclass

 RootEvent

event.hasListener cannot determine if there are listeners for events that are defined by some but
not all objects in the array:

event.hasListener(het,'ClassAEvent')

Error using event.hasListener
Event 'ClassAEvent' is not defined for class 'RootSuperclass'.

Determine if individual objects in the heterogeneous array have listeners defined for their specific
events, by indexing into the array:

event.hasListener(het(1),'ClassAEvent')

For more information about determining the class of heterogeneous arrays, see “Designing
Heterogeneous Class Hierarchies” on page 10-20.

 Determine If Event Has Listeners

11-29

See Also

Related Examples
• “Listener Lifecycle” on page 11-22

11 Events — Sending and Responding to Messages

11-30

Listen for Changes to Property Values
In this section...
“Create Property Listeners” on page 11-31
“Property Event and Listener Classes” on page 11-32

Create Property Listeners
For handle classes, you can define listeners for the predeclared property events (named: PreSet,
PostSet, PreGet, and PostGet). To create listeners for those named events:

• Specify the SetObservable and/or GetObservable property attributes.
• Define callback functions
• Create the property listener by including the name of the property and the event in the call to

addlistener or listener.
• If necessary, subclass event.data to create a specialized event data object to pass to the

callback function.
• Prevent execution of the callback if the new value is the same as the current value (see

“Assignment When Property Value Is Unchanged” on page 11-34).

Set Property Attributes to Enable Property Events

In the properties block, enable the SetObservable attribute. You can define PreSet and PostSet
listeners for the properties defined in this block:

properties (SetObservable)
 PropOne
 PropTwo
 ...
end

Define Callback Function for Property Event

The listener executes the callback function when MATLAB triggers the property event. Define the
callback function to have two specific arguments, which are passed to the function automatically
when called by the listener:

• Event source — a meta.property object describing the object that is the source of the property
event

• Event data — a event.PropertyEvent object containing information about the event

You can pass additional arguments if necessary. It is often simple to define this method as Static
because these two arguments contain most necessary information in their properties.

For example, suppose the handlePropEvents function is a static method of the class creating
listeners for two properties of an object of another class:
methods (Static)
 function handlePropEvents(src,evnt)
 switch src.Name
 case 'PropOne'
 % PropOne has triggered an event
 ...

 Listen for Changes to Property Values

11-31

 case 'PropTwo'
 % PropTwo has triggered an event
 ...
 end
 end
end

Another possibility is to use the event.PropertyEvent object's EventName property in the switch
statement to key off the event name (PreSet or PostSet in this case).

“Class Metadata” on page 16-2 provides more information about the meta.property class.

Add Listener to Property

The addlistenerhandle class method enables you to attach a listener to a property without storing
the listener object as a persistent variable. For a property event, use the four-argument version of
addlistener.

Here is a call to addlistener:
addlistener(EventObject,'PropOne','PostSet',@ClassName.handlePropertyEvents);

The arguments are:

• EventObject — handle of the object generating the event
• PropOne — name of the property to which you want to listen
• PostSet — name of the event for which you want to listen
• @ClassName.handlePropertyEvents — function handle referencing a static method, which

requires the use of the class name

If your listener callback is an ordinary method and not a static method, the syntax is:
addlistener(EventObject,'PropOne','PostSet',@obj.handlePropertyEvents);

where obj is the handle of the object defining the callback method.

If the listener callback is a function that is not a class method, you pass a function handle to that
function. Suppose that the callback function is a package function:
addlistener(EventObject,'PropOne','PostSet',@package.handlePropertyEvents);

For more information on passing functions as arguments, see “Create Function Handle”.

Property Event and Listener Classes
The following two classes show how to create PostSet property listeners for two properties —
PropOne and PropTwo.

Class Generating the Event

The PropEvent class enables property PreSet and PostSet event triggering by specifying the
SetObservable property attribute. These properties also enable the AbortSet attribute, which
prevents the triggering of the property events if the properties are set to a value that is the same as
their current value (see “Assignment When Property Value Is Unchanged” on page 11-34).

classdef PropEvent < handle
 properties (SetObservable, AbortSet)

11 Events — Sending and Responding to Messages

11-32

 PropOne
 PropTwo
 end
 methods
 function obj = PropEvent(p1,p2)
 if nargin > 0
 obj.PropOne = p1;
 obj.PropTwo = p2;
 end
 end
 end
end

Class Defining the Listeners

The PropListener class defines two listeners:

• Property PropOne PostSet event
• Property PropTwo PostSet event

You can define listeners for other events or other properties using a similar approach. It is not
necessary to use the same callback function for each listener. See the meta.property and
event.PropertyEvent reference pages for more on the information contained in the arguments
passed to the listener callback function.
classdef PropListener < handle
 % Define property listeners
 methods
 function obj = PropListener(evtobj)
 if nargin > 0
 addlistener(evtobj,'PropOne','PostSet',@PropListener.handlePropEvents);
 addlistener(evtobj,'PropTwo','PostSet',@PropListener.handlePropEvents);
 end
 end
 end
 methods (Static)
 function handlePropEvents(src,evnt)
 switch src.Name
 case 'PropOne'
 sprintf('PropOne is %s\n',num2str(evnt.AffectedObject.PropOne))
 case 'PropTwo'
 sprintf('PropTwo is %s\n',num2str(evnt.AffectedObject.PropTwo))
 end
 end
 end
end

See Also

Related Examples
• “Assignment When Property Value Is Unchanged” on page 11-34

 Listen for Changes to Property Values

11-33

Assignment When Property Value Is Unchanged
In this section...
“AbortSet When Value Does Not Change” on page 11-34
“How MATLAB Compares Values” on page 11-34
“When to Use AbortSet” on page 11-34
“Implement AbortSet” on page 11-35
“Using AbortSet with Property Validation” on page 11-36

AbortSet When Value Does Not Change
When you set a property value, MATLAB triggers the property PreSet and PostSet events, invokes
the property set method (if one is defined), and sets the property value. These actions occur even
when the current value of the property is the same as the new value.

You can prevent these actions by setting the property's AbortSet attribute to true. When AbortSet
is enabled, MATLAB compares the current property value to the new value being assigned to the
property. If the new value is the same as the current value, MATLAB does not:

• Set the property value.
• Trigger the PreSet and PostSet events.
• Call the property set method, if one exists.

To compare values, MATLAB must get the current value of the property. Getting the current value
causes the property get method (get.Property) to execute, if one exists. Any errors that occur
when calling the property get method are visible to the user, even if MATLAB does not change the
current value.

How MATLAB Compares Values
MATLAB uses the isequal function to determine if the current value of the property is the same as
the new value. To determine if specific values evaluate as equal when using the AbortSet attribute,
see the isequal function documentation or any isequal method overloaded for the class of the
property value.

When to Use AbortSet
Use of the AbortSet attribute does incur some overhead in the comparison of the current and new
property values. Using the AbortSet attribute can slow all property assignments because the
current and assigned value are always compared before the assignment is made. The AbortSet
attribute is most useful when:

• You want to prevent notification of the PreSet and PostSet events and execution of the listener
callbacks when the property value does not change.

• The cost of setting a property value is greater than the cost of comparing the current property
value with the value being assigned, and you are willing to incur the comparison cost with all
assignments to the property.

11 Events — Sending and Responding to Messages

11-34

Implement AbortSet
The following example shows how the AbortSet attribute works. The AbortTheSet class defines a
property, PropOne, that has listeners for the PreGet, PreSet, PostGet, and PostSet events and
enables the AbortSet attribute.

Note To use this class, save the AbortTheSet class in a file with the same name in a folder on your
MATLAB path.

classdef AbortTheSet < handle
 properties (SetObservable, GetObservable, AbortSet)
 PropOne = 7
 end
 methods
 function obj = AbortTheSet
 addlistener(obj,'PropOne','PreGet',@obj.getPrePropEvt);
 addlistener(obj,'PropOne','PreSet',@obj.setPrePropEvt);
 addlistener(obj,'PropOne','PostGet',@obj.getPostPropEvt);
 addlistener(obj,'PropOne','PostSet',@obj.setPostPropEvt);
 end
 function propval = get.PropOne(obj)
 disp('get.PropOne called')
 propval = obj.PropOne;
 end
 function set.PropOne(obj,val)
 disp('set.PropOne called')
 obj.PropOne = val;
 end
 function getPrePropEvt(obj,src,evnt)
 disp ('Pre-get event triggered')
 % ...
 end
 function setPrePropEvt(obj,src,evnt)
 disp ('Pre-set event triggered')
 % ...
 end
 function getPostPropEvt(obj,src,evnt)
 disp ('Post-get event triggered')
 % ...
 end
 function setPostPropEvt(obj,src,evnt)
 disp ('Post-set event triggered')
 % ...
 end
 function disp(obj)
 % Overload disp to avoid accessing property
 disp (class(obj))
 end
 end
end

The class specifies an initial value of 7 for the PropOne property. Therefore, if you create an object
and assign the property value of 7, there is no need to trigger the PreSet event. However, the
getPropOne method is called to get the current value of the property to compare to the assigned
vale.

 Assignment When Property Value Is Unchanged

11-35

obj = AbortTheSet;
obj.PropOne = 7;

get.PropOne called

If you specify a value other than 7, then MATLAB performs these steps:

• Gets the current property value
• Triggers the PreSet event
• Sets the property to the assigned value
• Triggers the PostSet event

obj = AbortTheSet;
obj.PropOne = 9;

get.PropOne called
Pre-set event triggered
set.PropOne called
Post-set event triggered

If you query the property value, the PreGet and PostGet events are triggered.

obj.PropOne

Pre-get event triggered
get.PropOne called
Post-get event triggered

ans =

 9

Using AbortSet with Property Validation
When classes use property validation and AbortSet in a property definition, MATLAB evaluates the
property validation before comparing the current value to the value being assigned. For example,
revise the AbortTheSet class to add a size restriction of 1-by-3 to the PropOne property.

classdef AbortTheSet < handle
 properties (SetObservable, GetObservable, AbortSet)
 % Restrict size to 1-by-3
 % ***********************
 PropOne (1,3) = [7 7 7]
 % ***********************
 end
 methods
 function obj = AbortTheSet
 addlistener(obj,'PropOne','PreGet',@obj.getPrePropEvt);
 addlistener(obj,'PropOne','PreSet',@obj.setPrePropEvt);
 addlistener(obj,'PropOne','PostGet',@obj.getPostPropEvt);
 addlistener(obj,'PropOne','PostSet',@obj.setPostPropEvt);
 end
 function propval = get.PropOne(obj)
 disp('get.PropOne called')
 propval = obj.PropOne;
 end

11 Events — Sending and Responding to Messages

11-36

 function set.PropOne(obj,val)
 disp('set.PropOne called')
 obj.PropOne = val;
 end
 function getPrePropEvt(obj,src,evnt)
 disp ('Pre-get event triggered')
 % ...
 end
 function setPrePropEvt(obj,src,evnt)
 disp ('Pre-set event triggered')
 % ...
 end
 function getPostPropEvt(obj,src,evnt)
 disp ('Post-get event triggered')
 % ...
 end
 function setPostPropEvt(obj,src,evnt)
 disp ('Post-set event triggered')
 % ...
 end
 function disp(obj)
 % Overload disp to avoid accessing property
 disp (class(obj))
 end
 end
end

Because MATLAB applies scalar expansion to satisfy the size restriction, the following assignment
does not trigger the PreSet or PostSet events.

obj = AbortTheSet;
obj.PropOne = 7;

get.PropOne called

obj.PropOne

Pre-get event triggered
get.PropOne called
Post-get event triggered

ans =

 7 7 7

For information on property validation, see “Validate Property Values” on page 8-19.

See Also

Related Examples
• “Property Access Methods” on page 8-40
• “Determine If Event Has Listeners” on page 11-28

 Assignment When Property Value Is Unchanged

11-37

Techniques for Using Events and Listeners

In this section...
“Example Overview” on page 11-38
“Techniques Demonstrated in This Example” on page 11-38
“Summary of fcneval Class” on page 11-39
“Summary of fcnview Class” on page 11-39
“Methods Inherited from Handle Class” on page 11-40
“Using the fcneval and fcnview Classes” on page 11-40
“Implement UpdateGraph Event and Listener” on page 11-42
“The PostSet Event Listener” on page 11-45
“Enable and Disable Listeners” on page 11-46
“@fcneval/fcneval.m Class Code” on page 11-47
“@fcnview/fcnview.m Class Code” on page 11-48

Example Overview
This example defines two classes:

• fcneval — The function evaluator class contains a MATLAB expression and evaluates this
expression over a specified range

• fcnview — The function viewer class contains a fcneval object and displays surface graphs of
the evaluated expression using the data contained in fcneval.

This class defines two events:

• A class-defined event that occurs when a new value is specified for the MATLAB function
• A property event that occurs when the property containing the limits is changed

The following diagram shows the relationship between the two objects. The fcnview object contains
a fcneval object and creates graphs from the data it contains. fcnview creates listeners to change
the graphs if any of the data in the fcneval object change.

Techniques Demonstrated in This Example
• Naming an event in the class definition
• Triggering an event by calling notify
• Enabling a property event via the SetObservable attribute
• Creating listeners for class-defined events and property PostSet events
• Defining listener callback functions that accept additional arguments
• Enabling and disabling listeners

11 Events — Sending and Responding to Messages

11-38

Summary of fcneval Class
The fcneval class evaluates a MATLAB expression over a specified range of two variables. The
fcneval is the source of the data that objects of the fcnview class graph as a surface. fcneval is
the source of the events used in this example. For a listing of the class definition, see “@fcneval/
fcneval.m Class Code” on page 11-47

Property Value Purpose
FofXY function handle MATLAB expression (function of two variables).
Lm two-element

vector
Limits over which function is evaluated in both variables.
SetObservable attribute set to true to enable property
event listeners.

Data structure with x,
y, and z matrices

Data resulting from evaluating the function. Used for
surface graph. Dependent attribute set to true, which
means the get.Data method is called to determine
property value when queried and no data is stored.

Event When Triggered
UpdateGraph FofXY property set function (set.FofXY) calls the notify method when a

new value is specified for the MATLAB expression on an object of this class.

Method Purpose
fcneval Class constructor. Inputs are function handle and two-element vector

specifying the limits over which to evaluate the function.
set.FofXY FofXY property set function. Called whenever property value is set, including

during object construction.
set.Lm Lm property set function. Used to test for valid limits.
get.Data Data property get function. This method calculates the values for the Data

property whenever that data is queried (by class members or externally).
grid A static method (Static attribute set to true) used in the calculation of the

data.

Summary of fcnview Class
Objects of the fcnview class contain fcneval objects as the source of data for the four surface
graphs created in a function view. fcnview creates the listeners and callback functions that respond
to changes in the data contained in fcneval objects. For a listing of the class definition, see
“@fcnview/fcnview.m Class Code” on page 11-48

Property Value Purpose
FcnObject fcneval object This object contains the data that is used to create

the function graphs.
HAxes axes handle Each instance of a fcnview object stores the

handle of the axes containing its subplot.

 Techniques for Using Events and Listeners

11-39

Property Value Purpose
HLUpdateGraph event.listener object

for UpdateGraph event
Setting the event.listener object's Enabled
property to true enables the listener; false
disables listener.

HLLm event.listener object
for Lm property event

Setting the event.listener object's Enabled
property to true enables the listener, false
disables listener.

HEnableCm uimenu handle Item on context menu used to enable listeners
(used to handle checked behavior)

HDisableCm uimenu handle Item on context menu used to disable listeners
(used to manage checked behavior)

HSurface surface handle Used by event callbacks to update surface data.

Method Purpose
fcnview Class constructor. Input is fcneval object.
createLisn Calls addlistener to create listeners for UpdateGraph and Lm

property PostSet listeners.
lims Sets axes limits to current value of fcneval object's Lm property.

Used by event handlers.
updateSurfaceData Updates the surface data without creating a new object. Used by

event handlers.
listenUpdateGraph Callback for UpdateGraph event.
listenLm Callback for Lm property PostSet event
delete Delete method for fcnview class.
createViews Static method that creates an instance of the fcnview class for each

subplot, defines the context menus that enable/disable listeners, and
creates the subplots

Methods Inherited from Handle Class
Both the fcneval and fcnview classes inherit methods from the handle class. The following table
lists only those inherited methods used in this example.

“Handle Class Methods” on page 7-11 provides a complete list of methods that are inherited when
you subclass the handle class.

Methods Inherited
from Handle Class

Purpose

addlistener Register a listener for a specific event and attach listener to event-defining
object.

notify Trigger an event and notify all registered listeners.

Using the fcneval and fcnview Classes
This section explains how to use the classes.

11 Events — Sending and Responding to Messages

11-40

• Create an instance of the fcneval class to contain the MATLAB expression of a function of two
variables and the range over which you want to evaluate this function

• Use the fcnview class static function createViews to visualize the function
• Change the MATLAB expression or the limits contained by the fcneval object and all the

fcnview objects respond to the events generated.

You create a fcneval object by calling its constructor with two arguments—an anonymous function
and a two-element, monotonically increasing vector. For example:

feobject = fcneval(@(x,y) x.*exp(-x.^2-y.^2),[-2 2]);

Use the createViews static method to create the graphs of the function. Use the class name to call
a static function:

fcnview.createViews(feobject);

The createView method generates four views of the function contained in the fcneval object.

Each subplot defines a context menu that can enable and disable the listeners associated with that
graph. For example, if you disable the listeners on subplot 221 (upper left) and change the MATLAB
expression contained by the fcneval object, only the remaining three subplots update when the
UpdateGraph event is triggered:

feobject.FofXY = @(x,y) x.*exp(-x.^.5-y.^.5);

 Techniques for Using Events and Listeners

11-41

Similarly, if you change the limits by assigning a value to the feobject.Lm property, the feobject
triggers a PostSet property event and the listener callbacks update the graph.

feobject.Lm = [-8 3];

In this figure, the listeners are reenabled via the context menu for subplot 221. Because the listener
callback for the property PostSet event also updates the surface data, all views are now
synchronized

Implement UpdateGraph Event and Listener
The UpdateGraph event occurs when the MATLAB representation of the mathematical function
contained in the fcneval object is changed. The fcnview objects that contain the surface graphs
are listening for this event, so they can update the graphs to represent the new function.

Define and Trigger UpdateGraph Event

The UpdateGraph event is a class-defined event. The fcneval class names the event and calls
notify when the event occurs.

11 Events — Sending and Responding to Messages

11-42

The fcnview class defines a listener for this event. When fcneval triggers the event, the fcnview
listener executes a callback function that performs the follow actions:

• Determines if the handle of the surface object stored by the fcnview object is still valid (that is,
does the object still exist)

• Updates the surface XData, YData, and ZData by querying the fcneval object's Data property.

The fcneval class defines an event name in an event block:

events
 UpdateGraph
end

Determine When to Trigger Event

The fcneval class defines a property set method for the FofXY property. FofXY is the property that
stores the MATLAB expression for the mathematical function. This expression must be a valid
MATLAB expression for a function of two variables.

The set.FofXY method:

• Determines the suitability of the expression
• If the expression is suitable:

• Assigns the expression to the FofXY property
• Triggers the UpdateGraph event

If fcneval.isSuitable does not return an MException object, the set.FofXY method assigns
the value to the property and triggers the UpdateGraph event.

function set.FofXY(obj,func)
% Determine if function is suitable to create a surface
 me = fcneval.isSuitable(func);
 if ~isempty(me)
 throw(me)
 end
% Assign property value
 obj.FofXY = func;
% Trigger UpdateGraph event
 notify(obj,'UpdateGraph');
end

Determine Suitability of Expression

The set.FofXY method calls a static method (fcneval.isSuitable) to determine the suitability of
the specified expression. fcneval.isSuitable returns an MException object if it determines that
the expression is unsuitable. fcneval.isSuitable calls the MException constructor directly to
create more useful error messages for the user.

set.FofXY issues the exception using the throw method. Issuing the exception terminates execution
of set.FofXY and prevents the method from making an assignment to the property or triggering the
UpdateGraph event.

Here is the fcneval.isSuitable method:
function isOk = isSuitable(funcH)
 v = [1 1;1 1];

 Techniques for Using Events and Listeners

11-43

 % Can the expression except 2 numeric inputs
 try
 funcH(v,v);
 catch %#ok<CTCH>
 me = MException('DocExample:fcneval',...
 ['The function ',func2str(funcH),' Is not a suitable F(x,y)']);
 isOk = me;
 return
 end
 % Does the expression return non-scalar data
 if isscalar(funcH(v,v));
 me = MException('DocExample:fcneval',...
 ['The function ',func2str(funcH),'' Returns a scalar when evaluated']);
 isOk = me;
 return
 end
 isOk = [];
end

The fcneval.isSuitable method could provide additional test to ensure that the expression
assigned to the FofXY property meets the criteria required by the class design.

Other Approaches

The class could have implemented a property set event for the FofXY property and would, therefore,
not need to call notify (see “Listen for Changes to Property Values” on page 11-31). Defining a class
event provides more flexibility in this case because you can better control event triggering.

For example, suppose that you wanted to update the graph only if the new data is different. If the new
expression produced the same data within some tolerance, the set.FofXY method could not trigger
the event and avoid updating the graph. However, the method could still set the property to the new
value.

Listener and Callback for UpdateGraph Event

The fcnview class creates a listener for the UpdateGraph event using the addlistener method:
obj.HLUpdateGraph = addlistener(obj.FcnObject,'UpdateGraph',...
 @(src,evnt)listenUpdateGraph(obj,src,evnt)); % Add obj to argument list

The fcnview object stores a handle to the event.listener object in its HLUpdateGraph property,
which is used to enable/disable the listener by a context menu (see “Enable and Disable Listeners” on
page 11-46).

The fcnview object (obj) is added to the two default arguments (src, evnt) passed to the listener
callback. Keep in mind, the source of the event (src) is the fcneval object, but the fcnview object
contains the handle of the surface object that the callback updates.

The listenUpdateGraph function is defined as follows:

function listenUpdateGraph(obj,src,evnt)
 if ishandle(obj.HSurface) % If surface exists
 obj.updateSurfaceData % Update surface data
 end
end

The updateSurfaceData function is a class method that updates the surface data when a different
mathematical function is assigned to the fcneval object. Updating a graphics object data is more
efficient than creating a new object using the new data:

function updateSurfaceData(obj)
% Get data from fcneval object and set surface data

11 Events — Sending and Responding to Messages

11-44

 set(obj.HSurface,...
 'XData',obj.FcnObject.Data.X,...
 'YData',obj.FcnObject.Data.Y,...
 'ZData',obj.FcnObject.Data.Matrix);
end

The PostSet Event Listener
All properties support the predefined PostSet event (See “Property-Set and Query Events” on page
11-13 for more information on property events). This example uses the PostSet event for the
fcneval Lm property. This property contains a two-element vector specifying the range over which
the mathematical function is evaluated. Just after this property is changed (by a statement like
obj.Lm = [-3 5];), the fcnview objects listening for this event update the graph to reflect the
new data.

Sequence During the Lm Property Assignment

The fcneval class defines a set function for the Lm property. When a value is assigned to this
property during object construction or property reassignment, the following sequence occurs:

1 An attempt is made to assign argument value to Lm property.
2 The set.Lm method executes to check whether the value is in appropriate range — if yes, it

makes assignment, if no, it generates an error.
3 If the value of Lm is set successfully, MATLAB triggers a PostSet event.
4 All listeners execute their callbacks, but the order is nondeterministic.

The PostSet event does not occur until an actual assignment of the property occurs. The property
set function provides an opportunity to deal with potential assignment errors before the PostSet
event occurs.

Enable PostSet Property Event

To create a listener for the PostSet event, you must set the property's SetObservable attribute to
true:

properties (SetObservable = true)
 Lm = [-2*pi 2*pi]; % specifies default value
end

MATLAB automatically triggers the event so it is not necessary to call notify.

“Specify Property Attributes” on page 8-5 provides a list of all property attributes.

Listener and Callback for PostSet Event

The fcnview class creates a listener for the PostSet event using the addlistener method:
obj.HLLm = addlistener(obj.FcnObject,'Lm','PostSet',...
 @(src,evnt)listenLm(obj,src,evnt)); % Add obj to argument list

The fcnview object stores a handle to the event.listener object in its HLLm property, which is
used to enable/disable the listener by a context menu (see “Enable and Disable Listeners” on page
11-46).

 Techniques for Using Events and Listeners

11-45

The fcnview object (obj) is added to the two default arguments (src, evnt) passed to the listener
callback. Keep in mind, the source of the event (src) is the fcneval object, but the fcnview object
contains the handle of the surface object that the callback updates.

The callback sets the axes limits and updates the surface data because changing the limits causes the
mathematical function to be evaluated over a different range:

function listenLm(obj,src,evnt)
 if ishandle(obj.HAxes) % If there is an axes
 lims(obj); % Update its limits
 if ishandle(obj.HSurface) % If there is a surface
 obj.updateSurfaceData % Update its data
 end
 end
end

Enable and Disable Listeners
Each fcnview object stores the handle of the listener objects it creates so that the listeners can be
enabled or disabled via a context menu after the graphs are created. All listeners are instances of the
event.listener class, which defines a property called Enabled. By default, this property has a
value of true, which enables the listener. If you set this property to false, the listener still exists,
but is disabled. This example creates a context menu active on the axes of each graph that provides a
way to change the value of the Enabled property.

Context Menu Callback

There are two callbacks used by the context menu corresponding to the two items on the menu:

• Listen — Sets the Enabled property for both the UpdateGraph and PostSet listeners to true
and adds a check mark next to the Listen menu item.

• Don't Listen — Sets the Enabled property for both the UpdateGraph and PostSet listeners to
false and adds a check mark next to the Don't Listen menu item.

Both callbacks include the fcnview object as an argument (in addition to the required source and
event data arguments) to provide access to the handle of the listener objects.

The enableLisn function is called when the user selects Listen from the context menu.

function enableLisn(obj,src,evnt)
 obj.HLUpdateGraph.Enabled = true; % Enable listener
 obj.HLLm.Enabled = true; % Enable listener
 set(obj.HEnableCm,'Checked','on') % Check Listen
 set(obj.HDisableCm,'Checked','off') % Uncheck Don't Listen
end

The disableLisn function is called when the user selects Don't Listen from the context menu.

function disableLisn(obj,src,evnt)
 obj.HLUpdateGraph.Enabled = false; % Disable listener
 obj.HLLm.Enabled = false; % Disable listener
 set(obj.HEnableCm,'Checked','off') % Unheck Listen
 set(obj.HDisableCm,'Checked','on') % Check Don't Listen
end

11 Events — Sending and Responding to Messages

11-46

@fcneval/fcneval.m Class Code
classdef fcneval < handle
 properties
 FofXY
 end

 properties (SetObservable = true)
 Lm = [-2*pi 2*pi]
 end % properties SetObservable = true

 properties (Dependent = true)
 Data
 end

 events
 UpdateGraph
 end

 methods
 function obj = fcneval(fcn_handle,limits) % Constructor returns object
 if nargin > 0
 obj.FofXY = fcn_handle; % Assign property values
 obj.Lm = limits;

 end
 end

 function set.FofXY(obj,func)
 me = fcneval.isSuitable(func);
 if ~isempty(me)
 throw(me)
 end
 obj.FofXY = func;
 notify(obj,'UpdateGraph');
 end

 function set.Lm(obj,lim)
 if ~(lim(1) < lim(2))
 error('Limits must be monotonically increasing')
 else
 obj.Lm = lim;
 end
 end

 function data = get.Data(obj)
 [x,y] = fcneval.grid(obj.Lm);
 matrix = obj.FofXY(x,y);
 data.X = x;
 data.Y = y;
 data.Matrix = real(matrix);

 end

 end % methods

 methods (Static = true)
 function [x,y] = grid(lim)
 inc = (lim(2)-lim(1))/20;
 [x,y] = meshgrid(lim(1):inc:lim(2));
 end % grid

 function isOk = isSuitable(funcH)
 v = [1 1;1 1];
 try
 funcH(v,v);
 catch %#ok<CTCH>
 me = MException('DocExample:fcneval',...
 ['The function ',func2str(funcH),' Is not a suitable F(x,y)']);
 isOk = me;
 return
 end

 Techniques for Using Events and Listeners

11-47

 if isscalar(funcH(v,v));
 me = MException('DocExample:fcneval',...
 ['The function ',func2str(funcH),' Returns a scalar when evaluated']);
 isOk = me;
 return
 end
 isOk = [];
 end

 end

end

@fcnview/fcnview.m Class Code
classdef fcnview < handle
 properties
 FcnObject % fcneval object
 HAxes % subplot axes handle
 HLUpdateGraph % UpdateGraph listener handle
 HLLm % Lm property PostSet listener handle
 HEnableCm % "Listen" context menu handle
 HDisableCm % "Don't Listen" context menu handle
 HSurface % Surface object handle
 end

 methods
 function obj = fcnview(fcnobj)
 if nargin > 0
 obj.FcnObject = fcnobj;
 obj.createLisn;
 end
 end

 function createLisn(obj)
 obj.HLUpdateGraph = addlistener(obj.FcnObject,'UpdateGraph',...
 @(src,evnt)listenUpdateGraph(obj,src,evnt));
 obj.HLLm = addlistener(obj.FcnObject,'Lm','PostSet',...
 @(src,evnt)listenLm(obj,src,evnt));
 end

 function lims(obj)
 lmts = obj.FcnObject.Lm;
 set(obj.HAxes,'XLim',lmts);
 set(obj.HAxes,'Ylim',lmts);
 end

 function updateSurfaceData(obj)
 data = obj.FcnObject.Data;
 set(obj.HSurface,...
 'XData',data.X,...
 'YData',data.Y,...
 'ZData',data.Matrix);
 end

 function listenUpdateGraph(obj,~,~)
 if ishandle(obj.HSurface)
 obj.updateSurfaceData
 end
 end

11 Events — Sending and Responding to Messages

11-48

 function listenLm(obj,~,~)
 if ishandle(obj.HAxes)
 lims(obj);
 if ishandle(obj.HSurface)
 obj.updateSurfaceData
 end
 end
 end

 function delete(obj)
 if ishandle(obj.HAxes)
 delete(obj.HAxes);
 else
 return
 end
 end

 end
 methods (Static)
 createViews(a)
 end
end

@fcnview/createViews

function createViews(fcnevalobj)
 p = pi; deg = 180/p;
 hfig = figure('Visible','off',...
 'Toolbar','none');

 for k=4:-1:1
 fcnviewobj(k) = fcnview(fcnevalobj);
 axh = subplot(2,2,k);
 fcnviewobj(k).HAxes = axh;
 hcm(k) = uicontextmenu;
 set(axh,'Parent',hfig,...
 'FontSize',8,...
 'UIContextMenu',hcm(k))
 fcnviewobj(k).HEnableCm = uimenu(hcm(k),...
 'Label','Listen',...
 'Checked','on',...
 'Callback',@(src,evnt)enableLisn(fcnviewobj(k),src,evnt));
 fcnviewobj(k).HDisableCm = uimenu(hcm(k),...
 'Label','Don''t Listen',...
 'Checked','off',...
 'Callback',@(src,evnt)disableLisn(fcnviewobj(k),src,evnt));
 az = p/k*deg;
 view(axh,az,30)
 title(axh,['View: ',num2str(az),' 30'])
 fcnviewobj(k).lims;
 surfLight(fcnviewobj(k),axh)
 end
 set(hfig,'Visible','on')
end
function surfLight(obj,axh)
 obj.HSurface = surface(obj.FcnObject.Data.X,...
 obj.FcnObject.Data.Y,...

 Techniques for Using Events and Listeners

11-49

 obj.FcnObject.Data.Matrix,...
 'FaceColor',[.8 .8 0],'EdgeColor',[.3 .3 .2],...
 'FaceLighting','phong',...
 'FaceAlpha',.3,...
 'HitTest','off',...
 'Parent',axh);
 lims(obj)
 camlight left; material shiny; grid off
 colormap copper
end

function enableLisn(obj,~,~)
 obj.HLUpdateGraph.Enabled = true;
 obj.HLLm.Enabled = true;
 set(obj.HEnableCm,'Checked','on')
 set(obj.HDisableCm,'Checked','off')
end

function disableLisn(obj,~,~)
 obj.HLUpdateGraph.Enabled = false;
 obj.HLLm.Enabled = false;
 set(obj.HEnableCm,'Checked','off')
 set(obj.HDisableCm,'Checked','on')
end

11 Events — Sending and Responding to Messages

11-50

How to Build on Other Classes

• “Hierarchies of Classes — Concepts” on page 12-2
• “Subclass Syntax” on page 12-5
• “Design Subclass Constructors” on page 12-7
• “Control Sequence of Constructor Calls” on page 12-11
• “Modify Inherited Methods” on page 12-13
• “Modify Inherited Properties” on page 12-17
• “Subclassing Multiple Classes” on page 12-19
• “Specify Allowed Subclasses” on page 12-21
• “Class Members Access” on page 12-24
• “Property Access List” on page 12-30
• “Method Access List” on page 12-31
• “Event Access List” on page 12-32
• “Handle Compatible Classes” on page 12-33
• “How to Define Handle-Compatible Classes” on page 12-35
• “Methods for Handle Compatible Classes” on page 12-39
• “Handle-Compatible Classes and Heterogeneous Arrays” on page 12-40
• “Subclasses of MATLAB Built-In Types” on page 12-42
• “Behavior of Inherited Built-In Methods” on page 12-45
• “Subclasses of Built-In Types Without Properties” on page 12-49
• “Subclasses of Built-In Types with Properties” on page 12-52
• “Use of size and numel with Classes” on page 12-59
• “Representing Hardware with Classes” on page 12-64
• “Determine Array Class” on page 12-67
• “Abstract Classes and Class Members” on page 12-70
• “Define an Interface Superclass” on page 12-74

12

Hierarchies of Classes — Concepts

In this section...
“Classification” on page 12-2
“Develop the Abstraction” on page 12-2
“Design of Class Hierarchies” on page 12-2
“Super and Subclass Behavior” on page 12-3
“Implementation and Interface Inheritance” on page 12-3

Classification
Organizing classes into hierarchies facilitates the reuse of code and the reuse of solutions to design
problems that have already been solved. You can think of class hierarchies as sets — supersets
(referred to as superclasses or base classes), and subsets (referred to as subclasses or derived
classes). For example, the following picture shows how you could represent an employee database
with classes.

The root of the hierarchy is the Employees class. It contains data and operations that apply to the
set of all employees. Contained in the set of employees are subsets whose members, while still
employees, are also members of sets that more specifically define the type of employee. Subclasses
like TestEngineer are examples of these subsets.

Develop the Abstraction
Classes are representations of real world concepts or things. When designing a class, form an
abstraction of what the class represents. Consider an abstraction of an employee and what are the
essential aspects of employees for the intended use of the class. Name, address, and department can
be what all employees have in common.

When designing classes, your abstraction contains only those elements that are necessary. For
example, the employee hair color and shoe size certainly characterize the employee, but are probably
not relevant to the design of this employee class. Their sales region is relevant only to some employee
so this characteristic belongs in a subclass.

Design of Class Hierarchies
As you design a system of classes, put common data and functionality in a superclass, which you then
use to derive subclasses. The subclasses inherit the data and functionality of the superclass and
define only aspects that are unique to their particular purposes. This approach provides advantages:

• Avoid duplicating code that is common to all classes.
• Add or change subclasses at any time without modifying the superclass or affecting other

subclasses.
• If the superclass changes (for example, all employees are assigned a number), then the subclass

automatically get these changes.

12 How to Build on Other Classes

12-2

Super and Subclass Behavior
Subclass objects behave like objects of the superclass because they are specializations of the
superclass. This fact facilitates the development of related classes that behave similarly, but are
implemented differently.

A Subclass Object “Is A” Superclass Object

You can usually describe the relationship between an object of a subclass and an object of its
superclass with a statement like:

The subclass is a superclass. For example: An Engineer is an Employee.

This relationship implies that objects belonging to a subclass have the same properties, methods, and
events as the superclass. Subclass objects also have any new features defined by the subclass. Test
this relationship with the isa function.

Treat Subclass Objects like Superclass Objects

You can pass a subclass object to a superclass method, but you can access only those properties that
the superclass defines. This behavior enables you to modify the subclasses without affecting the
superclass.

Two points about super and subclass behavior to keep in mind are:

• Methods defined in the superclass can operate on subclass objects.
• Methods defined in the subclass cannot operate on superclass objects.

Therefore, you can treat an Engineer object like any other Employees object, but an Employee
object cannot pass for an Engineer object.

Limitations to Object Substitution

MATLAB determines the class of an object based on its most specific class. Therefore, an Engineer
object is of class Engineer, while it is also an Employees object, as using the isa function reveals.

Generally, MATLAB does not allow you to create arrays containing a mix of superclass and subclass
objects because an array can be of only one class. If you attempt to concatenate objects of different
classes, MATLAB looks for a converter method defined by the less dominant class

See “Concatenating Objects of Different Classes” on page 10-15 for more information.

See matlab.mixin.Heterogeneous for information on defining heterogeneous class hierarchies.

See “Object Converters” on page 17-10 for information on defining converter methods.

Implementation and Interface Inheritance
MATLAB classes support both the inheritance of implemented methods from a superclass and the
inheritance of interfaces defined by abstract methods in the superclass.

Implementation inheritance enables code reuse by subclasses. For example, an employee class can
have a submitStatus method that all employee subclasses can use. Subclasses can extend an
inherited method to provide specialized functionality, while reusing the common aspects. See “Modify
Inherited Methods” on page 12-13 for more information on this process.

 Hierarchies of Classes — Concepts

12-3

Interface inheritance is useful in these cases:

• You want a group of classes to provide a common interface.
• Subclasses create specialized implementations of methods and properties.

Create an interface using an abstract class as the superclass. This class defines the methods and
properties that you must implement in the subclasses, but does not provide an implementation.

The subclasses must provide their own implementation of the abstract members of the superclass. To
create an interface, define methods and properties as abstract using their Abstract attribute. See
“Abstract Classes and Class Members” on page 12-70 for more information and an example.

See Also

Related Examples
• “Design Subclass Constructors” on page 12-7

12 How to Build on Other Classes

12-4

Subclass Syntax
In this section...
“Subclass Definition Syntax” on page 12-5
“Subclass double” on page 12-5

Subclass Definition Syntax
To define a class that is a subclass of another class, add the superclass to the classdef line after a <
character:

classdef ClassName < SuperClass

When inheriting from multiple classes, use the & character to indicate the combination of the
superclasses:

classdef ClassName < SuperClass1 & SuperClass2

See “Class Member Compatibility” on page 12-19 for more information on deriving from multiple
superclasses.

Class Attributes

Subclasses do not inherit superclass attributes.

Subclass double
Suppose you want to define a class that derived from double and restricts values to be positive
numbers. The PositiveDouble class:

• Supports a default constructor (no input arguments). See “No Input Argument Constructor
Requirement” on page 9-19

• Restricts the inputs to positive values using mustBePositive.
• Calls the superclass constructor with the input value to create the double numeric value.

classdef PositiveDouble < double
 methods
 function obj = PositiveDouble(data)
 if nargin == 0
 data = 1;
 else
 mustBePositive(data)
 end
 obj = obj@double(data);
 end
 end
end

Create an object of the PositiveDouble class using a 1-by-5 array of numbers:

a = PositiveDouble(1:5);

You can perform operations on objects of this class like any double.

 Subclass Syntax

12-5

sum(a)

ans =

 15

Objects of the PositiveDouble class must be positive values.

a = PositiveDouble(0:5);

Error using mustBePositive (line 19)
Value must be positive.

Error in PositiveDouble (line 7)
 mustBePositive(data)

See Also

Related Examples
• “Design Subclass Constructors” on page 12-7
• “Subclasses of MATLAB Built-In Types” on page 12-42

12 How to Build on Other Classes

12-6

Design Subclass Constructors
In this section...
“Call Superclass Constructor Explicitly” on page 12-7
“Call Superclass Constructor from Subclass” on page 12-7
“Subclass Constructor Implementation” on page 12-8
“Call Only Direct Superclass from Constructor” on page 12-9

Call Superclass Constructor Explicitly
Explicitly calling each superclass constructor from a subclass constructor enables you to:

• Pass arguments to superclass constructors
• Control the order in which MATLAB calls the superclass constructors

If you do not explicitly call the superclass constructors from the subclass constructor, MATLAB
implicitly calls these constructors with no arguments. The superclass constructors must support the
no argument syntax to support implicit calls.

MATLAB does not guarantee any specific calling order when there are multiple superclasses. If the
order in which MATLAB calls the superclass constructors is important, call the superclass
constructors explicitly from the subclass constructor.

If you do not define a subclass constructor, you can call the default constructor with superclass
arguments. For more information, see “Default Constructor” on page 9-18 and “Implicit Call to
Inherited Constructor” on page 9-21.

Call Superclass Constructor from Subclass
To call the constructor for each superclass within the subclass constructor, use the following syntax:

obj@SuperClass1(args,...);

...

obj@SuperclassN(args,...);

Where obj is the output of the subclass constructor, SuperClass... is the name of a superclass,
and args are any arguments required by the respective superclass constructor.

For example, the following segment of a class definition shows that a class called Stocks that is a
subclass of a class called Assets.

classdef Stocks < Assets
 methods
 function s = Stocks(asset_args,...)
 if nargin == 0
 % Assign values to asset_args
 end
 % Call asset constructor
 s@Assets(asset_args);

 Design Subclass Constructors

12-7

 ...
 end
 end
end

“Subclass Constructors” on page 9-19 provides more information on creating subclass constructor
methods.

Reference Superclasses Contained in Packages

If a superclass is contained in a package, include the package name. For example, the Assests class
is in the finance package:

classdef Stocks < finance.Assets
 methods
 function s = Stocks(asset_args,...)
 if nargin == 0
 ...
 end
 % Call asset constructor
 s@finance.Assets(asset_args);
 ...
 end
 end
end

Initialize Objects Using Multiple Superclasses

To derive a class from multiple superclasses, initialize the subclass object with calls to each
superclass constructor:

classdef Stocks < finance.Assets & Taxable
 methods
 function s = Stocks(asset_args,tax_args,...)
 if nargin == 0
 ...
 end
 % Call asset and member class constructors
 s@finance.Assets(asset_args)
 s@Taxable(tax_args)
 ...
 end
 end
end

Subclass Constructor Implementation
To ensure that your class constructor supports the zero arguments syntax, assign default values to
input argument variables before calling the superclass constructor. You cannot conditionalize a
subclass call to the superclass constructor. Locate calls to superclass constructors outside any
conditional code blocks.

For example, the Stocks class constructor supports the no argument case with the if statement, but
calls the superclass constructor outside of the if code block.

classdef Stocks < finance.Assets
 properties

12 How to Build on Other Classes

12-8

 NumShares
 Symbol
 end
 methods
 function s = Stocks(description,numshares,symbol)
 if nargin == 0
 description = '';
 numshares = 0;
 symbol = '';
 end
 s@finance.Assets(description);
 s.NumShares = numshares;
 s.Symbol = symbol;
 end
 end
end

Call Only Direct Superclass from Constructor
Call only direct superclass constructors from a subclass constructor. For example, suppose class B
derives from class A and class C derives from class B. The constructor for class C cannot call the
constructor for class A to initialize properties. Class B must initialize class A properties.

The following implementations of classes A, B, and C show how to design this relationship in each
class.

Class A defines properties x and y, but assigns a value only to x:

classdef A
 properties
 x
 y
 end
 methods
 function obj = A(x)
 ...
 obj.x = x;
 end
 end
end

Class B inherits properties x and y from class A. The class B constructor calls the class A constructor
to initialize x and then assigns a value to y.

classdef B < A
 methods
 function obj = B(x,y)
 ...
 obj@A(x);
 obj.y = y;
 end
 end
end

Class C accepts values for the properties x and y, and passes these values to the class B constructor,
which in turn calls the class A constructor:

 Design Subclass Constructors

12-9

classdef C < B
 methods
 function obj = C(x,y)
 ...
 obj@B(x,y);
 end
 end
end

See Also

Related Examples
• “No Input Argument Constructor Requirement” on page 9-19

12 How to Build on Other Classes

12-10

Control Sequence of Constructor Calls
MATLAB does not guarantee the sequence in which superclass constructors are called when
constructing a subclass object. However, you can control this order by calling superclass constructors
explicitly from the subclass constructor.

If you explicitly call a superclass constructor from the most specific subclass constructor (ClassC in
the following diagram), then MATLAB calls the most specific subclass constructor first. If you do not
make an explicit call to a superclass constructor from the subclass constructor, MATLAB makes the
implicit call when accessing the object.

Suppose that you have a hierarchy of classes in which ClassC derives from ClassB, which derives
from ClassA. The constructor for a subclass can call only direct superclasses. Therefore, each class
constructor can call the direct superclass constructor:

In cases of multiple inheritance, the subclass constructor can call each superclass constructor. To
ensure that a specific superclass constructor calling sequence is followed, call all direct superclass
constructors explicitly from the most specific subclass constructor:

 Control Sequence of Constructor Calls

12-11

See Also

Related Examples
• “Call Only Direct Superclass from Constructor” on page 12-9
• “Class Constructor Methods” on page 9-16

12 How to Build on Other Classes

12-12

Modify Inherited Methods
In this section...
“When to Modify Superclass Methods” on page 12-13
“Extend Superclass Methods” on page 12-13
“Reimplement Superclass Process in Subclass” on page 12-14
“Redefine Superclass Methods” on page 12-15
“Implement Abstract Method in Subclass” on page 12-15

When to Modify Superclass Methods
Class designs enable you to pass subclass objects to superclass methods. The superclass method
executes properly because the subclass object is a superclass object. However, subclasses can
implement their own versions of superclass methods, which MATLAB calls when passed subclass
objects.

Subclasses override inherited methods (that is, implement a method of the same name) when there is
a need to provide specialized behavior in the subclass. Here are some patterns that override
superclass methods.

• Extend the superclass method by calling it from within the subclass method. The subclass method
can perform subclass-specific processing in addition to calling the superclass method.

• In a superclass method, implement a series of steps in a procedure using protected methods. Then
reimplement these steps in a subclass method by redefining the protected methods that are called
from within a public superclass method.

• Redefine the same-named method in the subclass, but use different implementations to perform
the same operation differently on subclass objects.

• Implement abstract superclass methods in the subclass. Abstract superclasses can define methods
with no implementation and rely on subclasses to provide the implementation. For more
information, see “Define an Interface Superclass” on page 12-74.

Subclass methods that override superclass methods must define the same value for the Access
attribute as is defined by the superclass method.

Extend Superclass Methods
Calling the same-named superclass method from a subclass method enables you to extend the
superclass method for subclass objects without affecting the superclass method.

For example, suppose that both superclass and subclass define a method called foo. The subclass
method calls the superclass method and performs other steps in addition to the call to the superclass
method. The subclass method can operate on the specialized parts to the subclass that are not part of
the superclass.

For example, this subclass defines a foo method that calls the superclass foo method

classdef Sub < Super
 methods
 function foo(obj)

 Modify Inherited Methods

12-13

 % preprocessing steps
 ...
 foo@Super(obj);
 % postprocessing steps
 ...
 end
 end
end

Reimplement Superclass Process in Subclass
A superclass method can define a process that executes in a series of steps using a method for each
step (typically Access attribute is set to protected for the step methods). This pattern (referred to
as a template method) enables subclasses to create their own versions of the protected methods that
implement the individual steps in the process. The process is specialized for the subclass.

Implement this technique as shown here:

classdef Super
 methods (Sealed)
 function foo(obj)
 step1(obj) % Call step1
 step2(obj) % Call step2
 step3(obj) % Call step3
 end
 end
 methods (Access = protected)
 function step1(obj)
 % Superclass version
 end
 function step2(obj)
 % Superclass version
 end
 function step3(obj)
 % Superclass version
 end
 end
end

The subclass does not override the foo method. Instead it overrides only the protected methods that
perform the series of steps (step1(obj), step2(obj), step3(obj)). This technique enables the
subclass to specialize the actions taken by each step, but not control the order of the steps in the
process. When you pass a subclass object to the superclass foo method, MATLAB calls the subclass
step methods because of the dispatching rules. For more information on method dispatching, see
“Method Invocation” on page 9-11.

classdef Sub < Super
 ...
 methods (Access = protected)
 function step1(obj)
 % Subclass version
 end
 function step2(obj)
 % Subclass version
 end
 function step3(obj)

12 How to Build on Other Classes

12-14

 % Subclass version
 end
 ...
 end
end

Redefine Superclass Methods
You can completely redefine a superclass method in a subclass. In this case, both the superclass and
the subclass would define a method with the same name. However, the implementation would be
different and the subclass method would not call the superclass method. Creating independent
versions of the same-named method can be necessary when the same operation requires different
implementation on the superclass and subclass.

classdef Super
 methods
 function foo(obj)
 % Superclass implementation
 end
 end
end

classdef Sub < Super
 methods
 function foo(obj)
 % Subclass implementation
 end
 end
end

Implement Abstract Method in Subclass
Abstract methods have no implementation. Subclasses that inherit abstract methods must provide a
subclass-specific implementation for the subclass to be a concrete class. For more information, see
“Abstract Classes and Class Members” on page 12-70.

classdef Super
 methods (Abstract)
 foo(obj)
 % Abstract method without implementation
 end
 end
end

classdef Sub < Super
 methods
 function foo(obj)
 % Subclass implementation of concrete method
 end
 end
end

 Modify Inherited Methods

12-15

See Also

Related Examples
• “Invoking Superclass Methods in Subclass Methods” on page 9-15
• “Abstract Classes and Class Members” on page 12-70
• “Modify Inherited Properties” on page 12-17

12 How to Build on Other Classes

12-16

Modify Inherited Properties
In this section...
“Superclass Property Modification” on page 12-17
“Private Local Property Takes Precedence in Method” on page 12-17

Superclass Property Modification
There are two separate conditions under which you can redefine superclass properties:

• The value of the superclass property Abstract attribute is true
• The values of the superclass property SetAccess and GetAccess attributes are private

If a superclass defines a property as abstract, the subclass must implement a concrete version of this
property or the subclass is also abstract. Superclasses define abstract properties to create a
consistent interface among subclasses.

If a superclass defines a property with private access, then only the superclass can access this
property. The subclass can implement a different property with the same name.

Private Local Property Takes Precedence in Method
When superclass and subclass define a property with the same name, methods that refer to this
property access the property of the class defining the method.

For example, if a subclass property has the same name as a superclass private property, and a method
of the superclass references the property name, MATLAB accesses the property defined by the
superclass.

Consider the following classes, Super and Sub:

classdef Super
 properties (Access = private)
 Prop = 2
 end
 methods
 function p = superMethod(obj)
 p = obj.Prop;
 end
 end
end

classdef Sub < Super
 properties
 Prop = 1
 end
end

If you create an instance of the Sub class and use it to call the superclass method, MATLAB accesses
the private property of the superclass:

subObj = Sub

 Modify Inherited Properties

12-17

subObj =

 Sub with properties:

 Prop: 1

subObj.superMethod

ans =

 2

See Also

More About
• “Property Attributes” on page 8-6

12 How to Build on Other Classes

12-18

Subclassing Multiple Classes
In this section...
“Specify Multiple Superclasses” on page 12-19
“Class Member Compatibility” on page 12-19
“Multiple Inheritance” on page 12-20

Specify Multiple Superclasses
When inheriting from multiple classes, use the & character to indicate the combination of the
superclasses:

classdef ClassName < SuperClass1 & SuperClass2

For more information on class syntax, see “Subclass Syntax” on page 12-5.

Class Member Compatibility
When you create a subclass derived from multiple superclasses, the subclass inherits the properties,
methods, and events defined by all specified superclasses. If more than one superclass defines a
property, method, or event having the same name, there must be an unambiguous resolution to the
multiple definitions. You cannot derive a subclass from any two or more classes that define
incompatible class members.

Here are various situations where you can resolve name and definition conflicts.

Property Conflicts

If two or more superclasses define a property with the same name, then at least one of the following
must be true:

• All, or all but one of the properties must have their SetAccess and GetAccess attributes set to
private

• The properties have the same definition in all superclasses (for example, when all superclasses
inherited the property from a common base class)

Method Conflicts

If two or more superclasses define methods with the same name, then at least one of the following
must be true:

• The method Access attribute is private so only the defining superclass can access the method.
• The method has the same definition in all subclasses. This situation can occur when all

superclasses inherit the method from a common base class and none of the superclasses override
the inherited definition.

• The subclass redefines the method to disambiguate the multiple definitions across all
superclasses. Therefore, the superclass methods must not have their Sealed attribute set to
true.

• Only one superclass defines the method as Sealed, in which case, the subclass adopts the sealed
method definition.

 Subclassing Multiple Classes

12-19

• The superclasses define the methods as Abstract and rely on the subclass to define the method.

Event Conflicts

If two or more superclasses define events with the same name, then at least one of the following must
be true:

• The event ListenAccess and NotifyAccess attributes must be private.
• The event has the same definition in all superclasses (for example, when all superclasses inherited

the event from a common base class)

Multiple Inheritance
Resolving the potential conflicts involved when defining a subclass from multiple classes often
reduces the value of this approach. For example, problems can arise when you enhance superclasses
in future versions and introduce new conflicts.

Reduce potential problems by implementing only one unrestricted superclass. In all other
superclasses, all methods are

• Abstract
• Defined by a subclass
• Inherited from the unrestricted superclass

When using multiple inheritance, ensure that all superclasses remain free of conflicts in definition.

See Also

Related Examples
• “Design Subclass Constructors” on page 12-7
• “Handle Compatible Classes” on page 12-33

12 How to Build on Other Classes

12-20

Specify Allowed Subclasses
In this section...
“Basic Knowledge” on page 12-21
“Why Control Allowed Subclasses” on page 12-21
“Specify Allowed Subclasses” on page 12-21
“Define Sealed Hierarchy of Classes” on page 12-22

Basic Knowledge
The material presented in this section builds on an understanding of the following information:

• “Class Metadata” on page 16-2
• “Attribute Specification” on page 5-18

Why Control Allowed Subclasses
A class definition can specify a list of classes that it allows as subclasses. Classes not in the list
cannot be defined as subclass of the class. To specify the allowed subclasses, use the
AllowedSubclasses class attribute.

The AllowedSubclasses attribute provides a design point between Sealed classes, which do not
allow subclassing, and the default behavior, which does not restrict subclassing.

By controlling the allowed subclasses, you can create a sealed hierarchy of classes. That is, a system
of classes that enables a specific set of classes to derive from specific base classes, but that does not
allow unrestricted subclassing.

See “Define Sealed Hierarchy of Classes” on page 12-22 for more about this technique.

Specify Allowed Subclasses
Specify a list of one or more allowed subclasses in the classdef statement by assigning
meta.class objects to the AllowedSubclasses attribute. Create the meta.class object
referencing a specific class using the ? operator and the class name:

classdef (AllowedSubclasses = ?ClassName) MySuperClass
 ...
end

Use a cell array of meta.class objects to define more than one allowed subclass:
classdef (AllowedSubclasses = {?ClassName1,?ClassName2,...?ClassNameN}) MySuperClass
 ...
end

Always use the fully qualified class name when referencing the class name:
classdef (AllowedSubclasses = ?Package.SubPackage.ClassName1) MySuperClass
 ...
end

Assigning an empty cell array to the AllowedSubclasses attribute is effectively the same as
defining a Sealed class.

 Specify Allowed Subclasses

12-21

classdef (AllowedSubclasses = {}) MySuperClass
 ...
end

Note Use only the ? operator and the class name to generate meta.class objects. Values assigned
to the AllowedSubclasses attribute cannot contain any other MATLAB expressions, including
functions that return either meta.class objects or cell arrays of meta.class objects.

Result of Declaring Allowed Subclasses

Including a class in the list of AllowedSubclasses does not define that class as a subclass or
require you to define the class as a subclass. It just allows the referenced class to be defined as a
subclass.

Declaring a class as an allowed subclass does not affect whether this class can itself be subclassed.

A class definition can contain assignments to the AllowedSubclasses attribute that reference
classes that are not currently defined or available on the MATLAB path. Any referenced subclass that
MATLAB cannot find when loading the class is effectively removed from the list without causing an
error or warning. MATLAB remembers the referenced class in case it becomes available at a later
point in time.

Note If MATLAB does not find any of the classes in the allowed subclasses list, the class is effectively
Sealed. A sealed class is equivalent to AllowedSubclasses = {}.

Use the meta.class property RestrictsSubclassing to determine if a class is Sealed or
specifies AllowedSubclasses.

Define Sealed Hierarchy of Classes
The AllowedSubclasses attribute enables you to define a sealed class hierarchy by sealing the
allowed subclasses:

classdef (AllowedSubclasses = {?SubClass1,?SubClass2}) SuperClass
 ...
end

Define the allowed subclasses as Sealed:

classdef (Sealed) SubClass1
 ...
end

classdef (Sealed) SubClass2
 ...
end

Sealed class hierarchies enable you to use the level of abstraction that your design requires while
maintaining a closed system of classes.

12 How to Build on Other Classes

12-22

See Also

Related Examples
• “Handle Compatible Classes” on page 12-33

 Specify Allowed Subclasses

12-23

Class Members Access
In this section...
“Basic Knowledge” on page 12-24
“Applications for Access Control Lists” on page 12-25
“Specify Access to Class Members” on page 12-25
“Properties with Access Lists” on page 12-26
“Methods with Access Lists” on page 12-26
“Abstract Methods with Access Lists” on page 12-29

Basic Knowledge
The material presented in this section builds on an understanding of the following information:

Related Topics

• “Class Metadata” on page 16-2
• “Attribute Specification” on page 5-18

Terminology and Concepts

• Class members — Properties, methods, and events defined by a class
• Defining class — The class defining the class member for which access is being specified
• Get access — Permission to read the value of a property, controlled by the property GetAccess

attribute
• Set access — Permission to assign a value to a property; controlled by the property SetAccess

attribute
• Method access – Determines what other methods and functions can call the class method;

controlled by the method Access attribute
• Listen access — Permission to define listeners; controlled by the event ListenAccess attribute
• Notify access — Permission to trigger events, controlled by the event NotifyAccess attribute

Possible Values for Access to Class Members

The following class member attributes can contain a list of classes:

• Properties — Access, GetAccess, and SetAccess. For a list of all property attributes, see
“Property Attributes” on page 8-6 .

• Methods — Access. For a list of all method attributes, see “Method Attributes” on page 9-4 .
• Events — ListenAccess and NotifyAccess. For a list of all event attributes, see “Event

Attributes” on page 11-15.

These attributes accept the following possible values:

• public — Unrestricted access
• protected — Access by defining class and its subclasses
• private — Access by defining class only

12 How to Build on Other Classes

12-24

• Access list — A list of one or more classes. Only the defining class and the classes in the list have
access to the class members to which the attribute applies. If you specify a list of classes, MATLAB
does not allow access by any other class (that is, access is private, except for the listed classes).

Applications for Access Control Lists
Access control lists enable you to control access to specific class properties, methods, and events.
Access control lists specify a list of classes to which you grant access to these class members.

This technique provides greater flexibility and control in the design of a system of classes. For
example, use access control lists to define separate classes, but not allow access to class members
from outside the class system.

Specify Access to Class Members
Specify the classes that are allowed to access a particular class member in the member access
attribute statement. For example:

methods (Access = {?ClassName1,?ClassName2,...})

Use the class meta.class object to refer to classes in the access list. To specify more than one class,
use a cell array of meta.class objects. Use the package name when referring to classes that are in
packages.

Note Specify the meta.class objects explicitly (created with the ? operator), not as values returned
by functions or other MATLAB expressions.

How MATLAB Interprets Attribute Values

• Granting access to a list of classes restricts access to only:

• The defining class
• The classes in the list
• Subclasses of the classes in the list

• Including the defining class in the access list gives all subclasses of the defining class access.
• MATLAB resolves references to classes in the access list only when the class is loaded. If MATLAB

cannot find a class that is included in the access list, that class is effectively removed from access.
• MATLAB replaces unresolved meta.class entries in the list with empty meta.class objects.
• An empty access list (that is, an empty cell array) is equivalent to private access.

Specify Metaclass Objects

Generate the meta.class objects using only the ? operator and the class name. Values assigned to
the attributes cannot contain any other MATLAB expressions, including functions that return allowed
attribute values:

• meta.class objects
• Cell arrays of meta.class objects
• The values public, protected, or private

 Class Members Access

12-25

Specify these values explicitly, as shown in the example code in this section.

Properties with Access Lists
These sample classes show the behavior of a property that grants read access (GetAccess) to a
class. The GrantAccess class gives GetAccess to the NeedAccess class for the Prop1 property:

classdef GrantAccess
 properties (GetAccess = ?NeedAccess)
 Prop1 = 7
 end
end

The NeedAccess class defines a method that uses the value of the GrantAccess Prop1 value. The
dispObj method is defined as a Static method, however, it could be an ordinary method.

classdef NeedAccess
 methods (Static)
 function dispObj(GrantAccessObj)
 disp(['Prop1 is: ',num2str(GrantAccessObj.Prop1)])
 end
 end
end

Get access to Prop1 is private so MATLAB returns an error if you attempt to access the property
from outside the class definition. For example, from the command line:

a = GrantAccess;
a.Prop1

Getting the 'Prop1' property of the 'GrantAccess' class is not allowed.

However, MATLAB allows access to Prop1 by the NeedAccess class:

NeedAccess.dispObj(a)

Prop1 is: 7

Methods with Access Lists
Classes granted access to a method can:

• Call the method using an instance of the defining class.
• Define their own method with the same name (if not a subclass).
• Override the method in a subclass only if the superclass defining the method includes itself or the

subclass in the access list.

These sample classes show the behavior of methods called from methods of other classes that are in
the access list. The class AcListSuper gives the AcListNonSub class access to its m1 method:

classdef AcListSuper
 methods (Access = {?AcListNonSub})
 function obj = m1(obj)
 disp ('Method m1 called')
 end

12 How to Build on Other Classes

12-26

 end
end

Because AcListNonSub is in the access list of m1, its methods can call m1 using an instance of
AcListSuper:

classdef AcListNonSub
 methods
 function obj = nonSub1(obj,AcListSuper_Obj)
 % Call m1 on AcListSuper class
 AcListSuper_Obj.m1;
 end
 function obj = m1(obj)
 % Define a method named m1
 disp(['Method m1 defined by ',class(obj)])
 end
 end
end

Create objects of both classes:

a = AcListSuper;
b = AcListNonSub;

Call the AcListSuper m1 method using an AcListNonSub method:

b.nonSub1(a);

Method m1 called

Call the AcListNonSub m1 method:

b.m1;

Method m1 defined by AcListNonSub

Subclasses Without Access

Including the defining class in the access list for a method grants access to all subclasses derived
from that class. When you derive from a class that has a method with an access list and that list does
not include the defining class:

• Subclass methods cannot call the superclass method.
• Subclass methods can call the superclass method indirectly using an instance of a class that is in

the access list.
• Subclasses cannot override the superclass method.
• Methods of classes that are in the superclass method access list, but that are not subclasses, can

call the superclass method.

For example, AcListSub is a subclass of AcListSuper. The AcListSuper class defines an access
list for method m1. However, this list does not include AcListSuper, so subclasses of AcListSuper
do not have access to method m1:
classdef AcListSub < AcListSuper
 methods
 function obj = sub1(obj,AcListSuper_Obj)
 % Access m1 via superclass object (***NOT ALLOWED***)
 AcListSuper_Obj.m1;

 Class Members Access

12-27

 end
 function obj = sub2(obj,AcListNonSub_Obj,AcListSuper_obj)
 % Access m1 via object that is in access list (is allowed)
 AcListNonSub_Obj.nonSub1(AcListSuper_Obj);
 end
 end
end

No Direct Call to Superclass Method

Attempting to call the superclass m1 method from the sub1 method results in an error because
subclasses are not in the access list for m1:

a = AcListSuper;
c = AcListSub;
c.sub1(a);

Cannot access method 'm1' in class 'AcListSuper'.

Error in AcListSub/sub1 (line 4)
 AcListSuper_Obj.m1;

Indirect Call to Superclass Method

You can call a superclass method from a subclass that does not have access to that method using an
object of a class that is in the superclass method access list.

The AcListSub sub2 method calls a method of a class (AcListNonSub) that is on the access list for
m1. This method, nonSub1, does have access to the superclass m1 method:

a = AcListSuper;
b = AcListNonSub;
c = AcListSub;
c.sub2(b,a);

Method m1 called

No Redefining Superclass Method

When subclasses are not included in the access list for a method, those subclasses cannot define a
method with the same name. This behavior is not the same as cases in which the method Access is
explicitly declared as private.

For example, adding the following method to the AcListSub class definition produces an error when
you attempt to instantiate the class.

methods (Access = {?AcListNonSub})
 function obj = m1(obj)
 disp('AcListSub m1 method')
 end
end

c = AcListSub;

Class 'AcListSub' is not allowed to override the method 'm1' because neither it nor its
superclasses have been granted access to the method by class 'AcListSuper'.

12 How to Build on Other Classes

12-28

Call Superclass from Listed Class Via Subclass

The AcListNonSub class is in the m1 method access list. This class can define a method that calls the
m1 method using an object of the AcListSub class. While AcListSub is not in the access list for
method m1, it is a subclass of AcListSuper.

For example, add the following method to the AcListNonSub class:

methods
 function obj = nonSub2(obj,AcListSub_Obj)
 disp('Call m1 via subclass object:')
 AcListSub_Obj.m1;
 end
end

Calling the nonSub2 method results in execution of the superclass m1 method:

b = AcListNonSub;
c = AcListSub;
b.nonSub2(c);

Call m1 via subclass object:
Method m1 called

This behavior is consistent with the behavior of any subclass object, which can substitute for an
object of its superclass.

Abstract Methods with Access Lists
A class containing a method declared as Abstract is an abstract class. It is the responsibility of
subclasses to implement the abstract method using the function signature declared in the class
definition.

When an abstract method has an access list, only the classes in the access list can implement the
method. A subclass that is not in the access list cannot implement the abstract method so that
subclass is itself abstract.

See Also

Related Examples
• “Property Access List” on page 12-30
• “Method Access List” on page 12-31
• “Event Access List” on page 12-32

 Class Members Access

12-29

Property Access List
This class declares access lists for the property GetAccess and Access attributes:
classdef PropertyAccess
 properties (GetAccess = {?ClassA, ?ClassB}, SetAccess = private)
 Prop1
 end
 properties (Access = ?ClassC)
 Prop2
 end
end

The class PropertyAccess specifies the following property access:

• Gives the classes ClassA and ClassB get access to the Prop1 property.
• Gives all subclasses of ClassA and ClassB get access to the Prop1 property.
• Does not provide get access to Prop1 from subclasses of PropertyAccess.
• Defines private set access for the Prop1 property.
• Gives set and get access to Prop2 for ClassC and its subclasses.

See Also

Related Examples
• “Properties with Access Lists” on page 12-26

12 How to Build on Other Classes

12-30

Method Access List
This class declares an access list for the method Access attribute:

classdef MethodAccess
 methods (Access = {?ClassA, ?ClassB, ?MethodAccess})
 function listMethod(obj)
 ...
 end
 end
end

The MethodAccess class specifies the following method access:

• Access to listMethod from an instance of MethodAccess by methods of the classes ClassA and
ClassB.

• Access to listMethod from an instance of MethodAccess by methods of subclasses of
MethodAccess, because of the inclusion of MethodAccess in the access list.

• Subclasses of ClassA and ClassB are allowed to define a method named listMethod, and
MethodAccess is allowed to redefine listMethod. However, if MethodAccess was not in the
access list, its subclasses could not redefine listMethod.

See Also

Related Examples
• “Methods with Access Lists” on page 12-26

 Method Access List

12-31

Event Access List
This class declares an access list for the event ListenAccess attribute:

classdef EventAccess
 events (NotifyAccess = private, ListenAccess = {?ClassA, ?ClassB})
 Event1
 Event2
 end
end

The class EventAccess specifies the following event access:

• Limits notify access for Event1 and Event2 to EventAccess; only methods of the EventAccess
can trigger these events.

• Gives listen access for Event1 and Event2 to methods of ClassA and ClassB. Methods of
EventAccess, ClassA, and ClassB can define listeners for these events. Subclasses of MyClass
cannot define listeners for these events.

See Also

Related Examples
• “Events and Listeners Syntax” on page 11-17

12 How to Build on Other Classes

12-32

Handle Compatible Classes
In this section...
“Basic Knowledge” on page 12-33
“When to Use Handle Compatible Classes” on page 12-33
“Handle Compatibility Rules” on page 12-33
“Identify Handle Objects” on page 12-34

Basic Knowledge
The material presented in this section builds on knowledge of the following information.

• “Design Subclass Constructors” on page 12-7
• “Subclassing Multiple Classes” on page 12-19
• “Comparison of Handle and Value Classes” on page 7-2

Key Concepts

Handle-compatible class — a class that you can include with handle classes in a class hierarchy, even
if the class is not a handle class.

• All handle classes are handle-compatible.
• All superclasses of handle-compatible classes must also be handle compatible.

HandleCompatible — the class attribute that defines nonhandle classes as handle compatible.

When to Use Handle Compatible Classes
Typically, when deriving a MATLAB class from other classes, all the superclasses are handle classes,
or else none of them are handle classes. However, there are situations in which a class provides some
utility that is used by both handle and non-handle subclasses. Because it is not legal to combine
handle and non-handle classes, the author of the utility class must implement two distinct versions of
the utility.

The solution is to use handle-compatible classes. Handle compatible classes are a type of class that
you can use with handle classes when forming sets of superclasses. Designate a nonhandle
compatible class as handle-compatible by using the HandleCompatible class attribute.

classdef (HandleCompatible) MyClass
 ...
end

Handle Compatibility Rules
Handle-compatible classes (that is, classes whose HandleCompatible attribute is set to true)
follow these rules:

• All superclasses of a handle-compatible class must also be handle compatible
• If a class explicitly sets its HandleCompatibility attribute to false, then none of the class

superclasses can be handle classes.

 Handle Compatible Classes

12-33

• If a class does not explicitly set its HandleCompatible attribute and, if any superclass is a
handle, then all superclasses must be handle compatible.

• The HandleCompatible attribute is not inherited.

A class that does not explicitly set its HandleCompatible attribute to true is:

• A handle class if any of its superclasses are handle classes
• A value class if none of the superclasses are handle classes

Identify Handle Objects
To determine if an object is a handle object, use the isa function:

isa(obj,'handle')

See Also

Related Examples
• “How to Define Handle-Compatible Classes” on page 12-35

12 How to Build on Other Classes

12-34

How to Define Handle-Compatible Classes
In this section...
“What Is Handle Compatibility?” on page 12-35
“Subclassing Handle-Compatible Classes” on page 12-37

What Is Handle Compatibility?
A class is handle compatible if:

• It is a handle class
• Its HandleCompatible attribute is set to true

The HandleCompatible class attribute identifies classes that you can combine with handle classes
when specifying a set of superclasses.

Handle compatibility provides greater flexibility when defining abstract superclasses. For example,
when using superclasses that support both handle and value subclasses, handle compatibility
removes the need to define both a handle version and a nonhandle version of a class.

A Handle Compatible Class

The Utility class is useful to both handle and value subclasses. In this example, the Utility class
defines a method to reset property values to the default values defined in the respective class
definition:

classdef (HandleCompatible) Utility
 methods
 function obj = resetDefaults(obj)
 mc = metaclass(obj);
 mp = mc.PropertyList;
 for k=1:length(mp)
 if mp(k).HasDefault && ~strcmp(mp(k).SetAccess,'private')
 obj.(mp(k).Name) = mp(k).DefaultValue;
 end
 end
 end
 end
end

The Utility class is handle compatible. Therefore, you can use it in the derivation of classes that
are either handle classes or value classes. See “Class Introspection and Metadata” for information on
using meta-data classes.

Return Modified Objects

The resetDefaults method defined by the Utility class returns the object it modifies. When you
call resetDefaults with a value object, the method must return the modified object. It is important
to implement methods that work with both handle and value objects in a handle compatible
superclass. See “Object Modification” on page 5-50 for more information on modifying handle and
value objects.

Consider the behavior of a value class that subclasses the Utility class. The PropertyDefaults
class defines three properties, all of which have default values:

 How to Define Handle-Compatible Classes

12-35

classdef PropertyDefaults < Utility
 properties
 p1 = datestr(rem(now,1)) % Current time
 p2 = 'red' % Character vector
 p3 = pi/2 % Result of division operation
 end
end

Create a PropertyDefaults object. MATLAB evaluates the expressions assigned as default
property values when the class is first loaded. MATLAB uses these same default values whenever you
create an instance of this class in the current MATLAB session.

pd = PropertyDefaults

pd =

 PropertyDefaults with properties:

 p1: ' 4:42 PM'
 p2: 'red'
 p3: 1.5708

Assign new values that are different from the default values:

pd.p1 = datestr(rem(now,1));
pd.p2 = 'green';
pd.p3 = pi/4;

All pd object property values now contain values that are different from the default values originally
defined by the class:

pd

pd =

 PropertyDefaults with properties:
:
 p1: ' 4:45 PM'
 p2: 'green'
 p3: 0.7854

Call the resetDefaults method, which is inherited from the Utility class. Because the
PropertyDefaults class is not a handle class, return the modified object.

pd = pd.resetDefaults

pd =

 PropertyDefaults with properties:

 p1: ' 4:54 PM'
 p2: 'red'
 p3: 1.5708

If the PropertyDefaults class was a handle class, then you would not need to save the object
returned by the resetDefaults method. To design a handle compatible class like Utility, ensure
that all methods work with both kinds of classes.

12 How to Build on Other Classes

12-36

Subclassing Handle-Compatible Classes
According to the rules described in “Handle Compatibility Rules” on page 12-33, when you combine a
handle superclass with a handle-compatible superclass, the result is a handle subclass, which is
handle compatible.

However, subclassing a handle-compatible class does not necessarily result in the subclass being
handle compatible. Consider the following two cases, which demonstrate two possible results.

Combine Nonhandle Utility Class with Handle Classes

Suppose that you define a class that subclasses a handle class, and the handle compatible Utility
class discussed in “A Handle Compatible Class” on page 12-35. The HPropertyDefaults class has
these characteristics:

• It is a handle class (it derives from handle).
• All its superclasses are handle compatible (handle classes are handle compatible by definition).

classdef HPropertyDefaults < handle & Utility
 properties
 GraphPrim = line
 Width = 1.5
 Color = 'black'
 end
end

The HPropertyDefaults class is handle compatible:

hpd = HPropertyDefaults;
mc = metaclass(hpd);
mc.HandleCompatible

ans =

 1

Nonhandle Subclasses of a Handle-Compatible Class

If you subclass both a value class that is not handle compatible and a handle compatible class, the
subclass is a nonhandle compatible value class. The ValueSub class:

• Is a value class (it does not derive from handle.)
• One of its superclasses is handle compatible (the Utility class).

classdef ValueSub < MException & Utility
 methods
 function obj = ValueSub(str1,str2)
 obj = obj@MException(str1,str2);
 end
 end
end

The ValueSub class is a nonhandle-compatible value class because the MException class does not
define the HandleCompatible attribute as true:

hv = ValueSub('MATLAB:narginchk:notEnoughInputs',...
 'Not enough input arguments.');

 How to Define Handle-Compatible Classes

12-37

mc = metaclass(hv);
mc.HandleCompatible

ans =

 0

See Also

Related Examples
• “Methods for Handle Compatible Classes” on page 12-39

12 How to Build on Other Classes

12-38

Methods for Handle Compatible Classes
In this section...
“Methods for Handle and Value Objects” on page 12-39
“Modify Value Objects in Methods” on page 12-39

Methods for Handle and Value Objects
Objects passed to methods of handle compatible classes can be either handle or value objects. There
are two different behaviors to consider when implementing methods for a class that operate on both
handles and values:

• If an input object is a handle object and the method alters the handle object, these changes are
visible to all workspaces that contain the same handle.

• If an input object is a value object, then changes to the object made inside the method affect only
the value inside the method workspace.

Handle compatible methods generally do not alter input objects because the effects of such changes
are not the same for handle and nonhandle objects.

See “Object Modification” on page 5-50 for information about modifying handle and value objects.

Modify Value Objects in Methods
If a method operates on both handle and value objects, the method must return the modified object.
For example, the setTime method returns the object it modifies:

classdef (HandleCompatible) Util
 % Utility class that adds a time stamp
 properties
 TimeStamp
 end
 methods
 function obj = setTime(obj)
 obj.TimeStamp = now;
 end
 end
end

See Also

Related Examples
• “Handle-Compatible Classes and Heterogeneous Arrays” on page 12-40

 Methods for Handle Compatible Classes

12-39

Handle-Compatible Classes and Heterogeneous Arrays
In this section...
“Heterogeneous Arrays” on page 12-40
“Methods Must Be Sealed” on page 12-40
“Template Technique” on page 12-40

Heterogeneous Arrays
A heterogeneous array contains objects of different classes. Members of a heterogeneous array have
a common superclass, but can belong to different subclasses. See the
matlab.mixin.Heterogeneous class for more information on heterogeneous arrays. The
matlab.mixin.Heterogeneous class is a handle-compatible class.

Methods Must Be Sealed
You can invoke only those methods that are sealed by the common superclass on heterogeneous
arrays (Sealed attribute set to true). Sealed methods prevent subclasses from overriding those
methods and guarantee that methods called on heterogeneous arrays have the same definition for the
entire array.

Subclasses cannot override sealed methods. In situations requiring subclasses to specialize methods
defined by a utility class, you can employ the design pattern referred to as the template method.

Template Technique
Suppose that you implement a handle compatible class that works with heterogeneous arrays. This
approach enables you to seal public methods, while providing a way for each subclass to specialize
how the method works on each subclass instance. In the handle compatible class:

• Define a sealed method that accepts a heterogeneous array as input.
• Define a protected, abstract method that each subclass must implement.
• Within the sealed method, call the overridden method for each array element.

Each subclass in the heterogeneous hierarchy implements a concrete version of the abstract method.
The concrete method provides specialized behavior required by the particular subclass.

The Printable class shows how to implement a template method approach:

classdef (HandleCompatible) Printable
 methods(Sealed)
 function print(aryIn)
 n = numel(aryIn);
 for k=1:n
 printElement(aryIn(k));
 end
 end
 end
 methods(Access=protected, Abstract)
 printElement(objIn)

12 How to Build on Other Classes

12-40

 end
end

See Also

Related Examples
• “Handle Compatible Classes” on page 12-33

 Handle-Compatible Classes and Heterogeneous Arrays

12-41

Subclasses of MATLAB Built-In Types

In this section...
“MATLAB Built-In Types” on page 12-42
“Built-In Types You Can Subclass” on page 12-42
“Why Subclass Built-In Types” on page 12-42
“Which Functions Work with Subclasses of Built-In Types” on page 12-43
“Behavior of Built-In Functions with Subclass Objects” on page 12-43
“Built-In Subclasses That Define Properties” on page 12-44

MATLAB Built-In Types
Built-in types represent fundamental kinds of data such as numeric arrays, logical arrays, and
character arrays. Other built-in types like cell arrays and structures contain data belonging to any
class.

Built-in types define methods that perform operations on objects of these classes. For example, you
can perform operations on numeric arrays such as, sorting, arithmetic, and logical operations.

See “Fundamental MATLAB Classes” for more information on MATLAB built-in classes.

Note It is an error to define a class that has the same name as a built-in class.

Built-In Types You Can Subclass
You can subclass MATLAB numeric classes and the logical class. For a list of numeric types, see
“Numeric Types”.

You cannot subclass any class that has its Sealed attribute set to true. To determine if the class is
Sealed, query the class metadata:

mc = ?ClassName;
mc.Sealed

A value of 0 indicates that the class is not Sealed and can be subclasses.

Why Subclass Built-In Types
Subclass a built-in class to extend the operations that you can perform on a particular class of data.
For example , when you want to:

• To perform unique operations on class data.
• Be able to use methods of the built-in class and other built-in functions directly with objects of the

subclass. For example, you do not need to reimplement all the mathematical operators if you
derived from a class such as double that defines these operators.

12 How to Build on Other Classes

12-42

Which Functions Work with Subclasses of Built-In Types
Consider a class that defines enumerations. It can derive from an integer class and inherit methods
that enable you to compare and sort values. For example, integer classes like int32 support all the
relational methods (eq, ge, gt, le, lt, ne).

To see a list of functions that the subclass has inherited as methods, use the methods function:

methods('SubclassName')

Generally, you can use an object of the subclass with any:

• Inherited methods
• Functions that normally accept input arguments of the same class as the superclass.

Behavior of Built-In Functions with Subclass Objects
When you define a subclass of a built-in class, the subclass inherits all the methods defined by that
built-in class. MATLAB also provides additional methods to subclasses of built-in classes that override
several built-in functions.

Built-in functions and methods that work on built-in classes can behave differently when called with
subclasses of built-in classes. Their behavior depends on which function you are using and whether
your subclass defines properties.

Behavior Categories

When you call an inherited method on a subclass of a built-in class, the result depends on the nature
of the operation performed by the method. The behaviors of these methods fit into several categories.

• Operations on data values return objects of the superclass. For example, if you subclass double
and perform addition on two subclass objects, MATLAB adds the numeric values and returns a
value of class double.

• Operations on the orientation or structure of the data return objects of the subclass. Methods that
perform these kinds of operations include, reshape, permute, transpose, and so on.

• Converting a subclass object to a built-in class returns an object of the specified class. Functions
such as uint32, double, char work with subclass objects the same as they work with built-in
objects.

• Comparing objects or testing for inclusion in a specific set returns logical or built-in objects,
depending on the function. Functions such as isequal, ischar, isobject work with subclass
objects the same as they work with superclass objects.

• Indexing expressions return objects of the subclass. If the subclass defines properties, then
default indexing no longer works. The subclass must define its own indexing methods.

• Concatenation returns an object of the subclass. If the subclass defines properties, then default
concatenation no longer works and the subclass must define its own concatenation methods.

To list the built-in functions that work with a subclass of a built-in class, use the methods function.

 Subclasses of MATLAB Built-In Types

12-43

Built-In Subclasses That Define Properties
When a subclass of a built-in class defines properties, MATLAB no longer supports indexing and
concatenation operations. MATLAB cannot use the built-in functions normally called for these
operations because subclass properties can contain any data.

The subclass must define what indexing and concatenation mean for a class with properties. If your
subclass needs indexing and concatenation functionality, then the subclass must implement the
appropriate methods.

Methods for Indexing

To support indexing operations, the subclass must implement these methods:

• subsasgn — Implement dot notation and indexed assignments
• subsref — Implement dot notation and indexed references
• subsindex — Implement object as index value

Methods for Concatenation

To support concatenation, the subclass must implement the following methods:

• horzcat — Implement horizontal concatenation of objects
• vertcat — Implement vertical concatenation of objects
• cat — Implement concatenation of object arrays along specified dimension

See Also

Related Examples
• “Representing Hardware with Classes” on page 12-64
• “Subclasses of Built-In Types with Properties” on page 12-52
• “Subclasses of Built-In Types Without Properties” on page 12-49

12 How to Build on Other Classes

12-44

Behavior of Inherited Built-In Methods
In this section...
“Subclass double” on page 12-45
“Built-In Data Value Methods” on page 12-46
“Built-In Data Organization Methods” on page 12-46
“Built-In Indexing Methods” on page 12-47
“Built-In Concatenation Methods” on page 12-47

Subclass double
Most built-in functions used with built-in classes are actually methods of the built-in class. For
example, the double and single classes define several methods to perform arithmetic operations,
indexing, matrix operation, and so on. All these built-in class methods work with subclasses of the
built-in class.

Subclassing double enables your class to use features without implementing the methods that a
MATLAB built-in class defines.

The DocSimpleDouble class subclasses the built-in double class.

classdef DocSimpleDouble < double
 methods
 function obj = DocSimpleDouble(data)
 if nargin == 0
 data = 0;
 end
 obj = obj@double(data);
 end
 end
end

Create an instance of the class DocSimpleDouble.

sc = DocSimpleDouble(1:10)

sc =
 1x10 DocSimpleDouble:
 double data:
 1 2 3 4 5 6 7 8 9 10

Call a method inherited from class double that operates on the data, such as sum. sum returns a
double and, therefore, uses the display method of class double:

sum(sc)

ans =
 55

Index sc like an array of doubles. The returned value is the class of the subclass:

a = sc(2:4)

a =
 1x3 DocSimpleDouble:

 Behavior of Inherited Built-In Methods

12-45

 double data:
 2 3 4

Indexed assignment works the same as the built-in class. The returned value is the class of the
subclass:

sc(1:5) = 5:-1:1

sc =
 1x10 DocSimpleDouble:
 double data:
 5 4 3 2 1 6 7 8 9 10

Calling a method that modifies the order of the data elements operates on the data, but returns an
object of the subclass:

sc = DocSimpleDouble(1:10);
sc(1:5) = 5:-1:1;
a = sort(sc)

a =
 1x10 DocSimpleDouble:
 double data:
 1 2 3 4 5 6 7 8 9 10

Built-In Data Value Methods
When you call a built-in data value method on a subclass object, MATLAB uses the superclass part of
the subclass object as inputs to the method. The value returned is same class as the built-in class. For
example:

sc = DocSimpleDouble(1:10);
a = sin(sc);
class(a)

ans =

double

Built-In Data Organization Methods
This group of built-in methods reorders or reshapes the input argument array. These methods operate
on the superclass part of the subclass object, but return an object of the same type as the subclass.

sc = DocSimpleDouble(randi(9,1,10))

sc = DocSimpleDouble(randi(9,1,10))

sc =

 1x10 DocSimpleDouble:

 double data:
 6 1 8 9 7 7 7 4 6 2

b = sort(sc)

12 How to Build on Other Classes

12-46

b =

 1x10 DocSimpleDouble:

 double data:
 1 2 4 6 6 7 7 7 8 9

Methods in this group include:

• reshape
• permute
• sort
• transpose
• ctranspose

Built-In Indexing Methods
Built-in classes use specially implemented versions of the subsref, subsasgn, and subsindex
methods to implement indexing. When you index a subclass object, only the built-in data is referenced
(not the properties defined by your subclass).

For example, indexing element 2 in the DocSimpleDouble subclass object returns the second
element in the vector:

sc = DocSimpleDouble(1:10);
a = sc(2)

a =
 DocSimpleDouble
 double data:
 2

The value returned from an indexing operation is an object of the subclass. You cannot make indexed
references if your subclass defines properties, unless your subclass overrides the default subsref
method.

Assigning a new value to the second element in the DocSimpleDouble object operates only on the
superclass data:

sc(2) = 12

sc =
 1x10 DocSimpleDouble:
 double data:
 1 12 3 4 5 6 7 8 9 10

The subsref method also implements dot notation for methods.

Built-In Concatenation Methods
Built-in classes use the functions horzcat, vertcat, and cat to implement concatenation. When
you use these functions with subclass objects of the same type, MATLAB concatenates the superclass
data to form a new object. For example, you can concatenate objects of the DocSimpleDouble class:

 Behavior of Inherited Built-In Methods

12-47

sc1 = DocSimpleDouble(1:10);
sc2 = DocSimpleDouble(11:20);
[sc1,sc2]

ans =
 1x20 DocSimpleDouble:
 double data:
 Columns 1 through 13
 1 2 3 4 5 6 7 8 9 10 11 12 13
 Columns 14 through 20
 14 15 16 17 18 19 20

[sc1;sc2]

ans =
 2x10 DocSimpleDouble:
 double data:
 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20

Concatenate two objects along a third dimension:

c = cat(3,sc1,sc2)

c =

 1x10x2 DocSimpleDouble:

 double data:

(:,:,1) =

 1 2 3 4 5 6 7 8 9 10

(:,:,2) =

 11 12 13 14 15 16 17 18 19 20

If the subclass of a built-in class defines properties, you cannot concatenate objects of the subclass.
There is no way to determine how to combine properties of different objects. However, your subclass
can define custom horzcat and vertcat methods to support concatenation in whatever way makes
sense for your subclass.

See Also

Related Examples
• “Subclasses of Built-In Types Without Properties” on page 12-49
• “Subclasses of Built-In Types with Properties” on page 12-52

12 How to Build on Other Classes

12-48

Subclasses of Built-In Types Without Properties

In this section...
“Specialized Numeric Types” on page 12-49
“A Class to Manage uint8 Data” on page 12-49
“Using the DocUint8 Class” on page 12-50

Specialized Numeric Types
Subclass built-in numeric types to create customized data types that inherit the functionality of the
built-in type. Add functionality to that provided by the superclass by implementing class methods.
Subclasses without properties store numeric data as the superclass type. If your subclass design does
not require properties to store other data, the implementation is simpler because you do not need to
define indexing and concatenation methods.

For more information, see “Subclasses of MATLAB Built-In Types” on page 12-42.

A Class to Manage uint8 Data
This example shows a class derived from the built-in uint8 class. This class simplifies the process of
maintaining a collection of intensity image data defined by uint8 values. The basic operations of the
class include:

• Capability to convert various classes of image data to uint8 to reduce object data storage.
• A method to display the intensity images contained in the subclass objects.
• Ability to use all the methods supported by uint8 data (for example, size, indexing, reshape,

bitshift, cat, fft, arithmetic operators, and so on).

The class data are matrices of intensity image data stored in the superclass part of the subclass
object. This approach requires no properties.

The DocUint8 class stores the image data, which converts the data, if necessary:

classdef DocUint8 < uint8
 methods
 function obj = DocUint8(data)
 if nargin == 0
 data = uint8(0);
 end
 obj = obj@uint8(data); % Store data on superclass
 end
 function h = showImage(obj)
 data = uint8(obj);
 figure; colormap(gray(256))
 h = imagesc(data,[0 255]);
 axis image
 brighten(.2)
 end
 end
end

 Subclasses of Built-In Types Without Properties

12-49

Using the DocUint8 Class
Create DocUint8 Objects

The DocUint8 class provides a method to display all images stored as DocUint8 objects in a
consistent way. For example:

cir = imread('circuit.tif');
img1 = DocUint8(cir);
img1.showImage;

Because DocUint8 subclasses uint8, you can use any uint8 methods. For example,

size(img1)

ans =
 280 272

returns the size of the image data.

Indexing Operations

Inherited methods perform indexing operations, but return objects of the same class as the subclass.

Therefore, you can index into the image data and call a subclass method:

showImage(img1(100:200,1:160));

Subscripted reference operations (controlled by the inherited subsref method) return a DocUint8
object.

You can assign values to indexed elements:

img1(100:120,140:160) = 255;
img1.showImage;

Subscripted assignment operations (controlled by the inherited subsasgn method) return a
DocUint8 object.

Concatenation Operations

Concatenation operations work on DocUint8 objects because this class inherits the uint8 horzcat
and vertcat methods, which return a DocUint8 object:

showImage([img1 img1]);

12 How to Build on Other Classes

12-50

Data Operations

Methods that operate on data values, such as arithmetic operators, always return an object of the
built-in type (not of the subclass type). For example, multiplying DocUint8 objects returns a uint8
object, so calling showImage throws an error:

a = img1.*1.8;
showImage(a);

Check for missing argument or incorrect argument data type in call to function 'showImage'.

To perform operations of this type, implement a subclass method to override the inherited method.
The times method implements array (element-by-element) multiplication.

Add this method to the DocUint8 class:

function o = times(obj,val)
 u8 = uint8(obj).*val;
 o = DocUint8(u8);
end

When you override a uint8 method, MATLAB calls the subclass method, not the base class method.
The subclass method must:

• Call the uint8 times method on the DocUint8 object data.
• Construct a new DocUint8 object using the uint8 data.

After adding the times method to the DocUint8 class, the output of multiplication expressions is an
object of the DocUint8 class:

showImage(img1.*1.8);

See Also

Related Examples
• “Operator Overloading” on page 17-38
• “Subclasses of Built-In Types with Properties” on page 12-52

 Subclasses of Built-In Types Without Properties

12-51

Subclasses of Built-In Types with Properties
In this section...
“Specialized Numeric Types with Additional Data Storage” on page 12-52
“Subclasses with Properties” on page 12-52
“Property Added” on page 12-52
“Methods Implemented” on page 12-52
“Class Definition Code” on page 12-53
“Using ExtendDouble” on page 12-54
“Concatenation of ExtendDouble Objects” on page 12-57

Specialized Numeric Types with Additional Data Storage
Subclass built-in numeric types to create customized data types that inherit the functionality of the
built-in type. Add or modify functionality to that provided by the superclass by implementing class
methods.

Providing additional data storage in the subclass by defining properties can be a useful extension to
the built-in data class. However, the addition of properties to the subclass requires the subclass to
define methods to implement standard array behaviors.

For more information, see “Subclasses of MATLAB Built-In Types” on page 12-42.

Subclasses with Properties
When a subclass of a built-in class defines properties, default indexing and concatenation do not
work. The default subsref, subsasgn, horzcat, and vertcat functions cannot work with unknown
property types and values. Therefore, the subclass must define these behaviors by implementing
these methods.

This sample implementation of the ExtendDouble class derives from the double class and defines a
single property. The ExtendDouble class definition demonstrates how to implement indexing and
concatenation for subclasses of built-in classes

Property Added
The ExtendDouble class defines the DataString property to contain text that describes the data.
The superclass part of the class contains the numeric data.

Methods Implemented
The following methods modify the behavior of the ExtendDouble class:

• ExtendDouble — The constructor supports a no argument syntax that initializes properties to
empty values.

• subsref — Enables subscripted reference to the superclass part of the subclass, dot notation
reference to the DataString property, and dot notation reference the built-in data via the name
Data.

12 How to Build on Other Classes

12-52

• subsasgn — Enables subscripted assignment to the superclass part of the subclass, dot notation
reference to the DataString property, and dot notation reference the built-in data via the name
Data.

• horzcat — Defines horizontal concatenation of ExtendDouble objects. concatenates the
superclass part using the double class horzcat method and forms a cell array of the
DataString properties.

• vertcat — The vertical concatenation equivalent of horzcat (both are required).
• char — A ExtendDouble to char converter used by horzcat and vertcat.
• disp — ExtendDouble implements a disp method to provide a custom display for the object.

Class Definition Code
The ExtendDouble class extends double and implements methods to support subscripted indexing
and concatenation.

classdef ExtendDouble < double

 properties
 DataString
 end

 methods
 function obj = ExtendDouble(data,str)
 if nargin == 0
 data = 0;
 str = '';
 elseif nargin == 1
 str = '';
 end
 obj = obj@double(data);
 obj.DataString = str;
 end

 function sref = subsref(obj,s)
 switch s(1).type
 case '.'
 switch s(1).subs
 case 'DataString'
 sref = obj.DataString;
 case 'Data'
 d = double(obj);
 if length(s)<2
 sref = d;
 elseif length(s)>1 && strcmp(s(2).type,'()')
 sref = subsref(d,s(2:end));
 end
 otherwise
 error('Not a supported indexing expression')
 end
 case '()'
 d = double(obj);
 newd = subsref(d,s(1:end));
 sref = ExtendDouble(newd,obj.DataString);
 case '{}'
 error('Not a supported indexing expression')

 Subclasses of Built-In Types with Properties

12-53

 end
 end

 function obj = subsasgn(obj,s,b)
 switch s(1).type
 case '.'
 switch s(1).subs
 case 'DataString'
 obj.DataString = b;
 case 'Data'
 if length(s)<2
 obj = ExtendDouble(b,obj.DataString);
 elseif length(s)>1 && strcmp(s(2).type,'()')
 d = double(obj);
 newd = subsasgn(d,s(2:end),b);
 obj = ExtendDouble(newd,obj.DataString);
 end
 otherwise
 error('Not a supported indexing expression')
 end
 case '()'
 d = double(obj);
 newd = subsasgn(d,s(1),b);
 obj = ExtendDouble(newd,obj.DataString);
 case '{}'
 error('Not a supported indexing expression')
 end
 end

 function newobj = horzcat(varargin)
 d1 = cellfun(@double,varargin,'UniformOutput',false);
 data = horzcat(d1{:});
 str = horzcat(cellfun(@char,varargin,'UniformOutput',false));
 newobj = ExtendDouble(data,str);
 end

 function newobj = vertcat(varargin)
 d1 = cellfun(@double,varargin,'UniformOutput',false);
 data = vertcat(d1{:});
 str = vertcat(cellfun(@char,varargin,'UniformOutput',false));
 newobj = ExtendDouble(data,str);
 end

 function str = char(obj)
 str = obj.DataString;
 end

 function disp(obj)
 disp(obj.DataString)
 disp(double(obj))
 end
 end
end

Using ExtendDouble
Create an instance of ExtendDouble and notice that the display is different from the default:

12 How to Build on Other Classes

12-54

ed = ExtendDouble(1:10,'One to ten')

ed =

One to ten
 1 2 3 4 5 6 7 8 9 10

Inherited Methods

The ExtendDouble class inherits methods from the class double. To see a list of all public methods
defined by the double class, use the methods function:

methods(double.empty)

The sum function continues to operate on the superclass part of the object:

sum(ed)

ans =
 55

The sort function works on the superclass part of the object:

sort(ed(10:-1:1))

ans =

 1 2 3 4 5 6 7 8 9 10

Arithmetic operators work on the superclass part of the object:

ed.^2

ans =

 1 4 9 16 25 36 49 64 81 100

Subscripted Indexing

Because the ExtendDouble class defines a property, the class must implement its own subsref and
subsasgn methods.

This class implements the following subscripted indexing expressions for reference and assignment.

• obj.DataString — access the DataString property.
• obj.Data, obj.Data(ind) — access the data using a property-style reference. Reference

returns values of type double.
• obj(ind) — access the numeric data (same as obj.Data(ind)). Reference returns values of

type ExtendDouble.

The class subsref method enables you to use ExtendDouble objects like numeric arrays to
reference the numeric data:

ed = ExtendDouble(1:10,'One to ten');
ed(10:-1:1)

ans =

 Subclasses of Built-In Types with Properties

12-55

One to ten
 10 9 8 7 6 5 4 3 2 1

Access the numeric data of the ExtendDouble using property-style indexing with the arbitrarily
chosen name Data:

ed.Data(10:-1:1)

ans =

One to ten
 10 9 8 7 6 5 4 3 2 1

Access the DataString property:

ed.DataString

ans =

One to ten

Subscripted assignment implements similar syntax in the class subsasgn method.

ed = ExtendDouble(1:10,'One to ten');
ed(11:13) = [11,12,13];
ed.DataString = 'one to thirteen';
ed

ed =

One to thirteen'
 1 2 3 4 5 6 7 8 9 10 11 12 13

The ExtendDouble inherits converter methods from the double class. For example, MATLAB calls
the char method to perform this assignment statement.

ed(11:13) = ['a','b','c']

ed =

one to thirteen
 1 2 3 4 5 6 7 8 9 10 97 98 99

Class of Value Returned by Indexing Expression

The ExtendDouble implements two forms of indexed reference in the subsref method:

• obj.Data and obj.Data(ind) — Return values of class double
• obj(ind) — Return values of class ExtendDouble

For example, compare the values returned by these expressions.

ed = ExtendDouble(1:10,'One to ten');
a = ed(1)

a =

One to ten
 1

b = ed.Data(1)

12 How to Build on Other Classes

12-56

b =

 1

whos

 Name Size Bytes Class Attributes

 a 1x1 132 ExtendDouble
 b 1x1 8 double
 ed 1x10 204 ExtendDouble

The increased flexibility of the implementation of indexed reference in the ExtendDouble class.

Concatenation of ExtendDouble Objects
Create these two objects:

ed1 = ExtendDouble([1:10],'One to ten');
ed2 = ExtendDouble([10:-1:1],'Ten to one');

Concatenate these objects along the horizontal dimension:

hcat = [ed1,ed2]

hcat =

 'One to ten' 'Ten to one'

 Columns 1 through 13

 1 2 3 4 5 6 7 8 9 10 10 9 8

 Columns 14 through 20

 7 6 5 4 3 2 1

whos

 Name Size Bytes Class Attributes

 ed1 1x10 204 ExtendDouble
 ed2 1x10 204 ExtendDouble
 hcat 1x20 528 ExtendDouble

Vertical concatenation works in a similar way:

vcat = [ed1;ed2]

vcat =

 'One to ten' 'Ten to one'

 1 2 3 4 5 6 7 8 9 10
 10 9 8 7 6 5 4 3 2 1

Both horzcat and vertcat return a new object of the same class as the subclass.

 Subclasses of Built-In Types with Properties

12-57

See Also

Related Examples
• “Subclasses of Built-In Types Without Properties” on page 12-49

12 How to Build on Other Classes

12-58

Use of size and numel with Classes
In this section...
“size and numel” on page 12-59
“Built-In Class Behavior” on page 12-59
“Subclasses Inherit Behavior” on page 12-60
“Classes Not Derived from Built-In Classes” on page 12-61
“Change the Behavior of size or numel” on page 12-62
“Overload numArgumentsFromSubscript Instead of numel” on page 12-63

size and numel
The size function returns the dimensions of an array. The numel function returns the number of
elements in an array, which is equivalent to prod(size(objArray)). That is, the product of the
array dimensions.

The size and numel functions work consistently with arrays of user-defined objects. There is
generally no need to overload size or numel in user-defined classes.

Several MATLAB functions use size and numel to perform their operations. Therefore, if you do
overload either of these functions in your class, be sure that objects of your class work as designed
with other MATLAB functions.

If your class modifies array indexing, see “Overload numArgumentsFromSubscript Instead of numel”
on page 12-63

Built-In Class Behavior
When you use the size and numel functions in classes derived from built-in classes, these functions
behave the same as they behave in the superclass.

Consider the built-in class double:

d = 1:10;
size(d)

ans =

 1 10

numel(d)

ans =

 10

dsub = d(7:end);
size(dsub)

ans =

 1 4

 Use of size and numel with Classes

12-59

The double class defines these behaviors, including parentheses indexing.

Subclasses Inherit Behavior
Unless the subclass explicitly overrides superclass behavior, subclasses behave like their
superclasses. For example, SimpleDouble subclasses double and defines no properties:

classdef SimpleDouble < double
 methods
 function obj = SimpleDouble(data)
 if nargin == 0
 data = 0;
 end
 obj = obj@double(data);
 end
 end
end

Create an object and assign the values 1:10:

sd = SimpleDouble(1:10);

The size function returns the size of the superclass part:

size(sd)

ans =

 1 10

The numel function returns the number of elements in the superclass part:

numel(sd)

ans =

 10

Object arrays return the size of the superclass arrays:

size([sd;sd])

ans =

 2 10

numel([sd;sd])

ans =

 20

The SimpleDouble class inherits the indexing behavior of the double class:

sdsub = sd(7:end);
size(sdsub)

12 How to Build on Other Classes

12-60

ans =

 1 4

Classes Not Derived from Built-In Classes
Consider a simple value class. This class does not inherit the array-like behaviors of the double
class. For example:

classdef VerySimpleClass
 properties
 Value
 end
end

Create an object and assign a 10-element array to the Value property:

vs = VerySimpleClass;
vs.Value = 1:10;
size(vs)

ans =

 1 1

numel(vs)

ans =

 1

size([vs;vs])

ans =

 2 1

numel([vs;vs])

ans =

 2

vs is a scalar object. The Value property is an array of doubles:

size(vs.Value)

ans =

 1 10

Apply indexing expressions to the object property:

vssub = vs.Value(7:end);
size(vssub)

ans =

 1 4

 Use of size and numel with Classes

12-61

The vs.Value property is an array of class double:

class(vs.Value)

ans =

double

Create an array of VerySimpleClass objects:

vsArray(1:10) = VerySimpleClass;

The Value property for array elements 2 through 10 is empty:

isempty([vsArray(2:10).Value])

ans =

 1

MATLAB does not apply scalar expansion to object array property value assignment. Use the deal
function for this purpose:

[vsArray.Value] = deal(1:10);
isempty([vsArray.Value])

ans =

 0

The deal function assigns values to each Value property in the vsArray object array.

Indexing rules for object arrays are equivalent to the rules for arrays of struct:

vsArray(1).Value

ans =

 1 2 3 4 5 6 7 8 9 10

vsArray(1).Value(6)

ans =

 6

Change the Behavior of size or numel
Subclasses of built-in numeric classes inherit a size method, which operates on the superclass part
of the subclass object (these methods are hidden). If you want size or numel to behave differently,
override them by defining a size or numel method in your subclass.

Other MATLAB functions use the values returned by these functions. If you change the way that size
and numel behave, ensure that the values returned make sense for the intended use of your class.

12 How to Build on Other Classes

12-62

Overload numArgumentsFromSubscript Instead of numel
If classes implement a numArgumentsFromSubscript method, MATLAB calls it instead of numel to
determine the number of elements returned by indexed expressions that return comma-separated
lists. For example, expressions such as:

A(1:2).Prop

Both subsref and subsasgn use numArgumentsFromSubscript:

• subsref — numArgumentsFromSubscript computes the number of expected outputs
(nargout) returned subsref.

• subsasgn — numArgumentsFromSubscript computes the number of expected inputs (nargin)
that MATLAB assigns as a result of a call to subsasgn.

Subclasses of built-in classes always return scalar objects as a result of subscripted reference and
always use scalar objects for subscripted assignment.

If you define a class in which nargout for subsref or nargin for subsasgn must be a specific
value, then overload numArgumentsFromSubscript to return that value.

See Also
numArgumentsFromSubscript

Related Examples
• “Modify nargout and nargin for Indexing Methods” on page 17-7

 Use of size and numel with Classes

12-63

Representing Hardware with Classes
In this section...
“Objective” on page 12-64
“Why Derive from int32” on page 12-64
“Implementation” on page 12-64
“Construct MuxCard Object” on page 12-65
“Call Methods of int32” on page 12-65

Objective
This example implements a class to represent an optical multiplex card. These cards typically have
several input ports and an output port. The MuxCard class represents the ports by the port names
and port data rates. The output rate of a multiplex card is the sum of the input port data rates.

Why Derive from int32
The MuxCard class derives from the int32 class because 32–bit integers represent the input port
data rates. The MuxCard class inherits the methods of the int32 class, which simplifies the
implementation of this subclass. For example, numeric array indexing and arithmetic operations work
on MuxCard objects because the class inherits these operations from the int32 class.

Implementation
Here is the definition of the MuxCard class. Notice that the input port rates initialize the int32
portion of class.

classdef MuxCard < int32
 properties
 InPutNames
 OutPutName
 end

 properties (Dependent = true)
 OutPutRate
 end

 methods
 function obj = MuxCard(inptnames, inptrates, outpname)
 obj = obj@int32(inptrates);
 obj.InPutNames = inptnames;
 obj.OutPutName = outpname;
 end

 function x = get.OutPutRate(obj)
 x = sum(obj);
 end

 function x = subsref(card, s)
 if strcmp(s(1).type,'.')
 base = subsref@int32(card, s(1));

12 How to Build on Other Classes

12-64

 if isscalar(s)
 x = base;
 else
 x = subsref(base, s(2:end));
 end
 else
 x = subsref(int32(card), s);
 end
 end
 end
end

Construct MuxCard Object
The constructor takes three arguments:

• inptnames — Cell array of input port names
• inptrates — Vector of input port rates
• outpname — Name for the output port

omx = MuxCard({'inp1','inp2','inp3','inp4'},[3 12 12 48],'outp')

omx =

 1x4 MuxCard array with properties:

 InPutNames: {'inp1' 'inp2' 'inp3' 'inp4'}
 OutPutName: 'outp'
 OutPutRate: 75

 int32 data:
 3 12 12 48

Call Methods of int32
Use a MuxCard object like an array of int32 values. For example, this indexing statement accesses
the data in the object to determine the names of the input ports that have a rate of 12:

omx.InPutNames(omx==12)

ans =
 'inp2' 'inp3'

The indexing statement generates a logical array index:

omx == 12

ans =

 0 1 1 0

Indexing the MuxCard object accesses the int32 vector of input port rates:

omx(1:2)

ans =
 3 12

 Representing Hardware with Classes

12-65

The OutPutRate property get access method uses sum to sum the output port rates:

omx.OutPutRate

ans =
 75

See Also

Related Examples
• “Subclasses of Built-In Types with Properties” on page 12-52

12 How to Build on Other Classes

12-66

Determine Array Class
In this section...
“Query the Class Name” on page 12-67
“Test for Array Class” on page 12-67
“Test for Specific Types” on page 12-68
“Test for Most Derived Class” on page 12-68

Query the Class Name
To determine the class of an array, use the class function:

a = [2,5,7,11];
class(a)

ans =
double

str = 'Character array';
class(str)

ans =
char

Test for Array Class
The isa function enables you to test for a specific class or a category of numeric class (numeric,
float, integer):

a = [2,5,7,11];
isa(a,'double')

ans =
 1

Floating-point values (single and double precision values):

isa(a,'float')

ans =
 1

Numeric values (floating-point and integer values):

isa(a,'numeric')

ans =
 1

isa Returns True for Subclasses

isa returns true for classes derived from the specified class. For example, the SubInt class derives
from the built-in type int16:

 Determine Array Class

12-67

classdef SubInt < int16
 methods
 function obj = SubInt(data)
 if nargin == 0
 data = 0;
 end
 obj = obj@int16(data);
 end
 end
end

By definition, an instance of the SubInt class is also an instance of the int16 class:

aInt = SubInt;
isa(aInt,'int16')

ans =
 1

Using the integer category also returns true:

isa(aInt,'integer')

ans =
 1

Test for Specific Types
The class function returns the name of the most derived class of an object:

class(aInt)

ans =
SubInt

Use the strcmp function with the class function to check for a specific class of an object:

a = int16(7);
strcmp(class(a),'int16')

ans =
 1

Because the class function returns the class name as a char vector, the inheritance does not affect
the result of the comparison performed by strcmp:

aInt = SubInt;
strcmp(class(aInt),'int16')

ans =
 0

Test for Most Derived Class
If you define functions that require inputs that are:

• MATLAB built-in types

12 How to Build on Other Classes

12-68

• Not subclasses of MATLAB built-in types

Use the following techniques to exclude subclasses of built-in types from the input arguments.

• Define a cell array that contains the names of built-in types accepted by your function.
• Call class and strcmp to test for specific types in a MATLAB control statement.

Test an input argument:

if strcmp(class(inputArg),'single')
 % Call function
else
 inputArg = single(inputArg);
end

Test for Category of Types

Suppose that you create a MEX-function, myMexFcn, that requires two numeric inputs that must be of
type double or single:

outArray = myMexFcn(a,b)

Define a cell array that contains the character arrays double and single:

floatTypes = {'double','single'};

% Test for proper types
if any(strcmp(class(a),floatTypes)) && ...
 any(strcmp(class(b),floatTypes))
 outArray = myMexFcn(a,b);
else
 % Try to convert inputs to avoid error
 ...
end

Another Test for Built-In Types

Use isobject to separate built-in types from subclasses of built-in types. The isobject function
returns false for instances of built-in types:

% Create a int16 array
a = int16([2,5,7,11]);
isobject(a)

ans =
 0

Determine if an array is one of the built-in integer types:

if isa(a,'integer') && ~isobject(a)
 % a is a built-in integer type
 ...
end

 Determine Array Class

12-69

Abstract Classes and Class Members
In this section...
“Abstract Classes” on page 12-70
“Declare Classes as Abstract” on page 12-70
“Determine If a Class Is Abstract” on page 12-72
“Find Inherited Abstract Properties and Methods” on page 12-72

Abstract Classes
Abstract classes are useful for describing functionality that is common to a group of classes, but
requires unique implementations within each class.

Abstract Class Terminology

abstract class — A class that cannot be instantiated, but that defines class components used by
subclasses.

abstract members — Properties or methods declared in an abstract class, but implemented in
subclasses.

concrete class — A class that can be instantiated. Concrete classes contain no abstract members.

concrete members — Properties or methods that are fully implemented by a class.

interface — An abstract class describing functionality that is common to a group of classes, but that
requires unique implementations within each class. The abstract class defines the interface of each
subclass without specifying the actual implementation.

An abstract class serves as a basis (that is, a superclass) for a group of related subclasses. An
abstract class can define abstract properties and methods that subclasses implement. Each subclass
can implement the concrete properties and methods in a way that supports their specific
requirements.

Implementing a Concrete Subclass

A subclass must implement all inherited abstract properties and methods to become a concrete class.
Otherwise, the subclass is itself an abstract class.

MATLAB does not force subclasses to implement concrete methods with the same signature or
attributes.

Abstract classes:

• Can define properties and methods that are not abstract
• Pass on their concrete members through inheritance
• Do not need to define any abstract members

Declare Classes as Abstract
A class is abstract when it declares:

12 How to Build on Other Classes

12-70

• The Abstract class attribute
• An abstract method
• An abstract property

If a subclass of an abstract class does not define concrete implementations for all inherited abstract
methods or properties, it is also abstract.

Abstract Class

Declare a class as abstract in the classdef statement:

classdef (Abstract) AbsClass
 ...
end

For classes that declare the Abstract class attribute:

• Concrete subclasses must redefine any properties or methods that are declared as abstract.
• The abstract class does not need to define any abstract methods or properties.

When you define any abstract methods or properties, MATLAB automatically sets the class Abstract
attribute to true.

Abstract Methods

Define an abstract method:

methods (Abstract)
 abstMethod(obj)
end

For methods that declare the Abstract method attribute:

• Do not use a function...end block to define an abstract method, use only the method
signature.

• Abstract methods have no implementation in the abstract class.
• Concrete subclasses are not required to support the same number of input and output arguments

and do not need to use the same argument names. However, subclasses generally use the same
signature when implementing their version of the method.

• Abstract methods cannot define arguments blocks.

Abstract Properties

Define an abstract property:

properties (Abstract)
 AbsProp
end

For properties that declare the Abstract property attribute:

• Concrete subclasses must redefine abstract properties without the Abstract attribute.
• Concrete subclasses must use the same values for the SetAccess and GetAccess attributes as

those attributes used in the abstract superclass.

 Abstract Classes and Class Members

12-71

• Abstract properties cannot define access methods and cannot specify initial values. The subclass
that defines the concrete property can create access methods and specify initial values.

For more information on access methods, see “Property Access Methods” on page 8-40.

Determine If a Class Is Abstract
Determine if a class is abstract by querying the Abstract property of its meta.class object. For
example, the AbsClass defines two abstract methods:

classdef AbsClass
 methods(Abstract)
 result = absMethodOne(obj)
 output = absMethodTwo(obj)
 end
end

Use the logical value of the meta.class Abstract property to determine if the class is abstract:

mc = ?AbsClass;
if ~mc.Abstract
 % not an abstract class
end

Display Abstract Member Names

Use the meta.abstractDetails function to display the names of abstract properties or methods
and the names of the defining classes:

meta.abstractDetails('AbsClass');

Abstract methods for class AbsClass:
 absMethodTwo % defined in AbsClass
 absMethodOne % defined in AbsClass

Find Inherited Abstract Properties and Methods
The meta.abstractDetails function returns the names and defining class of any inherited
abstract properties or methods that you have not implemented in your subclass. Use this function if
you want the subclass to be concrete and must determine what abstract members the subclass
inherits.

For example, suppose that you create a subclass of the AbsClass class that is defined in the previous
section. In this case, the subclass implements only one of the abstract methods defined by AbsClass.

classdef SubAbsClass < AbsClass
% Does not implement absMethodOne
% defined as abstract in AbsClass
 methods
 function out = absMethodTwo(obj)
 ...
 end
 end
end

Determine if you implemented all inherited class members using meta.abstractDetails:

12 How to Build on Other Classes

12-72

meta.abstractDetails(?SubAbsClass)

Abstract methods for class SubAbsClass:
 absMethodOne % defined in AbsClass

The SubAbsClass class is abstract because it has not implemented the absMethodOne method
defined in AbsClass.

msub = ?SubAbsClass;
msub.Abstract

ans =

 1

If you implement both methods defined in AbsClass, the subclass becomes concrete.

See Also

Related Examples
• “Define an Interface Superclass” on page 12-74

 Abstract Classes and Class Members

12-73

Define an Interface Superclass
In this section...
“Interfaces” on page 12-74
“Interface Class Implementing Graphs” on page 12-74

Interfaces
The properties and methods defined by a class form the interface that determines how class users
interact with objects of the class. When creating a group of related classes, interfaces define a
common interface to all these classes. The actual implementations of the interface can differ from one
class to another.

Consider a set of classes designed to represent various types of graphs. All classes must implement a
Data property to contain the data used to generate the graph. However, the form of the data can
differ considerably from one type of graph to another. Each class can implement the Data property
differently.

The same differences apply to methods. All classes can have a draw method that creates the graph,
but the implementation of this method changes with the type of graph.

The basic idea of an interface class is to specify the properties and methods that each subclass must
implement without defining the actual implementation. This approach enables you to enforce a
consistent interface to a group of related objects. As you add more classes in the future, the interface
remains the same.

Interface Class Implementing Graphs
This example creates an interface for classes used to represent specialized graphs. The interface is
an abstract class that defines properties and methods that the subclasses must implement, but does
not specify how to implement these components.

This approach enforces the use of a consistent interface while providing the necessary flexibility to
implement the internal workings of each specialized subclass differently.

In this example, a package folder contains the interface, derived subclasses, and a utility function:

+graphics/GraphInterface.m % abstract interface class
+graphics/LineGraph.m % concrete subclass

Interface Properties and Methods

The graph class specifies the following properties, which the subclasses must define:

• Primitive — Handle of the graphics object used to implement the specialized graph. The class
user has no need to access these objects directly so this property has protected SetAccess and
GetAccess.

• AxesHandle — Handle of the axes used for the graph. The specialized graph objects can set axes
object properties. This property has protected SetAccess and GetAccess.

• Data — All subclasses of the GraphInterface class must store data. The type of data varies and
each subclass defines the storage mechanism. Subclass users can change the data values so this
property has public access rights.

12 How to Build on Other Classes

12-74

The GraphInterface class names three abstract methods that subclasses must implement. The
GraphInterface class also suggests in comments that each subclass constructor must accept the
plot data and property name/property value pairs for all class properties.

• Subclass constructor — Accept data and P/V pairs and return an object.
• draw — Used to create a drawing primitive and render a graph of the data according to the type

of graph implemented by the subclass.
• zoom — Implementation of a zoom method by changing the axes CameraViewAngle property. The

interface suggests the use of the camzoom function for consistency among subclasses. The zoom
buttons created by the addButtons static method use this method as a callback.

• updateGraph — Method called by the set.Data method to update the plotted data whenever the
Data property changes.

Interface Guides Class Design

The package of classes that derive from the GraphInterface abstract class implement the following
behaviors:

• Creating an instance of a specialized GraphInterface object (subclass object) without rendering
the plot

• Specifying any or none of the object properties when you create a specialized GraphInterface
object

• Changing any object property automatically updates the currently displayed plot
• Allowing each specialized GraphInterface object to implement whatever additional properties it

requires to give class users control over those characteristics.

Define the Interface

The GraphInterface class is an abstract class that defines the methods and properties used by the
subclasses. Comments in the abstract class describe the intended implementation:

classdef GraphInterface < handle
 % Abstract class for creating data graphs
 % Subclass constructor should accept
 % the data that is to be plotted and
 % property name/property value pairs
 properties (SetAccess = protected, GetAccess = protected)
 Primitive
 AxesHandle
 end
 properties
 Data
 end
 methods (Abstract)
 draw(obj)
 % Use a line, surface,
 % or patch graphics primitive
 zoom(obj,factor)
 % Change the CameraViewAngle
 % for 2D and 3D views
 % use camzoom for consistency
 updateGraph(obj)
 % Update the Data property and
 % update the drawing primitive

 Define an Interface Superclass

12-75

 end

 methods
 function set.Data(obj,newdata)
 obj.Data = newdata;
 updateGraph(obj)
 end
 function addButtons(gobj)
 hfig = get(gobj.AxesHandle,'Parent');
 uicontrol(hfig,'Style','pushbutton','String','Zoom Out',...
 'Callback',@(src,evnt)zoom(gobj,.5));
 uicontrol(hfig,'Style','pushbutton','String','Zoom In',...
 'Callback',@(src,evnt)zoom(gobj,2),...
 'Position',[100 20 60 20]);
 end
 end
end

The GraphInterface class implements the property set method (set.Data) to monitor changes to
the Data property. An alternative is to define the Data property as Abstract and enable the
subclasses to determine whether to implement a set access method for this property. The
GraphInterface class defines a set access method that calls an abstract method (updateGraph,
which each subclass must implement). The GraphInterface interface imposes a specific design on
the whole package of classes, without limiting flexibility.

Method to Work with All Subclasses

The addButtons method adds push buttons for the zoom methods, which each subclass must
implement. Using a method instead of an ordinary function enables addButtons to access the
protected class data (the axes handle). Use the object zoom method as the push-button callback.

function addButtons(gobj)
 hfig = get(gobj.AxesHandle,'Parent');
 uicontrol(hfig,'Style','pushbutton',...
 'String','Zoom Out',...
 'Callback',@(src,evnt)zoom(gobj,.5));
 uicontrol(hfig,'Style','pushbutton',...
 'String','Zoom In',...
 'Callback',@(src,evnt)zoom(gobj,2),...
 'Position',[100 20 60 20]);
end

Derive a Concrete Class — LineGraph

This example defines only a single subclass used to represent a simple line graph. It derives from
GraphInterface, but provides implementations for the abstract methods draw, zoom,
updateGraph, and its own constructor. The base class GraphInterface and subclass are all
contained in a package (graphics), which you must use to reference the class name:

classdef LineGraph < graphics.GraphInterface

Add Properties

The LineGraph class implements the interface defined in the GraphInterface class and adds two
additional properties—LineColor and LineType. This class defines initial values for each property,
so specifying property values in the constructor is optional. You can create a LineGraph object with
no data, but you cannot produce a graph from that object.

12 How to Build on Other Classes

12-76

properties
 LineColor = [0 0 0];
 LineType = '-';
end

The LineGraph Constructor

The constructor accepts a struct with x and y coordinate data, and property name/property value
pairs:

function gobj = LineGraph(data,varargin)
 if nargin > 0
 gobj.Data = data;
 if nargin > 2
 for k=1:2:length(varargin)
 gobj.(varargin{k}) = varargin{k+1};
 end
 end
 end
end

Implement the draw Method

The LineGraph draw method uses property values to create a line object. The LineGraph class
stores the line handle as protected class data. To support the use of no input arguments for the
class constructor, draw checks the Data property to determine if it is empty before proceeding:

function gobj = draw(gobj)
 if isempty(gobj.Data)
 error('The LineGraph object contains no data')
 end
 h = line(gobj.Data.x,gobj.Data.y,...
 'Color',gobj.LineColor,...
 'LineStyle',gobj.LineType);
 gobj.Primitive = h;
 gobj.AxesHandle = get(h,'Parent');
end

Implement the zoom Method

The LineGraph zoom method follows the comments in the GraphInterface class which suggest
using the camzoom function. camzoom provides a convenient interface to zooming and operates
correctly with the push buttons created by the addButtons method.

Define the Property Set Methods

Property set methods provide a convenient way to execute code automatically when the value of a
property changes for the first time in a constructor. (See “Property Set Methods” on page 8-45.) The
linegraph class uses set methods to update the line primitive data (which causes a redraw of the
plot) whenever a property value changes. The use of property set methods provides a way to update
the data plot quickly without requiring a call to the draw method. The draw method updates the plot
by resetting all values to match the current property values.

Three properties use set methods: LineColor, LineType, and Data. LineColor and LineType are
properties added by the LineGraph class and are specific to the line primitive used by this class.
Other subclasses can define different properties unique to their specialization (for example,
FaceColor).

 Define an Interface Superclass

12-77

The GraphInterface class implements the Data property set method. However, the
GraphInterface class requires each subclass to define a method called updateGraph, which
handles the update of plot data for the specific drawing primitive used.

The LineGraph Class

Here is the LineGraph class definition.

classdef LineGraph < graphics.GraphInterface
 properties
 LineColor = [0 0 0]
 LineType = '-'
 end

 methods
 function gobj = LineGraph(data,varargin)
 if nargin > 0
 gobj.Data = data;
 if nargin > 1
 for k=1:2:length(varargin)
 gobj.(varargin{k}) = varargin{k+1};
 end
 end
 end
 end

 function gobj = draw(gobj)
 if isempty(gobj.Data)
 error('The LineGraph object contains no data')
 end
 h = line(gobj.Data.x,gobj.Data.y,...
 'Color',gobj.LineColor,...
 'LineStyle',gobj.LineType);
 gobj.Primitive = h;
 gobj.AxesHandle = h.Parent;
 end

 function zoom(gobj,factor)
 camzoom(gobj.AxesHandle,factor)
 end

 function updateGraph(gobj)
 set(gobj.Primitive,...
 'XData',gobj.Data.x,...
 'YData',gobj.Data.y)
 end

 function set.LineColor(gobj,color)
 gobj.LineColor = color;
 set(gobj.Primitive,'Color',color)
 end

 function set.LineType(gobj,ls)
 gobj.LineType = ls;
 set(gobj.Primitive,'LineStyle',ls)
 end
 end
end

12 How to Build on Other Classes

12-78

Use the LineGraph Class

The LineGraph class defines the simple API specified by the graph base class and implements its
specialized type of graph:

d.x = 1:10;
d.y = rand(10,1);
lg = graphics.LineGraph(d,'LineColor','b','LineType',':');
lg.draw;
lg.addButtons;

Clicking the Zoom In button shows the zoom method providing the callback for the button.

Changing properties updates the graph:

d.y = rand(10,1);
lg.Data = d;
lg.LineColor = [0.9,0.1,0.6];

Now click Zoom Out and see the new results:

 Define an Interface Superclass

12-79

See Also

Related Examples
• “Abstract Classes and Class Members” on page 12-70

12 How to Build on Other Classes

12-80

Saving and Loading Objects

• “Save and Load Process for Objects” on page 13-2
• “Reduce MAT-File Size for Saved Objects” on page 13-4
• “Save Object Data to Recreate Graphics Objects” on page 13-5
• “Improve Version Compatibility with Default Values” on page 13-7
• “Avoid Property Initialization Order Dependency” on page 13-9
• “Modify the Save and Load Process” on page 13-12
• “Basic saveobj and loadobj Pattern” on page 13-14
• “Maintain Class Compatibility” on page 13-17
• “Initialize Objects When Loading” on page 13-22
• “Save and Load Objects from Class Hierarchies” on page 13-24
• “Restore Listeners” on page 13-26

13

Save and Load Process for Objects
In this section...
“Save and Load Objects” on page 13-2
“What Information Is Saved?” on page 13-2
“How Is the Property Data Loaded?” on page 13-2
“Errors During Load” on page 13-3

Save and Load Objects
Use save and load to store and reload objects:

save filename object
load filename object

What Information Is Saved?
Saving objects in MAT-files saves:

• The full name of the object class, including any package qualifiers
• Values of dynamic properties
• All property default values defined by the class at the time the first object of the class is saved to

the MAT-file.
• The names and values of all properties, with the following exceptions:

• Properties are not saved if their current values are the same as the default values specified in
the class definition.

• Properties are not saved if their Transient, Constant, or Dependent attributes set to true.

For a description of property attributes, see “Specify Property Attributes” on page 8-5

To save graphics objects, see savefig.

Note Do not use the pack command with objects that define events and listeners. The pack
command causes the destruction of any listeners defined for the objects in the workspace. For
information on restoring listeners when saving objects, see “Restore Listeners” on page 13-26.

How Is the Property Data Loaded?
When loading objects from MAT-files, the load function restores the object.

• load creates a new object.
• If the class ConstructOnLoad attribute is set to true, load calls the class constructor with no

arguments. Otherwise, load does not call the class constructor.
• load assigns the saved property values to the object properties. These assigned values are

subjected to any property validation defined by the class. Then any property set methods defined
by the class are called, (except in the case of Dependent, Constant, or Transient properties,
which are not saved or loaded).

13 Saving and Loading Objects

13-2

• load assigns the default values saved in the MAT-file to properties whose values were not saved
because the properties were set to the default values when saved. These assignments result in
calls to property set methods defined by the class.

• If a property of an object being loaded contains an object, then load creates a new object of the
same class and assigns it to the property. If the object contained in the property is a handle object,
then the property contains a new handle object of the same class.

MATLAB calls property set methods to ensure that property values are still valid in cases where the
class definition has changed.

For information, see “Property Set Methods” on page 8-45 and “Validate Property Values” on page 8-
19.

Errors During Load
If a new version of a class removes, renames, or changes the validation for a property, load can
generate an error when attempting to set the altered or deleted property.

When an error occurs while an object is being loaded from a file, MATLAB does one of the following:

• If the class defines a loadobj method, MATLAB returns the saved values to the loadobj method
in a struct.

• If the class does not define a loadobj method, MATLAB silently ignores the errors. The load
function reconstitutes the object with property values that do not produce an error.

In the struct passed to the loadobj method, the field names correspond to the property names.
The field values are the saved values for the corresponding properties.

If the saved object derives from multiple superclasses that have private properties with same name,
the struct contains only the property value of the most direct superclass.

For information on how to implement saveobj and loadobj methods, see “Modify the Save and
Load Process” on page 13-12.

Changes to Property Validation

If a class definition changes property validation such that loaded property values are no longer valid,
MATLAB substitutes the currently defined default value for that property. The class can define a
loadobj method or converter methods to provide compatibility among class versions.

For information on property validation, see “Validate Property Values” on page 8-19

See Also
isequal

Related Examples
• “Object Save and Load”

 Save and Load Process for Objects

13-3

Reduce MAT-File Size for Saved Objects

In this section...
“Default Values” on page 13-4
“Dependent Properties” on page 13-4
“Transient Properties” on page 13-4
“Avoid Saving Unwanted Variables” on page 13-4

Default Values
If a property often has the same value, define a default value for that property. When the user saves
the object to a MAT-file, MATLAB does not save the value of a property if the current value equals the
default value. MATLAB saves the default value on a per class basis to avoid saving the value for every
object.

For more information on how MATLAB evaluates default value expressions, see “Property Default
Values” on page 8-13.

Dependent Properties
Use a dependent property when the property value must be calculated at run time. A dependent
property is not saved in the MAT-file when you save an object. Instances of the class do not allocate
memory to hold a value for a dependent property.

Dependent is a property attribute (see “Property Attributes” on page 8-6 for a complete list.)

Transient Properties
MATLAB does not store the values of transient properties. Transient properties can store data in the
object temporarily as an intermediate computation step or for faster retrieval. Use transient
properties when you easily can reproduce the data at run time or when the data represents
intermediate state that can be discarded.

Avoid Saving Unwanted Variables
Do not save variables that you do not want to load. Be sure that an object is still valid before you save
it. For example, if you save a deleted handle object, MATLAB loads it as a deleted handle.

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-12
• “Object Save and Load”

13 Saving and Loading Objects

13-4

Save Object Data to Recreate Graphics Objects
In this section...
“What to Save” on page 13-5
“Regenerate When Loading” on page 13-5
“Change to a Stairstep Chart” on page 13-6

What to Save
Use transient properties to avoid saving what you can recreate when loading the object. For example,
an object can contain component parts that you can regenerate from data that is saved. Regenerating
these components also enables newer versions of the class to create the components in a different
way.

Regenerate When Loading
The YearlyRainfall class illustrates how to regenerate a graph when loading objects of that class.
YearlyRainfall objects contain a bar chart of the monthly rainfall for a given location and year.
The Location and Year properties are ordinary properties whose values are saved when you save
the object.

The Chart property contains the handle to the bar chart. When you save a bar chart, MATLAB also
saves the figure, axes, and Bar object and the data required to create these graphics objects. The
YearlyRainfall class design eliminates the need to save objects that it can regenerate:

• The Chart property is Transient so the graphics objects are not saved.
• ChartData is a private property that provides storage for the Bar object data (YData).
• The load function calls the set.ChartData method, passing it the saved bar chart data.
• The setup method regenerates the bar chart and assigns the handle to the Chart property. Both

the class constructor and the set.ChartData method call setup.

classdef YearlyRainfall < handle
 properties
 Location
 Year
 end
 properties(Transient)
 Chart
 end
 properties(Access = private)
 ChartData
 end
 methods
 function rf = YearlyRainfall(data)
 setup(rf,data);
 end
 function set.ChartData(obj,V)
 setup(obj,V);
 end
 function V = get.ChartData(obj)
 V = obj.Chart.YData;

 Save Object Data to Recreate Graphics Objects

13-5

 end
 end
 methods(Access = private)
 function setup(rf,data)
 rf.Chart = bar(data);
 end
 end
end

Change to a Stairstep Chart
An advantage of the YearlyRainfall class design is the flexibility to modify the type of graph used
without making previously saved objects incompatible. Loading the object recreates the graph based
only on the data that is saved to the MAT-file.

For example, change the type of graph from a bar chart to a stair-step graph by modifying the setup
method:

methods(Access = private)
 function setup(rf,data)
 rf.Chart = stairs(data);
 end
end

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-12
• “Object Save and Load”

13 Saving and Loading Objects

13-6

Improve Version Compatibility with Default Values
In this section...
“Version Compatibility” on page 13-7
“Using a Default Property Value” on page 13-7

Version Compatibility
Default property values can help you implement version compatibility for saved objects. For example,
suppose that you add a property to version 2 of your class. Having a default value enables MATLAB to
assign a value to the new property when loading a version 1 object.

Similarly, suppose version 2 of your class removes a property. If a version 2 object is saved and loaded
into version 1, your loadobj method can use the default value from version 1.

Using a Default Property Value
The EmployeeInfo class shows how to use property default values as a way to enhance compatibility
among versions. Version 1 of the EmployeeInfo class defines three properties — Name, JobTitle,
and Department.

classdef EmployeeInfo
 properties
 Name
 JobTitle
 Department
 end
end

Version 2 of the EmployeeInfo class adds a property, Country, for the country name of the
employee location. The Country property has a default value of 'USA'.

classdef EmployeeInfo
 properties
 Name
 JobTitle
 Department
 Country = 'USA'
 end
end

The character array, 'USA', is a good default value because:

• MATLAB assigns an empty double [] to properties that do not have default values defined by the
class. Empty double is not a valid value for the Country property.

• In version 1, all employees were in the USA. Therefore, any version 1 object loaded into version 2
receives a valid value for the Country property.

 Improve Version Compatibility with Default Values

13-7

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-12
• “Object Save and Load”

13 Saving and Loading Objects

13-8

Avoid Property Initialization Order Dependency
In this section...
“Control Property Loading” on page 13-9
“Dependent Property with Private Storage” on page 13-9
“Property Value Computed from Other Properties” on page 13-11

Control Property Loading
Problems can occur if property values depend on the order in which load sets the property values.

Suppose that your class design is such that both of the following are true:

• A property set method changes another property value.
• A property value is computed from other property values.

Then the final state of an object after changing a series of property values can depend on the order in
which you set the properties. This order dependency can affect the result of loading an object.

The load function sets property values in a particular order. This order can be different from the
order in which you set the properties in the saved object. As a result, the loaded object can have
different property values than the object had when it was saved.

Restore Nondependent Properties

If a property set function changes the values of other properties, then define the Dependent
attribute of that property as true. MATLAB does not save or restore dependent property values.

Use nondependent properties for storing the values set by the dependent property. Then the load
function restores the nondependent properties with the same values that were saved. The load
function does not call the dependent property set method because there is no value in the saved file
for that property.

Dependent Property with Private Storage
The Odometer class avoids order dependences when loading objects by controlling which properties
are restored when loading:

• The Units property is dependent. Its property set method sets the TotalDistance property.
Therefore load does not call the Units property set method.

• The load function restores TotalDistance to whatever value it had when you saved the object.

classdef Odometer
 properties(Constant)
 ConversionFactor = 1.6
 end
 properties
 TotalDistance = 0
 end
 properties(Dependent)
 Units

 Avoid Property Initialization Order Dependency

13-9

 end
 properties(Access=private)
 PrivateUnits = 'mi'
 end
 methods
 function unit = get.Units(obj)
 unit = obj.PrivateUnits;
 end
 function obj = set.Units(obj,newUnits)
 % validate newUnits to be a char vector
 switch(newUnits)
 case 'mi'
 if strcmp(obj.PrivateUnits,'km')
 obj.TotalDistance = obj.TotalDistance / ...
 obj.ConversionFactor;
 obj.PrivateUnits = newUnits;
 end
 case 'km'
 if strcmp(obj.PrivateUnits,'mi')
 obj.TotalDistance = obj.TotalDistance * ...
 obj.ConversionFactor;
 obj.PrivateUnits = newUnits;
 end
 otherwise
 error('Odometer:InvalidUnits', ...
 'Units ''%s'' is not supported.', newUnits);
 end
 end
 end
end

Suppose that you create an instance of Odometer and set the following property values:

odObj = Odometer;
odObj.Units = 'km';
odObj.TotalDistance = 16;

When you save the object:

• ConversionFactor is not saved because it is a Constant property.
• TotalDistance is saved.
• Units is not saved because it is a Dependent property.
• PrivateUnits is saved and provides the storage for the current value of Units.

When you load the object:

• ConversionFactor is obtained from the class definition.
• TotalDistance is loaded.
• Units is not loaded, so its set method is not called.
• PrivateUnits is loaded from the saved object.

If the Units property was not Dependent, loading it calls its set method and causes the
TotalDistance property to be set again.

13 Saving and Loading Objects

13-10

Property Value Computed from Other Properties
The Odometer2 class TripDistance property depends only on the values of two other properties,
TotalDistance and TripMarker.

The class avoids order dependence when initializing property values during the load process by
making the TripDistance property dependent. MATLAB does not save or load a value for the
TripDistance property, but does save and load values for the two properties used to calculate
TripDistance in its property get method.

classdef Odometer2
 properties
 TotalDistance = 0
 TripMarker = 0
 end
 properties(Dependent)
 TripDistance
 end
 methods
 function distance = get.TripDistance(obj)
 distance = obj.TotalDistance - obj.TripMarker;
 end
 end
end

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-12
• “Object Save and Load”

 Avoid Property Initialization Order Dependency

13-11

Modify the Save and Load Process
In this section...
“When to Modify the Save and Load Process” on page 13-12
“How to Modify the Save and Load Process” on page 13-12
“Implementing saveobj and loadobj Methods” on page 13-12
“Additional Considerations” on page 13-13

When to Modify the Save and Load Process
The primary reason for modifying the save and load process is to support backward and forward
compatibility of classes. Consider modifying the save and load process when you:

• Rename a class
• Remove properties
• Define a circular reference of handle objects where initialization order is important
• Must call the constructor with arguments and, therefore, cannot use ConstructOnLoad

How to Modify the Save and Load Process
The most versatile technique for modifying the save and load process is to implement loadobj, and if
necessary, saveobj methods for your class. MATLAB executes these methods when you call save or
load on an object of the class.

The save function calls your class saveobj method before performing the save operation. The save
function then saves the value returned by the saveobj method. You can use saveobj to return a
modified object or a struct that contains property values.

load calls your class loadobj method after loading the object. The load function loads the value
returned by the loadobj method into the workspace. A loadobj method can modify the object being
loaded or can reconstruct an object from the data saved by the class saveobj method.

Implementing saveobj and loadobj Methods
Implement a saveobj method that modifies the object being saved, then implement a loadobj
method to return the object to the correct state when loading it.

Implement the loadobj method as a Static method because MATLAB can call the loadobj method
with a struct instead of an object of the class.

Implement the saveobj method as an ordinary method (that is, calling it requires an instance of the
class).

MATLAB saves the object class name so that load can determine which loadobj method to call in
cases where your saveobj method saves only the object data in a structure. Therefore, the class
must be accessible to MATLAB when you load the object.

Use a loadobj method when:

13 Saving and Loading Objects

13-12

• The class definition has changed since the object was saved, requiring you to modify the object
before loading.

• A saveobj method modified the object during the save operation, possibly saving data in a
struct. Implement the loadobj method to reconstruct the object from the output of saveobj.

Additional Considerations
When you decide to modify the default save and load process, keep the following points in mind:

• If loading any property value from the MAT-file produces an error, load passes a struct to
loadobj. The struct field names correspond to the property names extracted from the file.

• loadobj must always be able to accept a struct as input and return an object, even if there is
no saveobj or saveobj does not return a struct.

• If saveobj returns a struct, then load always passes that struct to loadobj.
• Subclass objects inherit superclass loadobj and saveobj methods. Therefore, if you do not

implement a loadobj or saveobj method in the subclass, MATLAB calls only the inherited
methods.

If a superclass implements a loadobj or saveobj method, then a subclass can also implement a
loadobj or saveobj method that calls the superclass methods. For more information, see “Save
and Load Objects from Class Hierarchies” on page 13-24.

• The load function does not call the constructor by default. For more information, see “Initialize
Objects When Loading” on page 13-22.

See Also

Related Examples
• “Basic saveobj and loadobj Pattern” on page 13-14
• “Object Save and Load”

 Modify the Save and Load Process

13-13

Basic saveobj and loadobj Pattern
In this section...
“Using saveobj and loadobj” on page 13-14
“Handle Load Problems” on page 13-15

Using saveobj and loadobj
Depending on the requirements of your class, there are various ways you can use saveobj and
loadobj methods. This pattern is a flexible way to solve problems that you cannot address by
simpler means.

The basic process is:

• Use saveobj to save all essential data in a struct and do not save the entire object.
• Use loadobj to reconstruct the object from the saved data.

This approach is not useful in cases where you cannot save property values in a struct field. Data
that you cannot save, such as a file identifier, you can possibly regenerate in the loadobj method.

If you implement a saveobj method without implementing a loadobj method, MATLAB loads a
default object of the class using the current class definition. Add a loadobj method to the class to
create an object using the data saved with the saveobj method.

saveobj

For this pattern, define saveobj as an ordinary method that accepts an object of the class and
returns a struct.

• Copy each property value to a structure field of the same name.
• You can save only the data that is necessary to rebuild the object. Avoid saving whole objects

hierarchies, such as those created by graphs.

methods
 function s = saveobj(obj)
 s.Prop1 = obj.Prop1;
 s.Prop2 = obj.Prop2
 s.Data = obj.GraphHandle.YData;
 end
end

loadobj

Define loadobj as a static method. Create an object by calling the class constructor. Then assign
values to properties from the struct passed to loadobj. Use the data to regenerate properties that
were not saved.

methods(Static)
 function obj = loadobj(s)
 if isstruct(s)
 newObj = ClassConstructor;
 newObj.Prop1 = s.Prop1;
 newObj.Prop2 = s.Prop2

13 Saving and Loading Objects

13-14

 newObj.GraphHandle = plot(s.Data);
 obj = newObj;
 else
 obj = s;
 end
 end
end

If the load function encounters an error, load passes loadobj a struct instead of an object. Your
loadobj method must always be able to handle a struct as the input argument. The input to
loadobj is always a scalar.

Handle Load Problems
loadobj can handle a struct input even if you are not using a saveobj method.

The GraphExpression class creates a graph of a MATLAB expression over a specified range of data.
GraphExpression uses its loadobj method to regenerate the graph, which is not saved with the
object.

classdef GraphExpression
 properties
 FuncHandle
 Range
 end
 methods
 function obj = GraphExpression(fh,rg)
 obj.FuncHandle = fh;
 obj.Range = rg;
 makeGraph(obj)
 end
 function makeGraph(obj)
 rg = obj.Range;
 x = min(rg):max(rg);
 data = obj.FuncHandle(x);
 plot(data)
 end
 end
 methods (Static)
 function obj = loadobj(s)
 if isstruct(s)
 fh = s.FuncHandle;
 rg = s.Range;
 obj = GraphExpression(fh,rg);
 else
 makeGraph(s);
 obj = s;
 end
 end
 end
end

Save and Load Object

Create an object with an anonymous function and a range of data as inputs:

h = GraphExpression(@(x)x.^4,[1:25])

 Basic saveobj and loadobj Pattern

13-15

h =

 GraphExpression with properties:

 FuncHandle: @(x)x.^4
 Range: [1x25 double]

Save the GraphExpression object and close the graph:

save myFile h
close

Load the object. MATLAB recreates the graph:

load myFile h

If the load function cannot create the object and passes a struct to loadobj, loadobj attempts to
create an object with the data supplied.

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-12
• “Object Save and Load”

13 Saving and Loading Objects

13-16

Maintain Class Compatibility
In this section...
“Rename Property” on page 13-17
“Update Property When Loading” on page 13-18
“Maintaining Compatible Versions of a Class” on page 13-19
“Version 2 of the PhoneBookEntry Class” on page 13-20

Rename Property
Suppose that you want to rename a property, but do not want to cause errors in existing code that
refer to the original property. For example, rename a public property called OfficeNumber to
Location. Here is the original class definition:

classdef EmployeeList
 properties
 Name
 Email
 OfficeNumber % Rename as Location
 end
end

Use of a hidden dependent property can achieve the desired results.

• In the class definition, set the OfficeNumber property attributes to Dependent and Hidden.
• Create a property set method for OfficeNumber that sets the value of the Location property.
• Create a property get method for OfficeNumber that returns the value of the Location location

property.

While the OfficeNumber property is hidden, existing code can continue to access this property. The
Hidden attribute does not affect access.

Because OfficeNumber is dependent, there is no redundancy in storage required by adding the new
property. MATLAB does not store or save dependent properties.

Here is the updated class definition.

classdef EmployeeList
 properties
 Name
 Email
 Location
 end
 properties (Dependent, Hidden)
 OfficeNumber
 end
 methods
 function obj = set.OfficeNumber(obj,val)
 obj.Location = val;
 end
 function val = get.OfficeNumber(obj)
 val = obj.Location;
 end

 Maintain Class Compatibility

13-17

 end
end

Saving and Loading EmployeeList Objects

You can load old instances of the EmployeeList class in the presence of the new class version. Code
that refers to the OfficeNumber property continues to work.

Forward and Backward Compatibility

Suppose that you want to be able to load new EmployeeList objects into systems that still have the
old version of the EmployeeList class. To achieve compatibility with old and new versions:

• Define the OfficeNumber property as Hidden, but not Dependent.
• Define the Location property as Dependent.

In this version of the EmployeeList class, the OfficeNumber property saves the value used by the
Location property. Loading an object assigns values of the three original properties (Name, Email,
and OfficeNumber), but does not assign a value to the new Location property. The lack of the
Location property in the old class definition is not a problem.

classdef EmployeeList
 properties
 Name
 Email
 end
 properties (Dependent)
 Location
 end
 properties (Hidden)
 OfficeNumber
 end
 methods
 function obj = set.Location(obj,val)
 obj.OfficeNumber = val;
 end
 function val = get.Location(obj)
 val = obj.OfficeNumber;
 end
 end
end

Update Property When Loading
Suppose that you modify a class so that a property value changes in its form or type. Previously saved
objects of the class must be updated when loaded to have a conforming property value.

Consider a class that has an AccountID property. Suppose that all account numbers must migrate
from eight-digit numeric values to 12-element character arrays.

You can accommodate this change by implementing a loadobj method.

The loadobj method:

• Tests to determine if the load function passed a struct or object. All loadobj methods must
handle both struct and object when there is an error in load.

13 Saving and Loading Objects

13-18

• Tests to determine if the AccountID number contains eight digits. If so, change it to a 12-element
character array by calling the paddAccID method.

After updating the AccountID property, loadobj returns a MyAccount object that MATLAB loads
into the workspace.

classdef MyAccount
 properties
 AccountID
 end
 methods
 function obj = padAccID(obj)
 ac = obj.AccountID;
 acstr = num2str(ac);
 if length(acstr) < 12
 obj.AccountID = [acstr,repmat('0',1,12-length(acstr))];
 end
 end
 end
 methods (Static)
 function obj = loadobj(a)
 if isstruct(a)
 obj = MyAccount;
 obj.AccountID = a.AccountID;
 obj = padAccID(obj);
 elseif isa(a,'MyAccount')
 obj = padAccID(a);
 end
 end
 end
end

You do not need to implement a saveobj method. You are using loadobj only to ensure that older
saved objects are brought up to date while loading.

Maintaining Compatible Versions of a Class
The PhoneBookEntry class uses a combination of techniques to maintain compatibility with new
versions of the class.

Suppose that you define a class to represent an entry in a phone book. The PhoneBookEntry class
defines three properties: Name, Address, and PhoneNumber.

classdef PhoneBookEntry
 properties
 Name
 Address
 PhoneNumber
 end
end

However, in future releases, the class adds more properties. To provide flexibility, PhoneBookEntry
saves property data in a struct using its saveobj method.

methods
 function s = saveobj(obj)
 s.Name = obj.Name;

 Maintain Class Compatibility

13-19

 s.Address = obj.Address;
 s.PhoneNumber = obj.PhoneNumber;
 end
end

The loadobj method creates the PhoneBookEntry object, which is then loaded into the workspace.

methods (Static)
 function obj = loadobj(s)
 if isstruct(s)
 newObj = PhoneBookEntry;
 newObj.Name = s.Name;
 newObj.Address = s.Address;
 newObj.PhoneNumber = s.PhoneNumber;
 obj = newObj;
 else
 obj = s;
 end
 end
end

Version 2 of the PhoneBookEntry Class
In version 2 of the PhoneBookEntry class, you split the Address property into StreetAddress,
City, State, and ZipCode properties.

With these changes, you could not load a version 2 object in a previous release. However, version 2
employs several techniques to enable compatibility:

• Preserve the Address property (which is used in version 1) as a Dependent property with private
SetAccess.

• Define an Address property get method (get.Address) to build a char vector that is compatible
with the version 2 Address property.

• The saveobj method invokes the get.Address method to assign the object data to a struct
that is compatible with previous versions. The struct continues to have only an Address field
built from the data in the new StreetAddress, City, State, and ZipCode properties.

• When the loadobj method sets the Address property, it invokes the property set method
(set.Address), which extracts the substrings required by the StreetAddress, City, State,
and ZipCode properties.

• The Transient (not saved) property SaveInOldFormat enables you to specify whether to save
the version 2 object as a struct or an object.

classdef PhoneBookEntry
 properties
 Name
 StreetAddress
 City
 State
 ZipCode
 PhoneNumber
 end
 properties (Constant)
 Sep = ', '
 end

13 Saving and Loading Objects

13-20

 properties (Dependent, SetAccess=private)
 Address
 end
 properties (Transient)
 SaveInOldFormat = false;
 end
 methods (Static)
 function obj = loadobj(s)
 if isstruct(s)
 obj = PhoneBookEntry;
 obj.Name = s.Name;
 obj.Address = s.Address;
 obj.PhoneNumber = s.PhoneNumber;
 else
 obj = s;
 end
 end
 end
 methods
 function address = get.Address(obj)
 address = [obj.StreetAddress,obj.Sep,obj.City,obj.Sep,...
 obj.State,obj.Sep,obj.ZipCode];
 end
 function obj = set.Address(obj,address)
 addressItems = regexp(address,obj.Sep,'split');
 if length(addressItems) == 4
 obj.StreetAddress = addressItems{1};
 obj.City = addressItems{2};
 obj.State = addressItems{3};
 obj.ZipCode = addressItems{4};
 else
 error('PhoneBookEntry:InvalidAddressFormat', ...
 'Invalid address format.');
 end
 end
 function s = saveobj(obj)
 if obj.SaveInOldFormat
 s.Name = obj.Name;
 s.Address = obj.Address;
 s.PhoneNumber = obj.PhoneNumber;
 end
 end
 end
end

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-12
• “Object Save and Load”

 Maintain Class Compatibility

13-21

Initialize Objects When Loading
In this section...
“Calling Constructor When Loading Objects” on page 13-22
“Initializing Objects in the loadobj Method” on page 13-22

Calling Constructor When Loading Objects
MATLAB does not call the class constructor when loading an object from a MAT-file. However, if you
set the ConstructOnLoad class attribute to true, load does call the constructor with no
arguments.

Enable ConstructOnLoad when you do not want to implement a loadobj method, but must
perform some actions at construction time. For example, enable ConstructOnLoad when you are
registering listeners for another object. Ensure that MATLAB can call the class constructor with no
arguments without generating an error.

Attributes set on superclasses are not inherited by subclasses. Therefore, MATLAB does not use the
value of the superclass ConstructOnLoad attribute when loading objects. If you want MATLAB to
call the class constructor, set the ConstructOnLoad attribute in your specific subclass.

If the constructor requires input arguments, use a loadobj method.

Initializing Objects in the loadobj Method
Use a loadobj method when the class constructor requires input arguments to perform object
initialization.

The LabResults class shares the constructor object initialization steps with the loadobj method by
performing these steps in the assignStatus method.

Objects of the LabResults class:

• Hold values for the results of tests.
• Assign a status for each value based on a set of criteria.

classdef LabResult
 properties
 CurrentValue
 end
 properties (Transient)
 Status
 end
 methods
 function obj = LabResult(cv)
 obj.CurrentValue = cv;
 obj = assignStatus(obj);
 end
 function obj = assignStatus(obj)
 v = obj.CurrentValue;
 if v < 10
 obj.Status = 'Too low';

13 Saving and Loading Objects

13-22

 elseif v >= 10 && v < 100
 obj.Status = 'In range';
 else
 obj.Status = 'Too high';
 end
 end
 end
 methods (Static)
 function obj = loadobj(s)
 if isstruct(s)
 cv = s.CurrentValue;
 obj = LabResults(cv);
 else
 obj = assignStatus(s);
 end
 end
 end
end

The LabResults class uses loadobj to determine the status of a given test value. This approach
provides a way to:

• Modify the criteria for determining status
• Ensure that objects always use the current criteria

You do not need to implement a saveobj method.

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-12
• “Object Save and Load”

 Initialize Objects When Loading

13-23

Save and Load Objects from Class Hierarchies
In this section...
“Saving and Loading Subclass Objects” on page 13-24
“Reconstruct the Subclass Object from a Saved struct” on page 13-24

Saving and Loading Subclass Objects
If the most specific class of an object does not define a loadobj or saveobj method, this class can
inherit loadobj or saveobj methods from a superclass.

If any class in the hierarchy defines saveobj or loadobj methods:

• Define saveobj for all classes in the hierarchy.
• Call superclass saveobj methods from the subclass saveobj method because the save function

calls only the most specific saveobj method.
• The subclass loadobj method can call the superclass loadobj, or other methods as required, to

assign values to their properties.

Reconstruct the Subclass Object from a Saved struct
Suppose that you want to save a subclass object by first converting its property data to a struct in
the class saveobj method. Then you reconstruct the object when loaded using its loadobj method.
This action requires that:

• Superclasses implement saveobj methods to save their property data in the struct.
• The subclass saveobj method calls each superclass saveobj method and returns the completed

struct to the save function. Then the save function writes the struct to the MAT-file.
• The subclass loadobj method creates a subclass object and calls superclass methods to assign

their property values in the subclass object.
• The subclass loadobj method returns the reconstructed object to the load function, which loads

the object into the workspace.

The following superclass (MySuper) and subclass (MySub) definitions show how to code these
methods.

• The MySuper class defines a loadobj method to enable an object of this class to be loaded
directly.

• The subclass loadobj method calls a method named reload after it constructs the subclass
object.

• reload first calls the superclass reload method to assign superclass property values and then
assigns the subclass property value.

classdef MySuper
 properties
 X
 Y
 end
 methods

13 Saving and Loading Objects

13-24

 function S = saveobj(obj)
 S.PointX = obj.X;
 S.PointY = obj.Y;
 end
 function obj = reload(obj,S)
 obj.X = S.PointX;
 obj.Y = S.PointY;
 end
 end
 methods (Static)
 function obj = loadobj(S)
 if isstruct(s)
 obj = MySuper;
 obj = reload(obj,S);
 end
 end
 end
end

Call the superclass saveobj and loadobj methods from the subclass saveobj and loadobj
methods.

classdef MySub < MySuper
 properties
 Z
 end
 methods
 function S = saveobj(obj)
 S = saveobj@MySuper(obj);
 S.PointZ = obj.Z;
 end
 function obj = reload(obj,S)
 obj = reload@MySuper(obj,S);
 obj.Z = S.PointZ;
 end
 end
 methods (Static)
 function obj = loadobj(S)
 if isstruct(s)
 obj = MySub;
 obj = reload(obj,S);
 end
 end
 end
end

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-12
• “Object Save and Load”

 Save and Load Objects from Class Hierarchies

13-25

Restore Listeners
In this section...
“Create Listener with loadobj” on page 13-26
“Use Transient Property to Load Listener” on page 13-26
“Using the BankAccount and AccountManager Classes” on page 13-27

Create Listener with loadobj
Suppose that you create a property listener and want to be able to save and restore the event source
and the listener. One approach is to create a listener from the loadobj method.

Use Transient Property to Load Listener
The BankAccount class stores the account balance and an account status. A PostSet listener
attached to the AccountBalance property controls the account status.

When the AccountBalance property value changes, the listener callback determines the account
status. Important points include:

• The BankAccount class defines the AccountManagerListener property to contain the listener
handle. This property enables the loadobj method to create a listener and return a reference to
it in the object that is loaded into the workspace.

• The AccountManagerListener property is Transient because there is no need to store the
listener handle with a BankAccount object. Create a listener that is attached to the new
BankAccount object created during the load process.

• The AccountBalance listener sets the AccountStatus.
• Only the AccountManager class can access AccountStatus property.

classdef BankAccount < handle
 properties (SetObservable, AbortSet)
 AccountBalance
 end
 properties (Transient)
 AccountManagerListener
 end
 properties (Access = ?AccountManager)
 AccountStatus
 end
 methods
 function obj = BankAccount(initialBalance)
 obj.AccountBalance = initialBalance;
 obj.AccountStatus = 'New Account';
 obj.AccountManagerListener = AccountManager.addAccount(obj);
 end
 end
 methods (Static)
 function obj = loadobj(obj)
 if isstruct(obj) % Handle error
 initialBalance = obj.AccountBalance;
 obj = BankAccount(initialBalance);

13 Saving and Loading Objects

13-26

 else
 obj.AccountManagerListener = AccountManager.addAccount(obj);
 end
 end
 end
end

Assume the AccountManager class provides services for various types of accounts. For the
BankAccount class, the AccountManager class defines two Static methods:

• assignStatus — Callback for the AccountBalance property PostSet listener. This method
determines the value of the BankAccount AccountStatus property.

• addAccount — Creates the AccountBalance property PostSet listener. The BankAccount
constructor and loadobj methods call this method.

classdef AccountManager
 methods (Static)
 function assignStatus(BA,~)
 if BA.AccountBalance < 0 && BA.AccountBalance >= -100
 BA.AccountStatus = 'overdrawn';
 elseif BA.AccountBalance < -100
 BA.AccountStatus = 'frozen';
 else
 BA.AccountStatus = 'open';
 end
 end
 function lh = addAccount(BA)
 lh = addlistener(BA,'AccountBalance','PostSet', ...
 @(src,evt)AccountManager.assignStatus(BA));
 end
 end
end

Using the BankAccount and AccountManager Classes
Create an instance of the BankAccount class.

ba = BankAccount(100)

ba =

 BankAccount with properties:

 AccountBalance: 100
 AccountManagerListener: [1x1 event.proplistener]
 AccountStatus: 'New Account'

Now set an account value to confirm that the AccountManager sets AccountStatus appropriately:

ba.AccountBalance = -10;
ba.AccountStatus

ans =

overdrawn

 Restore Listeners

13-27

See Also

Related Examples
• “Modify the Save and Load Process” on page 13-12
• “Property Attributes” on page 8-6
• “Listen for Changes to Property Values” on page 11-31
• “Object Save and Load”

13 Saving and Loading Objects

13-28

Enumerations

• “Named Values” on page 14-2
• “Define Enumeration Classes” on page 14-4
• “Refer to Enumerations” on page 14-9
• “Enumerations for Property Values” on page 14-14
• “Operations on Enumerations” on page 14-16
• “Hide Enumeration Members” on page 14-23
• “Enumeration Class Restrictions” on page 14-26
• “Enumerations Derived from Built-In Classes” on page 14-27
• “Mutable Handle vs. Immutable Value Enumeration Members” on page 14-32
• “Enumerations That Encapsulate Data” on page 14-37
• “Save and Load Enumerations” on page 14-40

14

Named Values
In this section...
“Kinds of Predefined Names” on page 14-2
“Techniques for Defining Enumerations” on page 14-2

Kinds of Predefined Names
MATLAB supports two kinds of predefined names:

• Constant properties
• Enumerations

Constant Properties

Use constant properties when you want a collection of related constant values that can belong to
different types (numeric values, character strings, and so on). Define properties with constant values
by setting the property Constant attribute. Reference constant properties by name whenever you
need access to that particular value.

See “Define Class Properties with Constant Values” on page 15-2 for more information.

Enumerations

Use enumerations when you want to create a fixed set of names representing a single type of value.
Use this new type in multiple places without redefining it for each class.

You can derive enumeration classes from other classes to inherit the operations of the superclass. For
example, if you define an enumeration class that subclasses a MATLAB numeric class like double or
int32, the enumeration class inherits all the mathematical and relational operations that MATLAB
defines for those classes.

Using enumerations instead of character strings to represent a value, such as colors ('red'), can
result in more readable code because:

• You can compare enumeration members with == instead of using strcmp
• Enumerations maintain type information, while char vectors do not. For example, passing a char

vector 'red' to functions means that every function must interpret what 'red' means. If you
define red as an enumeration, the actual value of 'red' can change (from [1 0 0] to
[.93 .14 .14], for example) without updating every function that accepts colors, as you would
if you defined the color as the char vector 'red'.

Define enumerations by creating an enumeration block in the class definition.

See “Define Enumeration Classes” on page 14-4 for more information.

Techniques for Defining Enumerations
Enumerations enable you to define names that represent entities useful to your application, without
using numeric values or character strings. All enumerations support equality and inequality
operations. Therefore, switch, if, and several comparison functions like isequal and ismember
work with enumeration members.

14 Enumerations

14-2

You can define enumeration classes in ways that are most useful to your application, as described in
the following sections.

Simple Enumerated Names

Simple enumeration classes have no superclasses and no properties. These classes define a set of
related names that have no underlying values associated with them. Use this kind of enumeration
when you want descriptive names, but your application does not require specific information
associated with the name.

See the WeekDays class in the “Enumeration Class” on page 14-4 and the “Define Methods in
Enumeration Classes” on page 14-5 sections.

Enumerations with Built-In Class Behaviors

Enumeration classes that subclass MATLAB built-in classes inherit most of the behaviors of those
classes. For example, an enumeration class derived from the double class inherits the mathematical,
relational, and set operations that work with variables of the class.

Enumerations do not support the colon (:) operator, even if the superclass does.

Enumerations with Properties for Member Data

Enumeration classes that do not subclass MATLAB built-in numeric and logical classes can define
properties. These classes can define constructors that set each member's unique property values.

The constructor can save input arguments in property values. For example, a Color class can specify
a Red enumeration member color with three (Red, Green, Blue) values:

enumeration
 Red (1,0,0)
end

See Also

Related Examples
• “Enumeration Class Restrictions” on page 14-26
• “Enumerations Derived from Built-In Classes” on page 14-27
• “Enumerations That Encapsulate Data” on page 14-37

 Named Values

14-3

Define Enumeration Classes
In this section...
“Enumeration Class” on page 14-4
“Construct an Enumeration Member” on page 14-4
“Convert to Superclass Value” on page 14-4
“Define Methods in Enumeration Classes” on page 14-5
“Define Properties in Enumeration Classes” on page 14-6
“Enumeration Class Constructor Calling Sequence” on page 14-7

Enumeration Class
Create an enumeration class by adding an enumeration block to a class definition. For example, the
WeekDays class enumerates a set of days of the week.

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

To execute the MATLAB code in the following sections, place the WeekDays class definition in a .m
file on your path.

Construct an Enumeration Member
Refer to an enumeration member using the class name and the member name:

ClassName.MemberName

For example, assign the enumeration member WeekDays.Tuesday to the variable today:

today = WeekDays.Tuesday;

today is a variable of class WeekDays:

whos

 Name Size Bytes Class Attributes

 today 1x1 104 WeekDays

today

today =

 Tuesday

Convert to Superclass Value
If an enumeration class specifies a superclass, you can convert an enumeration object to the
superclass by passing the object to the superclass constructor. However, the superclass constructor

14 Enumerations

14-4

must be able to accept its own class as input and return an instance of the superclass. MATLAB built-
in numeric classes, such as uint32, allow this conversion.

For example, the Bearing class derives from the uint32 built-in class:

classdef Bearing < uint32
 enumeration
 North (0)
 East (90)
 South (180)
 West (270)
 end
end

Assign the Bearing.East member to the variable a:

a = Bearing.East;

Pass a to the superclass constructor and return a uint32 value:

b = uint32(a);
whos

 Name Size Bytes Class Attributes

 a 1x1 60 Bearing
 b 1x1 4 uint32

The uint32 constructor accepts an object of the subclass Bearing and returns an object of class
uint32.

Define Methods in Enumeration Classes
Define methods in an enumeration class like any MATLAB class. For example, define a method called
isMeetingDay for the WeekDays enumeration class. The use case is that the user has a recurring
meeting on Tuesdays. The method checks if the input argument is an instance of the WeekDays
member Tuesday.

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
 methods
 function tf = isMeetingDay(obj)
 tf = WeekDays.Tuesday == obj;
 end
 end
end

Call isMeetingDay with an instance of the WeekDays class:

today = WeekDays.Tuesday;
today.isMeetingDay

ans =

 1

 Define Enumeration Classes

14-5

You can also use the enumeration member as a direct input to the method:

isMeetingDay(WeekDays.Wednesday)

ans =

 0

Define Properties in Enumeration Classes
Add properties to an enumeration class when you must store data related to the enumeration
members. Set the property values in the class constructor. For example, the SyntaxColors class
defines three properties. The class constructor assigns the values of the input arguments to the
corresponding properties when you reference a class member.

classdef SyntaxColors
 properties
 R
 G
 B
 end
 methods
 function c = SyntaxColors(r, g, b)
 c.R = r; c.G = g; c.B = b;
 end
 end
 enumeration
 Error (1, 0, 0)
 Comment (0, 1, 0)
 Keyword (0, 0, 1)
 String (1, 0, 1)
 end
end

When you refer to an enumeration member, the constructor initializes the property values:

e = SyntaxColors.Error;
e.R

ans =

 1

Because SyntaxColors is a value class (it does not derive from handle), only the class constructor
can set property values:

e.R = 0

You cannot set the read-only property 'R' of SyntaxColors.

For more information on enumeration classes that define properties, see “Mutable Handle vs.
Immutable Value Enumeration Members” on page 14-32.

14 Enumerations

14-6

Enumeration Class Constructor Calling Sequence
Each statement in an enumeration block is the name of an enumeration member, optionally followed
by an argument list. If the enumeration class defines a constructor, MATLAB calls the constructor to
create the enumerated instances.

MATLAB provides a default constructor for all enumeration classes that do not explicitly define a
constructor. The default constructor creates an instance of the enumeration class:

• Using no input arguments, if the enumeration member defines no input arguments
• Using the input arguments defined in the enumeration class for that member

For example, the input arguments for the Bool class are 0 for Bool.No and 1 for Bool.Yes.

classdef Bool < logical
 enumeration
 No (0)
 Yes (1)
 end
end

The values of 0 and 1 are of class logical because the default constructor passes the argument to
the first superclass. That is, this statement:

n = Bool.No;

Results in a call to logical that is equivalent to the following statement in a constructor:

function obj = Bool(val)
 obj@logical(val)
end

MATLAB passes the member argument only to the first superclass. For example, suppose Bool
derived from another class:

classdef Bool < logical & MyBool
 enumeration
 No (0)
 Yes (1)
 end
end

The MyBool class can add some specialized behavior:

classdef MyBool
 methods
 function boolValues = testBools(obj)
 ...
 end
 end
end

The default Bool constructor behaves as if defined like this function:

• Argument passed to first superclass constructor
• No arguments passed to subsequent constructors

 Define Enumeration Classes

14-7

function obj = Bool(val)
 obj@logical(val)
 obj@MyBool
end

See Also

Related Examples
• “Refer to Enumerations” on page 14-9
• “Operations on Enumerations” on page 14-16

14 Enumerations

14-8

Refer to Enumerations
In this section...
“Instances of Enumeration Classes” on page 14-9
“Conversion of Characters to Enumerations” on page 14-10
“Enumeration Arrays” on page 14-12

Instances of Enumeration Classes
Enumeration members are instances of the enumeration class. You can assign enumeration members
to variables and form arrays of enumeration members. If an enumeration class derives from a
superclass, you can substitute an enumeration member for an instance of the superclass.

The WeekDays class defines enumeration members for five days of the week.

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

Create objects of the WeekDays class representing specific days.

today = WeekDays.Monday;
tomorrow = WeekDays.Tuesday;

The variables today and tomorrow are objects of the WeekDays class.

The PPM class defines three enumeration members. Each member has an associated numeric value
derived from the class superclass.

classdef PPM < double
 enumeration
 High (1000)
 Medium (100)
 Low (10)
 end
end

Assign an enumeration member to a variable.

level = PPM.High;

When you substitute enumeration members for instances of the superclass, MATLAB coerces the
enumeration member to the superclass. For example, add a numeric value to an enumeration member
of the PPM class.

levelNew = level + 100

levelNew =

 1100

The result is of class double.

 Refer to Enumerations

14-9

whos

 Name Size Bytes Class Attributes

 level 1x1 108 PPM
 levelNew 1x1 8 double

You can substitute superclass values for corresponding enumeration members. For example, pass one
of the numeric values defined in the enumeration class to the PPMSwitch function.

function PPMSwitch(ppm)
 switch ppm
 case PPM.Low
 disp Low
 case PPM.Medium
 disp Medium
 case PPM.High
 disp High
 end
end

PPMSwitch(100)

Medium

You can also use an enumeration member directly:

PPMSwitch(PPM.Medium)

Medium

For information on operations you can perform on enumeration class instances, see “Operations on
Enumerations” on page 14-16.

Conversion of Characters to Enumerations
Enumeration classes can convert char vectors to enumeration members when the char vector
represents an enumeration member defined by the class. This conversion enables you to pass a valid
char vector or a cell array of char vectors when enumerations are expected.

Use a char vector instead of a direct reference to an enumeration member when you want to use a
simple character string to specify an enumeration member. However, specifying an enumeration
member directly eliminates the conversion from char to enumeration.

Enumeration classes provide a converter function using the constructor syntax.

today = WeekDays('Tuesday');

Because the char vector 'Tuesday' matches the enumeration member WeekDays.Tuesday, the
Weekdays char method can perform the conversion.

class(today)

ans =

WeekDays

Create an enumeration array using the WeekDay class constructor and a cell array of char vectors.

14 Enumerations

14-10

wd = WeekDays({'Monday','Wednesday','Friday'})

wd =

 Monday Wednesday Friday

class(wd)

ans =

WeekDays

All char vectors in the cell array must correspond to an enumeration member defined by the class.

Coercion of char to Enumerations

MATLAB coerces char vectors into enumeration members when the dominant argument is an
enumeration. Because user-defined classes are dominant over the char class, MATLAB attempts to
convert the char vector to a member of the enumeration class.

Create an enumeration array. Then insert a char vector that represents an enumeration member into
the array.

a = [WeekDays.Monday,WeekDays.Wednesday,WeekDays.Friday]

a =

 Monday Wednesday Friday

Add a char vector to the WeekDays array.

a(end+1) = 'Tuesday'

a =

 Monday Wednesday Friday Tuesday

MATLAB coerces the char vector to a WeekDays enumeration member.

class(a)

ans =

WeekDays

Substitute Enumeration Members for char Vectors

You can use enumeration members in place of char vectors in cases where functions require char
vectors. For example, this call to sprintf expects a char vector, designated by the %s format
specifier.

sprintf('Today is %s',WeekDays.Friday)

ans =

Today is Friday

The automatic conversion of enumeration classes to char enable you to use enumeration members in
this case.

 Refer to Enumerations

14-11

Enumeration Arrays
Create enumeration arrays by:

• Concatenating enumeration members using []
• Assigning enumeration members to an array using indexed assignment

Create an enumeration array of class WeekDays by concatenating enumeration members:

wd = [WeekDays.Tuesday,WeekDays.Wednesday,WeekDays.Friday];

Create an enumeration array of class WeekDays by indexed assignment:

a(1) = WeekDays.Tuesday;
a(2) = WeekDays.Wednesday;
a(3) = WeekDays.Friday;

Mixed Enumeration Members and char Vectors

You can concatenate enumeration members and char vectors as long as the char vector represents
an enumeration member.

clear a
a = [WeekDays.Wednesday,'Friday'];
class(a)

ans =

WeekDays

You can also assign a char vector to an enumeration array:

clear a
a(1) = WeekDays.Wednesday;
a(2) = 'Friday';
class(a)

ans =

WeekDays

Default Enumeration Member

The default member of an enumeration class is the first enumeration member defined in the
enumeration block. For the WeekDays class, the default enumeration member is WeekDays.Monday.

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

MATLAB allows assignment to any element of an array, even if the array variable does not previously
exist. To fill in unassigned array elements, MATLAB uses the default enumeration member.

For example, assign a value to element 5 of an array, a:

14 Enumerations

14-12

clear a
a(5) = WeekDays.Tuesday;

MATLAB must initialize the values of array elements a(1:4) with the default enumeration member.
The result of the assignment to the fifth element of the array a is:

a

a =

 Monday Monday Monday Monday Tuesday

See Also

Related Examples
• “Operations on Enumerations” on page 14-16

 Refer to Enumerations

14-13

Enumerations for Property Values
In this section...
“Syntax for Property/Enumeration Definition” on page 14-14
“Example of Restricted Property” on page 14-14

Syntax for Property/Enumeration Definition
You can restrict the values that are allowed for a property to members of an enumeration class.
Define the property as restricted to a specific enumeration class in the class definition using this
syntax:

properties
 PropName EnumerationClass
end

This syntax restricts values of PropName to members of the enumeration class EnumerationClass.

Example of Restricted Property
For example, the Days class defines a property named Today. The allowed values for the Today
property are enumeration members of the WeekDays class.

The WeekDays class defines the enumerations:

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

Use the WeekDays enumerations to restrict the allowed values of the Today property:

classdef Days
 properties
 Today WeekDays
 end
end

Create an object of the Days class.

d = Days;
d.Today = WeekDays.Tuesday;

d =

 Days with properties:

 Today: Tuesday

Representing Enumeration Members with char Vectors

The automatic conversion feature enables users of the Days class to assign values to the Today
property as either enumeration members, char vectors, or string scalars. The Today property is

14 Enumerations

14-14

restricted to members of the WeekDays enumeration class. Therefore, you can assign a char vector
that represents a member of the WeekDays class.

d = Days;
d.Today = 'Tuesday';

Also, you can use a string scalar:

d = Days;
d.Today = "Tuesday";

For more information on restricting property values, see “Validate Property Values” on page 8-19 and
“Property Class and Size Validation” on page 8-24.

 Enumerations for Property Values

14-15

Operations on Enumerations
In this section...
“Operations Supported by Enumerations” on page 14-16
“Example Enumeration Class” on page 14-16
“Default Methods” on page 14-16
“Convert Enumeration Members to Strings or char Vectors” on page 14-17
“Convert Enumeration Arrays to String Arrays or Cell Arrays of char Vectors” on page 14-17
“Relational Operations with Enumerations, Strings, and char Vectors” on page 14-18
“Enumerations in switch Statements” on page 14-19
“Enumeration Set Membership” on page 14-20
“Enumeration Text Comparison Methods” on page 14-21
“Get Information About Enumerations” on page 14-21
“Testing for an Enumeration” on page 14-22

Operations Supported by Enumerations
You can use logical, set membership, and string comparison operations on enumerations. These
operations also support the use of enumerations in conditional statements, such as switch and if
statements. The string and char functions enable you to convert enumeration members to strings
and char vectors.

Example Enumeration Class
This topic uses the WeekDays class to illustrate how to perform operations on enumerations. The
WeekDays class defines members that enumerate days of the week.

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

For information on defining enumerations, see “Define Enumeration Classes” on page 14-4.

Default Methods
Enumeration classes have the following default methods:

methods('WeekDays')

Methods for class WeekDays:

WeekDays char intersect ne setxor strcmpi strncmp union
cellstr eq ismember setdiff strcmp string strncmpi

The WeekDays method converts text formats into enumerations. Supported formats include strings,
char vectors, string arrays, and cell arrays of char vectors. For example:

f = WeekDays(["Monday" "Friday"])

14 Enumerations

14-16

f =

 1×2 WeekDays enumeration array

 Monday Friday

Convert Enumeration Members to Strings or char Vectors
Conversion of enumeration members to strings and char vectors is useful for creating text that
contains enumeration member names. For example, use the string function to convert an
enumeration member to a string and include it in a sentence:

string(WeekDays.Monday) + " is our meeting day."

ans =

 "Monday is our meeting day."

Use the char function in a similar way:

['Today is ' char(WeekDays.Friday) '.']

ans =

 'Today is Friday.'

Convert Enumeration Arrays to String Arrays or Cell Arrays of char
Vectors
Use the string function to convert an enumeration array into a string array:

sa = [WeekDays.Tuesday WeekDays.Thursday];
string(sa)

ans =

 1×2 string array

 "Tuesday" "Thursday"

Use cellstr to convert an enumeration array to a cell array of char vectors.

ca = cellstr([WeekDays.Tuesday WeekDays.Thursday]);
class(ca)

ans =

 'cell'

Both cells in the cell array contain char vectors:

class([ca{1:2}])

ans =

 'char'

 Operations on Enumerations

14-17

Relational Operations with Enumerations, Strings, and char Vectors
You can compare enumeration instances with char vectors and strings using the relational operators
eq (==) and ne (~=), as well as the isequal method.

Relational Operators eq and ne

Use eq and ne to compare enumeration members with text values. For example, you can compare an
enumeration member with a string:

today = WeekDays.Friday;
today == "Friday"

ans =

 logical

 1

Compare an enumeration array to one char vector. The return value is a logical array indicating
which members of the enumeration array are equivalent to the char vector:

wd = [WeekDays.Monday WeekDays.Wednesday WeekDays.Friday];
wd == 'Friday'

ans =

 1×3 logical array

 0 0 1

This example uses the ne function to compare the corresponding elements of an enumeration array
and a string array of equal length:

sa = ["Monday" "Wednesday" "Friday"];
md = [WeekDays.Tuesday WeekDays.Thursday WeekDays.Friday];
md ~= sa

ans =

 1×3 logical array

 1 1 0

The char vector Wednesday is equal to (==) the enumeration member WeekDays.Wednesday. You
can use this equality in conditional statements:

today = 'Wednesday';
 ...
if today == WeekDays.Wednesday
 disp('Team meeting at 2:00')
end

isequal Method

The isequal method also enables comparisons between enumeration instances and strings,
character vectors, string arrays, and cell arrays of character vectors.

14 Enumerations

14-18

a = WeekDays.Monday;
isequal(a,"Monday")

ans =

 logical

 1

When comparing an enumeration array to a single item, the behavior of isequal differs slightly from
eq and ne. The isequal method requires that the two values being compared are the same size.
Therefore, isequal returns false when comparing an enumeration array to a char vector or string
scalar, even if the text matches one of the enumeration members in the array.

wd = [WeekDays.Monday WeekDays.Wednesday WeekDays.Friday];
isequal(wd,"Friday")

ans =

 logical

 0

Enumerations in switch Statements
Equality (eq) and inequality (ne) functions enable you to use enumeration members in switch
statements. For example, using the WeekDays enumeration defined previously, construct a switch
statement:

function c = Reminder(day)
 % Add error checking here
 switch(day)
 case WeekDays.Monday
 c = 'No meetings';
 case WeekDays.Tuesday
 c = 'Department meeting at 10:00';
 case {WeekDays.Wednesday WeekDays.Friday}
 c = 'Team meeting at 2:00';
 case WeekDays.Thursday
 c = 'Volleyball night';
 end
end

Pass a member of the WeekDays enumeration class to the Reminder function:

today = WeekDays.Wednesday;
Reminder(today)

ans =

Team meeting at 2:00

For more information, see “Objects In Conditional Statements” on page 5-29.

Substitute Strings or char Vectors

You can use strings or char vectors to represent specific enumeration members:

 Operations on Enumerations

14-19

function c = Reminder2(day)
 switch(day)
 case 'Monday'
 c = 'Department meeting at 10:00';
 case 'Tuesday'
 c = 'Meeting Free Day!';
 case {'Wednesday' 'Friday'}
 c = 'Team meeting at 2:00';
 case 'Thursday'
 c = 'Volleyball night';
 end
end

Although you can use char vectors or strings instead of specifying enumerations explicitly, MATLAB
must convert the text format to an enumeration. Eliminate the need for this conversion if it is not
necessary.

Enumeration Set Membership
Enumeration classes provide methods to determine set membership.

• ismember — True for elements of an enumeration array if in a set
• setdiff — Set difference for enumeration arrays
• intersect — Set intersection for enumeration arrays
• setxor — Set exclusive-or for enumeration arrays
• union — Set union for enumeration arrays

Determine if today is a meeting day for your team. Create a set of enumeration members
corresponding to the days on which the team has meetings.

today = WeekDays.Tuesday;
teamMeetings = [WeekDays.Wednesday WeekDays.Friday];

Use ismember to determine if today is part of the teamMeetings set:

ismember(today,teamMeetings)

ans =
 0

Mixed Sets of Enumeration and Text

If you pass both enumeration members and text values to an enumeration class method, the class
attempts to convert the text value to the class of the enumeration.

Determine if the char vector 'Friday' is a member of the enumeration array.

teamMeetings = [WeekDays.Wednesday WeekDays.Friday];
ismember('Friday',teamMeetings)

ans =

 logical

 1

14 Enumerations

14-20

Determine if the enumeration member is a member of the string array.

ismember(WeekDays.Friday,["Wednesday" "Friday"])

ans =

 logical

 1

Enumeration Text Comparison Methods
Enumeration classes provide methods to compare enumeration members with text. One of the
arguments to the string comparison methods must be a char vector or a string. Comparing two
enumeration members returns false.

• strcmp — Compare enumeration members
• strncmp — Compare first n characters of enumeration members
• strcmpi — Case insensitive comparison of enumeration members
• strncmpi — Case insensitive first n character comparison of enumeration members

Comparing Enumeration Member with Strings or char Vectors

The string comparison methods can compare enumeration members with char vectors and strings.

today = WeekDays.Tuesday;
strcmp(today,'Friday')

ans =

 0

strcmp(today,"Tuesday")

ans =

 1

Get Information About Enumerations
Obtain information about enumeration classes using the enumeration function. For example:

enumeration WeekDays

Enumeration members for class 'WeekDays':

 Monday
 Tuesday
 Wednesday
 Thursday
 Friday

For more information on how class introspection works with enumerations, see “Metaclass
EnumeratedValues Property” on page 16-7.

 Operations on Enumerations

14-21

Testing for an Enumeration
To determine if a value is an enumeration, use the isenum function. For example:

today = WeekDays.Wednesday;
isenum(today)

ans =

 1

isenum returns true for empty enumeration objects:

noday = WeekDays.empty;
isenum(noday)

ans =

 1

To determine if a class is an enumeration class, use the meta.class object.

today = WeekDays.Wednesday;
mc = metaclass(today);
mc.Enumeration

ans =

 1

See Also

Related Examples
• “Enumeration Class Restrictions” on page 14-26

14 Enumerations

14-22

Hide Enumeration Members
Hiding enumeration members enables class authors to change enumeration member names without
causing incompatibilities in existing code. To hide members, create an enumeration block that sets
the Hidden attribute. Members defined in a Hidden enumeration block are not visible when
enumeration members are queried using the enumeration function.

When an enumeration class derives from another class, such as a numeric or logical class, then each
member can have a value associated with it. If two members have the same value assigned to them,
then the member defined first in the class definition masks the second member. Both names are valid
enumeration members, but the first one defined is the primary member. While masking makes it
possible to use one member name in place of another, it does not hide the secondary name from the
class users.

Using the Hidden attribute removes the masked member names from user view. For example, the
HighlightColor class defines enumeration members that represent syntax highlighting colors.

classdef HighlightColor < int32
 enumeration
 red (1)
 green (2)
 blue (3)
 end
end

A new version of the class uses more descriptive member names, but the class needs to avoid
breaking existing code that uses the original member names, red, green, and blue. Using the Hidden
attribute for enumeration members enables the class to hide the original members.

classdef HighlightColor < int32
 enumeration
 error (1)
 comment (2)
 keyword (3)
 end
 enumeration (Hidden)
 red (1)
 green (2)
 blue (3)
 end
end

Code that uses the original member names continues to work. For example, existing references to the
now-hidden member HighlightColor.blue is compatible with the same-valued nonhidden member
HighlightColor.keyword.

%
a = HighlightColor.blue

a =

 HighlightColor enumeration

 keyword

a == HighlightColor.Keyword

 Hide Enumeration Members

14-23

ans =

 logical

 1

For enumeration members that represent values, the first member defined in the class is the primary
member for that value. For example, in the HighlightColor class, keyword is the primary member
and blue is the secondary member, both representing the value 3. Typically, the primary member is
not hidden while the secondary member is hidden. However, if the class design requires that the
primary member is hidden, then the secondary member must be hidden too.

Hide Pure Enumerations
Pure enumeration members have no underlying values, so there is no way to identify one member as
a replacement for another. However, you can use the Hidden attribute to remove a member from the
user view while avoiding incompatibilities with existing uses of the hidden member.

For example, the PCComponents class defines enumerations that are used in an online form for a
computer order. While the FloppyDrive component is obsolete, the enumeration member can
remain in the class as a hidden member. The form can exclude FloppyDrive from the list of choices,
but the class author can keep this member available so that existing forms that refer to
FloppyDrive are still valid.

classdef PCComponents
 enumeration
 USBSlots
 CDPlayer
 end
 enumeration (Hidden)
 FloppyDrive
 end
end

Find Hidden Enumeration Members
Find information about hidden enumeration members using class metadata. The
meta.EnumeratedValue class provides information on enumeration members. For example,
accessing the metadata for the HighlightColor class used in preceding examples can show the
names of hidden members.

mc =?HighlightColor

mc =

 class with properties:

 Name: 'HighlightColor'
 Description: ''
 DetailedDescription: ''
 Hidden: 0
 Sealed: 0
 Abstract: 0
 Enumeration: 1
 ConstructOnLoad: 0

14 Enumerations

14-24

 HandleCompatible: 0
 InferiorClasses: {[1×1 meta.class]}
 ContainingPackage: [0×0 meta.package]
 RestrictsSubclassing: 0
 PropertyList: [0×1 meta.property]
 MethodList: [140×1 meta.method]
 EventList: [0×1 meta.event]
 EnumerationMemberList: [6×1 meta.EnumeratedValue]
 SuperclassList: [1×1 meta.class]

Each enumeration member is describe by a meta.EnumeratedValue object that is contained in the
EnumerationMemberList property. For example, the fourth element in the
EnumerationMemberList array contains the meta.EnumerationValue object for the member
with the name red.

mc.EnumerationMemberList(4)

ans =

 EnumeratedValue with properties:

 Name: 'red'
 Description: ''
 DetailedDescription: ''
 Hidden: 1

To list the names of all hidden members, use the handle class findobj method:

 findobj(mc.EnumerationMemberList,'Hidden',true).Name

ans =

 'red'

ans =

 'green'

ans =

 'blue'

See Also
enumeration | findobj

 Hide Enumeration Members

14-25

Enumeration Class Restrictions
Enumeration classes restrict certain aspects of their use and definition:

• Enumeration classes are implicitly Sealed. You cannot define a subclass of an enumeration class
because doing so would expand the set.

• The properties of value-based enumeration classes are immutable. Only the constructor can assign
property values. MATLAB implicitly defines the SetAccess attributes of all properties defined by
value-based enumeration classes as immutable. You cannot set the SetAccess attribute to any
other value.

• All properties inherited by a value-based enumeration class that are not defined as Constant
must have immutable SetAccess.

• The properties of handle-based enumeration classes are mutable. You can set property values on
instances of the enumeration class. See “Mutable Handle vs. Immutable Value Enumeration
Members” on page 14-32.

• An enumeration member cannot have the same name as a property, method, or event defined by
the same class.

• Enumerations do not support colon (a:b) operations. For example,
FlowRate.Low:FlowRate.High causes an error even if the FlowRate class derives from a
numeric superclass.

• Classes that define enumerations cannot restrict properties of the same class to an enumeration
type. Create a separate enumeration class to restrict property values to an enumeration. For
information on restricting property values, see “Example of Restricted Property” on page 14-14.

• If the primary enumeration member sets the Hidden attribute, then the secondary member (one
with the same underlying value) must also set the Hidden attribute. For more information, see
“Hide Enumeration Members” on page 14-23.

See Also

Related Examples
• “Enumerations Derived from Built-In Classes” on page 14-27

14 Enumerations

14-26

Enumerations Derived from Built-In Classes
In this section...
“Subclassing Built-In Classes” on page 14-27
“Derive Enumeration Class from Numeric Class” on page 14-27
“How to Alias Enumeration Names” on page 14-28
“Superclass Constructor Returns Underlying Value” on page 14-29
“Default Converter” on page 14-30

Subclassing Built-In Classes
Enumeration classes can subclass MATLAB built-in classes. Deriving an enumeration class from built-
in classes is useful to extend the usefulness of the enumeration members.

• Enumerations inherit functionality from the built-in class.
• You can associate a numeric or logical value with enumeration members.

For a more basic discussion of enumeration classes, see “Define Enumeration Classes” on page 14-4.

Derive Enumeration Class from Numeric Class

Note Enumeration classes derived from built-in numeric and logical classes cannot define properties.

If an enumeration class subclasses a built-in numeric class, the subclass inherits ordering and
arithmetic operations that you can apply to the enumerated names.

For example, the Results class subclasses the int32 built-in class. This class associates an integer
value with each of the four enumeration members — First, Second, Third, and NoPoints.

classdef Results < int32
 enumeration
 First (100)
 Second (50)
 Third (10)
 NoPlace (0)
 end
end

The enumeration member inherits the methods of the int32 class (except the colon operator). Use
these enumerations like numeric values (summed, sorted, averaged).

isa(Results.Second,'int32')

ans =

 1

For example, use enumeration names instead of numbers to rank two teams:

Team1 = [Results.First, Results.NoPlace, Results.Third, Results.Second];
Team2 = [Results.Second, Results.Third, Results.First, Results.First];

 Enumerations Derived from Built-In Classes

14-27

Perform int32 operations on these Results enumerations:

sum(Team1)

ans =

 160

mean(Team1)

ans =

 40

sort(Team2,'descend')

ans =

 First First Second Third

Team1 > Team2

ans =

 1 0 0 0

sum(Team1) < sum(Team2)

ans =

 1

How to Create Enumeration Instances

When you first refer to an enumeration class that derives from a built-in class such as, int32,
MATLAB passes the input arguments associated with the enumeration members to the superclass
constructor. For example, referencing the Second Results member, defined as:

Second (50)

means that MATLAB calls:

int32(50)

to initialize the int32 aspect of this Results object.

How to Alias Enumeration Names
Enumeration classes that derive from MATLAB built-in numeric and logical classes can define more
than one name for an underlying value. The first name in the enumeration block with a given
underlying value is the actual name for that underlying value and subsequent names are aliases.

Specify aliased names with the same superclass constructor argument as the actual name:

classdef Bool < logical
 enumeration
 No (0)
 Yes (1)
 off (0)

14 Enumerations

14-28

 on (1)
 end
end

For example, the actual name of an instance of the Bool.off enumeration member is No:

a = Bool.No

a =

 No

b = Bool.off

b =

 No

Superclass Constructor Returns Underlying Value
The actual underlying value associated with an enumeration member is the value returned by the
built-in superclass. For example, consider the Bool class defined with constructor arguments that are
of class double:

classdef Bool < logical
 enumeration
 No (0)
 Yes (100)
 end
end

This class derives from the built-in logical class. Therefore, underlying values for an enumeration
member depend only on what value logical returns when passed that value:

a = Bool.Yes

a =

 Yes

logical(a)

ans =

 1

How to Subclass Numeric Built-In Classes

The FlowRate enumeration class defines three members, Low, Medium, and High.

classdef FlowRate < int32
 enumeration
 Low (10)
 Medium (50)
 High (100)
 end
end

Reference an instance of an enumeration member:

 Enumerations Derived from Built-In Classes

14-29

setFlow = FlowRate.Medium;

This statement causes MATLAB to call the default constructor with the argument value of 50.
MATLAB passes this argument to the first superclass constructor (int32(50) in this case). The
result is an underlying value of 50 as a 32-bit integer for the FlowRate.Medium member.

Because FlowRate subclasses a built-in numeric class (int32), this class cannot define properties.
However FlowRate inherits int32 methods including a converter method. Programs can use the
converter to obtain the underlying value:

setFlow = FlowRate.Medium;
int32(setFlow)

ans =

 50

Default Converter
If an enumeration is a subclass of a built-in numeric class, you can convert from built-in numeric data
to the enumeration using the name of the enumeration class. For example:

a = Bool(1)

a =

 Yes

An enumerated class also accepts enumeration members of its own class as input arguments:

Bool(a)

ans =

 Yes

The converter returns an object of the same size as in input:

Bool([0,1])

ans =

 No Yes

Create an empty enumeration array using the empty static method:

Bool.empty

ans =

 0x0 empty Boolean enumeration.

14 Enumerations

14-30

See Also

Related Examples
• “Mutable Handle vs. Immutable Value Enumeration Members” on page 14-32
• “Fundamental MATLAB Classes”

 Enumerations Derived from Built-In Classes

14-31

Mutable Handle vs. Immutable Value Enumeration Members
In this section...
“Select Handle- or Value-Based Enumerations” on page 14-32
“Value-Based Enumeration Classes” on page 14-32
“Handle-Based Enumeration Classes” on page 14-33
“Represent State with Enumerations” on page 14-35

Select Handle- or Value-Based Enumerations
Use a handle enumeration to enumerate a set of objects whose state can change over time. Use a
value enumeration to enumerate a set of abstract (and immutable) values. For information about
handle and value classes, see “Comparison of Handle and Value Classes” on page 7-2.

Value-Based Enumeration Classes
A value-based enumeration class has a fixed set of specific values. Modify these values by changing
the values of properties. Doing so expands or changes the fixed set of values for this enumeration
class.

Inherited Property SetAccess Must Be Immutable

Value-based enumeration classes implicitly define the SetAccess attributes of all properties as
immutable. You cannot set the SetAccess attribute to any other value.

However, all superclass properties must explicitly define property SetAccess as immutable.

Enumeration Members Remain Constant

An instance of a value-based enumeration class is unique until the class is cleared and reloaded. For
example, given this class:

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday
 end
end

MATLAB considers a and b as equivalent:

a = WeekDays.Monday;
b = WeekDays.Monday;
isequal(a,b)

ans =

 1

a == b

ans =

 1

14 Enumerations

14-32

Enumeration Member Properties Remain Constant

Value-based enumeration classes that define properties are immutable. For example, the Colors
enumeration class associates RGB values with color names.

classdef Colors
 properties
 R = 0
 G = 0
 B = 0
 end
 methods
 function c = Colors(r,g,b)
 c.R = r; c.G = g; c.B = b;
 end
 end
 enumeration
 Red (1, 0, 0)
 Green (0, 1, 0)
 Blue (0, 0, 1)
 end
end

The constructor assigns the input arguments to R, G, and B properties:

red = Colors.Red;
[red.R,red.G,red.B]

ans =

 1 0 0

You cannot change a property value:

red.G = 1;

You cannot set the read-only property 'G' of Colors.

Handle-Based Enumeration Classes
Handle-based enumeration classes that define properties are mutable. Derive enumeration classes
from the handle class when you must be able to change property values on instances of that class.

Note You cannot derive an enumeration class from matlab.mixin.Copyable because the number
of instances you can create are limited to the ones defined inside the enumeration block.

An Enumeration Member Remains Constant

Given a handle-based enumeration class with properties, changing the property value of an instance
causes all references to that instance to reflect the changed value.

For example, the HandleColors enumeration class associates RGB values with color names, the
same as the Colors class in the previous example. However, HandleColors derives from handle:

classdef HandleColors < handle
 properties

 Mutable Handle vs. Immutable Value Enumeration Members

14-33

 R = 0
 G = 0
 B = 0
 end
 methods
 function c = HandleColors(r, g, b)
 c.R = r; c.G = g; c.B = b;
 end
 end
 enumeration
 Red (1, 0, 0)
 Green (0, 1, 0)
 Blue (0, 0, 1)
 end
end

Create an instance of HandleColors.Red and return the value of the R property:

a = HandleColors.Red;
a.R

ans =

 1

MATLAB constructs the HandleColors.Red enumeration member, which sets the R property to 1,
the G property to 0, and the B property to 0.

Change the value of the R property to 0.8:

a.R = 0.8;

After setting the value of the R property to 0.8, create another instance, b, of HandleColors.Red:

b = HandleColors.Red;
b.R

ans =

 0.8000

The value of the R property of the newly created instance is also 0.8. A MATLAB session has only one
value for any enumeration member at any given time.

Clearing the workspace variables does not change the current definition of the enumeration member
HandleColors.Red:

clear
a = HandleColors.Red;
a.R

ans =

 0.8000

Clear the class to reload the definition of the HandleColors class:

14 Enumerations

14-34

clear classes
a = HandleColors.Red;
a.R

ans =

 1

To prevent reassignment of a given property value, set that property's SetAccess attribute to
immutable.

Equality of Handle-Based Enumerations

Assign two variables to a particular enumeration member:

a = HandleColors.Red;
b = HandleColors.Red;

Compare a and b using isequal:

isequal(a,b)

ans =

 1

The property values of a and b are the same, so isequal returns true. However, unlike handle
classes that are not enumeration classes, a and b are the same handle because there is only one
enumeration member. Determine handle equality using == (the handle eq method).

a == b

ans =

 1

See the handle eq method for information on how isequal and == differ when used with handles.

Represent State with Enumerations
The MachineState class defines two enumeration members to represent the state of a machine,
either running or not running.

classdef MachineState
 enumeration
 Running
 NotRunning
 end
end

The Machine class represents a machine with start and stop operations. The MachineState
enumerations are easy to work with because of their eq and char methods, and they result in code
that is easy to read.

classdef Machine < handle
 properties (SetAccess = private)
 State = MachineState.NotRunning

 Mutable Handle vs. Immutable Value Enumeration Members

14-35

 end

 methods
 function start(machine)
 if machine.State == MachineState.NotRunning
 machine.State = MachineState.Running;
 end
 disp (machine.State.char)
 end
 function stop(machine)
 if machine.State == MachineState.Running
 machine.State = MachineState.NotRunning;
 end
 disp (machine.State.char)
 end
 end
end

Create a Machine object and call start and stop methods

m = Machine;
m.start

Running

m.stop

NotRunning

See Also

Related Examples
• “Enumerations That Encapsulate Data” on page 14-37

14 Enumerations

14-36

Enumerations That Encapsulate Data
In this section...
“Enumeration Classes with Properties” on page 14-37
“Store Data in Properties” on page 14-37

Enumeration Classes with Properties
Enumeration classes can define properties to store data values. The enumeration members represent
specific values for these properties, which MATLAB assigns in the class constructor. For information
on defining enumeration classes, see “Define Enumeration Classes” on page 14-4.

Store Data in Properties

Note Enumeration classes that subclass built-in numeric or logical classes cannot define or inherit
properties. For more information on this kind of enumeration class, see “Enumerations Derived from
Built-In Classes” on page 14-27 .

Define properties in an enumeration class if you want to associate specific data with enumeration
members, but do not need to inherit arithmetic, ordering, or other operations that MATLAB defines
for specific built-in classes.

Representing Colors

Define an enumeration class to represent the RGB values of the colors in a color set. The Colors
class defines names for the colors, each of which uses the RGB values as arguments to the class
constructor:

classdef Colors
 properties
 R = 0
 G = 0
 B = 0
 end
 methods
 function c = Colors(r, g, b)
 c.R = r; c.G = g; c.B = b;
 end
 end
 enumeration
 Blueish (18/255,104/255,179/255)
 Reddish (237/255,36/255,38/255)
 Greenish (155/255,190/255,61/255)
 Purplish (123/255,45/255,116/255)
 Yellowish (1,199/255,0)
 LightBlue (77/255,190/255,238/255)
 end
end

You can access the property values via the enumeration member:

Colors.Reddish.R

 Enumerations That Encapsulate Data

14-37

ans =

 0.9294

Suppose that you want to create a plot with the new shade of red named Reddish:

a = Colors.Reddish;
[a.R,a.G,a.B]

ans =

 0.9294 0.1412 0.1490

Use these values by accessing the enumeration member properties. For example, the myPlot
function accepts a Colors enumeration member as an input argument. The function accesses the
RGB values defining the color from the property values.

function h = myPlot(x,y,LineColor)
 h = line('XData',x,'YData',y);
 r = LineColor.R;
 g = LineColor.G;
 b = LineColor.B;
 h.Color = [r g b];
end

Create a plot using a reddish color line:

h = myPlot(1:10,1:10,Colors.Reddish);

The Colors class encapsulates the definitions of a standard set of colors. You can change the
enumeration class definition of the colors and not affect functions that use the enumerations.

Enumerations Defining Categories

The Cars class defines categories used to inventory automobiles. The Cars class derives from the
CarPainter class, which derives from handle. The abstract CarPainter class defines a paint
method, which modifies the Color property when a car is painted another color.

The Cars class uses the Colors enumeration members to specify a finite set of available colors. The
exact definition of any given color can change independently of the Cars class.

classdef Cars < CarPainter
 enumeration
 Hybrid (2,'Manual',55,Colors.Reddish)
 Compact(4,'Manual',32,Colors.Greenish)
 MiniVan(6,'Automatic',24,Colors.Blueish)
 SUV (8,'Automatic',12,Colors.Yellowish)
 end
 properties (SetAccess = private)
 Cylinders
 Transmission
 MPG
 Color
 end
 methods
 function obj = Cars(cyl,trans,mpg,colr)
 obj.Cylinders = cyl;
 obj.Transmission = trans;

14 Enumerations

14-38

 obj.MPG = mpg;
 obj.Color = colr;
 end
 function paint(obj,colorobj)
 if isa(colorobj,'Colors')
 obj.Color = colorobj;
 else
 [~,cls] = enumeration('Colors');
 disp('Not an available color')
 disp(cls)
 end
 end
 end
end

The CarPainter class requires its subclasses to define a method called paint:

classdef CarPainter < handle
 methods (Abstract)
 paint(carobj,colorobj)
 end
end

Define an instance of the Cars class:

c1 = Cars.Compact;

The color of this car is Greenish, as defined by the Colors.Greenish enumeration:

c1.Color

ans =

 Greenish

Use the paint method to change the car color:

c1.paint(Colors.Reddish)
c1.Color

ans =

 Reddish

See Also

Related Examples
• “Save and Load Enumerations” on page 14-40
• “Enumerations for Property Values” on page 14-14

 Enumerations That Encapsulate Data

14-39

Save and Load Enumerations
In this section...
“Basic Knowledge” on page 14-40
“Built-In and Value-Based Enumeration Classes” on page 14-40
“Simple and Handle-Based Enumeration Classes” on page 14-40
“Causes: Load as struct Instead of Object” on page 14-40

Basic Knowledge
See the save and load functions and “Save and Load Process for Objects” on page 13-2 for general
information on saving and loading objects.

To see a list of enumeration names defined by a class, use the enumeration function.

Built-In and Value-Based Enumeration Classes
When you save enumerations that derive from built-in classes or that are value-based classes with
properties, MATLAB saves the names of the enumeration members and the definition of each
member.

When loading these enumerations, MATLAB preserves names over underlying values. If the saved
named value is different from the current class definition, MATLAB uses the value defined in the
current class, and then issues a warning.

Simple and Handle-Based Enumeration Classes
When you save simple enumerations that have no properties, superclasses, or values associated with
the member names or enumerations derived from the handle class, MATLAB saves the names and
any underlying values.

When loading these types of enumerations, MATLAB does not check the values associated with the
names in the current class definition. This behavior results from the fact that simple enumerations
have no underlying values and handle-based enumerations can legally have values that are different
than those values defined by the class.

Causes: Load as struct Instead of Object
If you add a new named value or a new property to a class after saving an enumeration, MATLAB
does not warn during load.

If the changes to the enumeration class definition do not prevent MATLAB from loading the object
(that is, all the named values in the MAT-File are present in the modified class definition), then
MATLAB issues a warning that the class has changed and loads the enumeration.

In the following cases, MATLAB issues a warning and loads as much of the saved data as possible as a
struct:

• MATLAB cannot find the class definition

14 Enumerations

14-40

• The class is no longer an enumeration class
• MATLAB cannot initialize the class
• There are one or more enumeration members in the loaded enumeration that is not in the class
definition

• If the class is a value-based enumeration with properties and a property that exists in the file, is
not present in the class definition

struct Fields

The returned struct has these fields:

• ValueNames — A cell array of strings, one per unique value in the enumeration array.
• Values — An array of the same dimension as ValueNames containing the corresponding values

of the enumeration members named in ValueNames. Depending on the kind of enumeration class,
Values can be one of the following:

• If the enumeration class derives from a built-in class, the array class is the same as the built-in
class. The values in the array are the underlying values of each enumeration member.

• Otherwise, a struct array representing the property name — property values pairs of each
enumeration member. For simple and handle-based enumerations, the struct array has no
fields.

• ValueIndices — a uint32 array of the same size as the original enumeration. Each element is
an index into the ValueNames and Values arrays. The content of ValueIndices represents the
value of each object in the original enumeration array.

See Also

More About
• “Named Values” on page 14-2

 Save and Load Enumerations

14-41

Constant Properties

15

Define Class Properties with Constant Values
In this section...
“Defining Named Constants” on page 15-2
“Constant Property Assigned a Handle Object” on page 15-3
“Constant Property Assigned Any Object” on page 15-4
“Constant Properties — No Support for Get Events” on page 15-5

Defining Named Constants
You can define constants that you can refer to by name by creating a MATLAB class that defines
constant properties.

Use constant properties to define constant values that you can access by name. Create a class with
constant properties by declaring the Constant attribute in the property blocks. Setting the
Constant attribute means that, once initialized to the value specified in the property block, the value
cannot be changed.

Assigning Values to Constant Properties

Assign any value to a Constant property, including a MATLAB expression. For example:

classdef NamedConst
 properties (Constant)
 R = pi/180
 D = 1/NamedConst.R
 AccCode = '0145968740001110202NPQ'
 RN = rand(5)
 end
end

MATLAB evaluates the expressions when loading the class. Therefore, the values MATLAB assigns to
RN are the result of a single call to the rand function and do not change with subsequent references
to NamedConst.RN. Calling clear classes causes MATLAB to reload the class and reinitialize the
constant properties.

Referencing Constant Properties

Refer to the constant using the class name and the property name:

ClassName.PropName

For example, to use the NamedConst class defined in the previous section, reference the constant for
the degree to radian conversion, R:

radi = 45*NamedConst.R

radi =

 0.7854

Constants in Packages

To create a library for constant values that you can access by name, first create a package folder,
then define the various classes to organize the constants. For example, to implement a set of

15 Constant Properties

15-2

constants that are useful for making astronomical calculations, define a AstroConstants class in a
package called constants:

+constants/@AstroConstants/AstroConstants.m

The class defines a set of Constant properties with values assigned:

classdef AstroConstants
 properties (Constant)
 C = 2.99792458e8 % m/s
 G = 6.67259 % m/kgs
 Me = 5.976e24 % Earth mass (kg)
 Re = 6.378e6 % Earth radius (m)
 end
end

To use this set of constants, reference them with a fully qualified class name. For example, the
following function uses some of the constants defined in AstroContants:
function E = energyToOrbit(m,r)
 E = constants.AstroConstants.G * constants.AstroConstants.Me * m * ...
 (1/constants.AstroConstants.Re-0.5*r);
end

Importing the package into the function eliminates the need to repeat the package name (see
import):

function E = energyToOrbit(m,r)
 import constants.*;
 E = AstroConstants.G * AstroConstants.Me * m * ...
 (1/AstroConstants.Re - 0.5 * r);
end

Constant Property Assigned a Handle Object
If a class defines a constant property with a value that is a handle object, you can assign values to the
handle object properties. To access the handle object, create a local variable.

For example, the ConstMapClass class defines a constant property. The value of the constant
property is a handle object (a containers.Map object).

classdef ConstMapClass < handle
 properties (Constant)
 ConstMapProp = containers.Map
 end
end

To assign the current date to the Date key, return the handle from the constant property, then make
the assignment using the local variable on the left side of the assignment statement:

localMap = ConstMapClass.ConstMapProp
localMap('Date') = datestr(clock);

You cannot use a reference to a constant property on the left side of an assignment statement. For
example, MATLAB interprets the following statement as the creation of a struct named
ConstMapClass with a field ConstMapProp:

ConstMapClass.ConstMapProp('Date') = datestr(clock);

 Define Class Properties with Constant Values

15-3

Constant Property Assigned Any Object
You can assign an instance of the defining class to a constant property. MATLAB creates the instance
assigned to the constant property when loading the class. Use this technique only when the defining
class is a handle class.

The MyProject is an example of such a class:

classdef MyProject < handle
 properties (Constant)
 ProjectInfo = MyProject
 end
 properties
 Date
 Department
 ProjectNumber
 end
 methods (Access = private)
 function obj = MyProject
 obj.Date = datestr(clock);
 obj.Department = 'Engineering';
 obj.ProjectNumber = 'P29.367';
 end
 end
end

Reference property data via the Constant property:

MyProject.ProjectInfo.Date

ans =

18-Apr-2002 09:56:59

Because MyProject is a handle class, you can get the handle to the instance that is assigned to the
constant property:

p = MyProject.ProjectInfo;

Access the data in the MyProject class using this handle:

p.Department

ans =

Engineering

Modify the nonconstant properties of the MyProject class using this handle:

p.Department = 'Quality Assurance';

p is a handle to the instance of MyProject that is assigned to the ProjectInfo constant property:

MyProject.ProjectInfo.Department

ans =

Quality Assurance

15 Constant Properties

15-4

Clearing the class results in the assignment of a new instance of MyProject to the ProjectInfo
property.

clear MyProject
MyProject.ProjectInfo.Department

ans =

Engineering

You can assign an instance of the defining class as the default value of a property only when the
property is declared as Constant

Constant Properties — No Support for Get Events
Constant properties do not support property PreGet or PostGet events. MATLAB issues a warning
during class initialization if you set the GetObservable attribute of a Constant property to true.

See Also

Related Examples
• “Static Data” on page 4-2

More About
• “Named Values” on page 14-2

 Define Class Properties with Constant Values

15-5

Information from Class Metadata

• “Class Metadata” on page 16-2
• “Class Introspection with Metadata” on page 16-5
• “Find Objects with Specific Values” on page 16-9
• “Get Information About Properties” on page 16-12
• “Find Default Values in Property Metadata” on page 16-17

16

Class Metadata
In this section...
“What Is Class Metadata?” on page 16-2
“The meta Package” on page 16-2
“Metaclass Objects” on page 16-3
“Metaclass Object Lifecycle” on page 16-3

What Is Class Metadata?
Class metadata is information about class definitions that is available from various metaclasses
objects. Use metaclass objects to obtain information without having to create instances of the class.
Metadata enables the programmatic inspection of classes. Each metaclass has properties, methods,
and events that contain information about the class or class component it describes.

All class components have an associated metaclass, which you access from the meta.class object.
For example, create the meta.class object for the matlab.mixin.Copyable class:

mc = ?matlab.mixin.Copyable

mc =

 class with properties:

 Name: 'matlab.mixin.Copyable'
 Description: 'Implement copy method for handle objects in MA...'
 DetailedDescription: ''
 Hidden: 0
 Sealed: 0
 Abstract: 1
 Enumeration: 0
 ConstructOnLoad: 1
 HandleCompatible: 1
 InferiorClasses: {0x1 cell}
 ContainingPackage: [1x1 meta.package]
 PropertyList: [0x1 meta.property]
 MethodList: [19x1 meta.method]
 EventList: [1x1 meta.event]
 EnumerationMemberList: [0x1 meta.EnumeratedValue]
 SuperclassList: [1x1 meta.class]

The meta Package
The meta package contains metaclasses that describe the definition of classes and class components.
The class name indicates the component described by the metaclass. For example, each class
property has a meta.property associated with it. Attributes defined for class components correspond
to properties in the respective metaclass object.

• meta.package — Access from meta.class ContainingPackage property.
• meta.class — Create from class name or class object using metaclass function or ? operator.
• meta.property — Access from meta.class PropertyList property.
• meta.DynamicProperty — Obtain from the addprop method.
• meta.method — Access from meta.class MethodList property.
• meta.event — Access from meta.class EventList property.

16 Information from Class Metadata

16-2

• meta.EnumeratedValue — Access from meta.class EnumerationMemberListList property.

Metaclass Objects
You cannot instantiate metaclasses directly by calling the respective class constructor. Create
metaclass objects from class instances or from the class name.

• ?ClassName — Returns a meta.class object for the named class. Use meta.class.fromName
with class names stored as characters in variables.

• meta.class.fromName('ClassName') — returns the meta.class object for the named class
(meta.class.fromName is a meta.class method).

• metaclass(obj) — Returns a metaclass object for the class instance (metaclass)

Create meta.class object from class name using the ? operator:

mc = ?MyClass;

Create meta.class object from class name using the fromName method:

mc = meta.class.fromName('MyClass');

Create meta.class object from class instance

obj = MyClass;
mc = metaclass(obj);

The metaclass function returns the meta.class object (that is, an object of the meta.class
class). You can obtain other metaclass objects (meta.property, meta.method, and so on) from the
meta.class object.

Note Metaclass is a term used here to refer to all the classes in the meta package. meta.class is a
class in the meta package whose instances contain information about MATLAB classes. Metadata is
information about classes contained in metaclasses.

Metaclass Object Lifecycle
When you change a class definition, MATLAB reloads the class definition. If instances of the class
exist, MATLAB updates those objects according to the new definition.

However, MATLAB does not update existing metaclass objects to the new class definition. If you
change a class definition while metaclass objects of that class exist, MATLAB deletes the metaclass
objects and their handles become invalid. You must create a new metaclass object after updating the
class.

For information on how to modify and reload classes, see “Automatic Updates for Modified Classes”
on page 5-39.

 Class Metadata

16-3

See Also

Related Examples
• “Class Introspection with Metadata” on page 16-5
• “Find Objects with Specific Values” on page 16-9
• “Get Information About Properties” on page 16-12
• “Find Default Values in Property Metadata” on page 16-17

16 Information from Class Metadata

16-4

Class Introspection with Metadata
In this section...
“Using Class Metadata” on page 16-5
“Inspect the EmployeeData Class” on page 16-5
“Metaclass EnumeratedValues Property” on page 16-7

Using Class Metadata
Use class metadata to get information about classes and objects programmatically. For example, you
can determine attribute values for class members or get a list of events defined by the class. For basic
information about metadata, see “Class Metadata” on page 16-2.

Inspect the EmployeeData Class
The EmployeeData class is a handle class with two properties, one of which has private Access
and defines a set access method.

classdef EmployeeData < handle
 properties
 EmployeeName
 end
 properties (Access = private)
 EmployeeNumber
 end
 methods
 function obj = EmployeeData(name,ss)
 if nargin > 0
 obj.EmployeeName = name;
 obj.EmployeeNumber = ss;
 end
 end
 function set.EmployeeName(obj,name)
 if ischar(name)
 obj.EmployeeName = name;
 else
 error('Employee name must be a char vector')
 end
 end
 end
end

Inspect Class Definition

Using the EmployeeData class, create a meta.class object using the ? operator:

mc = ?EmployeeData;

Determine from what classes EmployeeData derives. The returned value is a meta.class object for
the handle superclass:

a = mc.SuperclassList;
a.Name

 Class Introspection with Metadata

16-5

ans =

handle

The EmployeeData class has only one superclass. For classes having more than one direct
superclass, a contains a meta.class object for each superclass.

Use an indexed reference to refer to any particular superclass:

a(1).Name

or, directly from mc:

mc.SuperclassList(1).Name

ans =

handle

The SuperclassList property contains only direct superclasses.

Inspect Properties

Find the names of the properties defined by the EmployeeData class. First obtain an array of
meta.properties objects from the meta.class PropertyList property.

mc = ?EmployeeData;
mpArray = mc.PropertyList;

The length of mpArray indicates that there are two meta.property objects, one for each property
defined by the EmployeeData class:

length(mpArray)
ans =
 2

Now get a meta.property object from the array:

prop1 = mpArray(1);
prop1.Name

ans =

EmployeeName

The Name property of the meta.property object identifies the class property represented by that
meta.property object.

Query other meta.property object properties to determine the attributes of the EmployeeName
properties.

Find Component with Specific Attribute

You can use indexing techniques to list class components that have specific attribute values. For
example, this code lists the methods in the EmployeeData class that have private access:

mc = ?EmployeeData;
mc.PropertyList(ismember({mc.PropertyList(:).SetAccess},'private')).Name

16 Information from Class Metadata

16-6

ans =

EmployeeNumber

Access is not a property of the meta.property class. Use SetAccess and GetAccess, which are
properties of the meta.property class.

Find components with attributes that are logical values using a statement like this one:

mc = ?handle;
mc.MethodList(ismember([mc.MethodList(:).Hidden],true)).Name

ans =

empty

Inspect Class Instance

Create an EmployeeData object and determine property access settings:

EdObj = EmployeeData('My Name',1234567);
mcEdObj = metaclass(EdObj);
mpArray = mcEdObj.PropertyList;
EdObj.(mpArray(1).Name) % Dynamic field names work with objects

The value of the EmployeeName property is the text My Name, which was assigned in the constructor.
ans =
 My Name

The value of the EmployeeNumber property is not accessible because the property has private
Access.

EdObj.(mpArray(2).Name)

You cannot get the 'EmployeeNumber' property of EmployeeData.

mpArray(2).GetAccess

ans =
 private

Obtain a function handle to the EmployeeName property set access function:

mpArray(1).SetMethod

ans =
 @D:\MyDir\@EmployeeData\EmployeeData.m>EmployeeData.set.EmployeeName

Metaclass EnumeratedValues Property
The meta.class EnumeratedValues property contains an array of meta.EnumeratedValue
objects, one for each enumeration member. Use the meta.EnumeratedValue Name property to
obtain the enumeration member names defined by an enumeration class. For example, given the
WeekDays enumeration class:

classdef WeekDays
 enumeration
 Monday, Tuesday, Wednesday, Thursday, Friday

 Class Introspection with Metadata

16-7

 end
end

Query enumeration names from the meta.class object:

mc = ?WeekDays;
mc.EnumerationMemberList(2).Name

ans =

Tuesday

See Also

Related Examples
• “Find Objects with Specific Values” on page 16-9

16 Information from Class Metadata

16-8

Find Objects with Specific Values
In this section...
“Find Handle Objects” on page 16-9
“Find by Attribute Settings” on page 16-10

Find Handle Objects
Use the handle class findobj method to find objects that have properties with specific values. For
example, the following class defines a PhoneBook object to represent a telephone book entry in a
data base. The PhoneBook class subclasses the dynamicprops class, which derives from handle.

classdef PhoneBook < dynamicprops
 properties
 Name
 Address
 Number
 end
 methods
 function obj = PhoneBook(n,a,p)
 obj.Name = n;
 obj.Address = a;
 obj.Number = p;
 end
 end
end

Here are three of the PhoneBook entries in the database:
PB(1) = PhoneBook('Nancy Vidal','123 Washington Street','5081234567');
PB(2) = PhoneBook('Nancy Vidal','123 Main Street','5081234568');
PB(3) = PhoneBook('Nancy Wong','123 South Street','5081234569');

One of these three PhoneBook objects has a dynamic property:

PB(2).addprop('HighSpeedInternet');
PB(2).HighSpeedInternet = '1M';

Find Property/Value Pairs

Find the object representing employee Nancy Wong and display the name and number by
concatenating the strings:

NW = findobj(PB,'Name','Nancy Wong');
[NW.Name,' - ',NW.Number]

ans =

Nancy Wong - 5081234569

Find Objects with Specific Property Names

Search for objects with specific property names using the -property option:

H = findobj(PB,'-property','HighSpeedInternet');
H.HighSpeedInternet

 Find Objects with Specific Values

16-9

ans =

1M

The -property option enables you to omit the value of the property and search for objects using
only the property name.

Using Logical Expressions

Search for specific combinations of property names and values:
H = findobj(PB,'Name','Nancy Vidal','-and','Address','123 Main Street');
H.Number

ans =

5081234568

Find by Attribute Settings
All metaclasses derive from the handle class. You can use the handle findobj method to find class
members that have specific attribute settings.

For example, find the abstract methods in a class definition by searching the meta.class
MethodList for meta.method objects with their Abstract property set to true:

Use the class name in character format because class is abstract. You cannot create an object of the
class:

mc = meta.class.fromName('MyClass');

Search the MethodList list of meta.method objects for those methods that have their Abstract
property set to true:

absMethods = findobj(mc.MethodList,'Abstract',true);
methodNames = {absMethods.Name};

The cell array, methodNames, contains the names of the abstract methods in the class.

Find Properties That Have Public Get Access

Find the names of all properties in the containers.Map class that have public GetAccess:

• Get the meta.class object.
• Use findobj to search the array of meta.property objects.
• Use braces to create a cell array of property names.

mc = ?containers.Map;
mpArray = findobj(mc.PropertyList,'GetAccess','public');
names = {mpArray.Name};

Display the names of all containers.Map properties that have public GetAccess:

celldisp(names)

names{1} =

16 Information from Class Metadata

16-10

Count

 names{2} =

KeyType

names{3} =

ValueType

Find Static Methods

Determine if any containers.Map class methods are static:

~isempty(findobj([mc.MethodList(:)],'Static',true))

ans =

 1

findobj returns an array of meta.method objects for the static methods. In this case, the list of
static methods is not empty. Therefore, there are static methods defined by this class.

Get the names of any static methods from the meta.method array:

staticMethodInfo = findobj([mc.MethodList(:)],'Static',true);
staticMethodInfo(:).Name

ans =

empty

The name of the static method (there is only one in this case) is empty. Here is the information from
the meta.method object for the empty method:

staticMethodInfo

 method with properties:

 Name: 'empty'
 Description: 'Returns an empty object array of the given size'
 DetailedDescription: ''
 Access: 'public'
 Static: 1
 Abstract: 0
 Sealed: 0
 Hidden: 1
 InputNames: {'varargin'}
 OutputNames: {'E'}
 DefiningClass: [1x1 meta.class]

See Also
empty

Related Examples
• “Get Information About Properties” on page 16-12

 Find Objects with Specific Values

16-11

Get Information About Properties
In this section...
“The meta.property Object” on page 16-12
“How to Find Properties with Specific Attributes” on page 16-14

The meta.property Object
Use the meta.property class to determine the values of property attributes. The writable
properties of a meta.property object correspond to the attributes of the associated property. The
values of the writable meta.property properties correspond to the attribute values specified in the
class definition.

Get the meta.property object for a property from the meta.class object. To get the meta.class
object for a class:

• Use the metaclass function on an object of the class.
• Use the ? operator with the class name.

For example, the BasicHandle class defines three properties:

classdef BasicHandle < handle
 properties (SetAccess = private)
 Date = date
 PassKey = randi(9,[1,7])
 end
 properties
 Category {mustBeMember(Category,{'new','change'})} = 'new'
 end
end

Create the meta.class object using the ? operator with the class name:

mc = ?BasicHandle

mc =

 class with properties:

 Name: 'BasicHandle'
 Description: ''
 DetailedDescription: ''
 Hidden: 0
 Sealed: 0
 Abstract: 0
 Enumeration: 0
 ConstructOnLoad: 0
 HandleCompatible: 1
 InferiorClasses: {0×1 cell}
 ContainingPackage: [0×0 meta.package]
 RestrictsSubclassing: 0
 PropertyList: [3×1 meta.property]
 MethodList: [22×1 meta.method]
 EventList: [1×1 meta.event]

16 Information from Class Metadata

16-12

 EnumerationMemberList: [0×1 meta.EnumeratedValue]
 SuperclassList: [1×1 meta.class]

The meta.class object property named PropertyList contains an array of meta.property
objects, one for each property defined by the class. For example, the name of the property associated
with the meta.property object in element 1 is:

mc.PropertyList(1).Name

ans =

Date

The meta.class object contains a meta.property object for all properties, including hidden
properties. The properties function returns only public properties.

For a handle class, use the handle findprop method to get the meta.property object for a
specific property.

For example, find the meta.property object for the Category property of the BasicHandle class.

mp = findprop(BasicHandle,'Category')

mp =

 property with properties:

 Name: 'Category'
 Description: ''
 DetailedDescription: ''
 GetAccess: 'public'
 SetAccess: 'public'
 Dependent: 0
 Constant: 0
 Abstract: 0
 Transient: 0
 Hidden: 0
 GetObservable: 0
 SetObservable: 0
 AbortSet: 0
 NonCopyable: 0
 GetMethod: []
 SetMethod: []
 HasDefault: 1
 DefaultValue: 'new'
 DefiningClass: [1×1 meta.class]

The preceding meta.property display shows that a default BasicHandle object Category
property:

• Has public GetAccess and SetAccess
• Has a default value of new

For a list of property attributes, see “Table of Property Attributes” on page 8-6.

 Get Information About Properties

16-13

How to Index Metaclass Objects

Access other metaclass objects directly from the meta.class object properties. For example, the
statement:

mc = ?containers.Map;

returns a meta.class object:

class(mc)

ans =

meta.class

Referencing the PropertyList meta.class property returns an array with one meta.property
object for each property of the containers.Map class:

class(mc.PropertyList)

ans =

meta.property

Each array element is a single meta.property object:

mc.Properties(1)

ans =

 [1x1 meta.property]

The Name property of the meta.property object contains a char vector that is the name of the
property:

class(mc.PropertyList(1).Name)

ans =

char

Apply standard MATLAB indexing to access information in metaclass objects.

For example, the meta.class PropertyList property contains an array of meta.property
objects. The following expression accesses the first meta.property object in this array and returns
the first and last (C and t) letters of the char vector contained in the meta.property Name
property.

mc.PropertyList(1).Name([1 end])

ans =

Ct

How to Find Properties with Specific Attributes
This example implements a function that finds properties with specific attribute values. For example,
you can:

16 Information from Class Metadata

16-14

• Find objects that define constant properties (Constant attribute set to true).
• Determine what properties are read-only (GetAccess = public, SetAccess = private).

The findAttrValue function returns a cell array of property names that set the specified attribute.

The findAttrValue function accesses information from metadata using these techniques:

• If input argument, obj, is a char vector, use the meta.class.fromName static method to get the
meta.class object.

• If input argument, obj, is an object, use the metaclass function to get the meta.class object.
• Every property has an associated meta.property object. Obtain these objects from the

meta.class PropertyList property.
• Use the handle class findprop method to determine if the requested property attribute is a

valid attribute name. All property attributes are properties of the meta.property object. The
statement, findobj(mp,'PropertyName') determines whether the meta.property object,
mp, has a property called PropertyName.

• Reference meta.property object properties using dynamic field names. For example, if
attrName = 'Constant', then MATLAB converts the expression mp.(attrName) to
mp.Constant

• The optional third argument enables you to specify the value of attributes whose values are not
logical true or false (such as GetAccess and SetAccess).

function cl_out = findAttrValue(obj,attrName,varargin)
 if ischar(obj)
 mc = meta.class.fromName(obj);
 elseif isobject(obj)
 mc = metaclass(obj);
 end
 ii = 0; numb_props = length(mc.PropertyList);
 cl_array = cell(1,numb_props);
 for c = 1:numb_props
 mp = mc.PropertyList(c);
 if isempty (findprop(mp,attrName))
 error('Not a valid attribute name')
 end
 attrValue = mp.(attrName);
 if attrValue
 if islogical(attrValue) || strcmp(varargin{1},attrValue)
 ii = ii + 1;
 cl_array(ii) = {mp.Name};
 end
 end
 end
 cl_out = cl_array(1:ii);
end

Find Property Attributes

Suppose that you have the following containers.Map object:

mapobj = containers.Map({'rose','bicycle'},{'flower','machine'});

Find properties with private SetAccess:

findAttrValue(mapobj,'SetAccess','private')

 Get Information About Properties

16-15

ans =

 'Count' 'KeyType' 'ValueType' 'serialization'

Find properties with public GetAccess:

findAttrValue(mapobj,'GetAccess','public')

ans =

 'Count' 'KeyType' 'ValueType'

See Also

Related Examples
• “Find Default Values in Property Metadata” on page 16-17

16 Information from Class Metadata

16-16

Find Default Values in Property Metadata
In this section...
“Default Values” on page 16-17
“meta.property Data” on page 16-17

Default Values
Class definitions can specify explicit default values for properties (see “Property Default Values” on
page 8-13). Determine if a class defines an explicit default value for a property and what the value of
the default is from the property meta.property object.

meta.property Data
The meta.class object for a class contains a meta.property object for every property defined by
the class, including properties with private and protected access.

For example, get the meta.class object for the PropertyWithDefault class shown here:

classdef PropertyWithDefault
 properties
 Date = date
 RandNumber = randi(9)
 end
end

Get an array of meta.property objects from the meta.class object:

mc = ?PropertyWithDefault; % meta.class object
mp = mc.PropertyList; % meta.property array

The second element in the mp array is the meta.property object for the RandNumber property.
Listing the meta.property object shows the information contained in its properties:

mp(2)

 property with properties:

 Name: 'RandNumber'
 Description: ''
 DetailedDescription: ''
 GetAccess: 'public'
 SetAccess: 'public'
 Dependent: 0
 Constant: 0
 Abstract: 0
 Transient: 0
 Hidden: 0
 GetObservable: 0
 SetObservable: 0
 AbortSet: 0
 NonCopyable: 0
 GetMethod: []
 SetMethod: []

 Find Default Values in Property Metadata

16-17

 HasDefault: 1
 DefaultValue: 5
 DefiningClass: [1×1 meta.class]

Two of the listed meta.property properties provide information on default values:

• HasDefault — true (displayed as 1) if the class specifies a default value for the property, false
if it does not.

• DefaultValue — Contains the default value, when the class defines a default value for the
property. If the default value is an expression, the value of DefaultValue is the result of
evaluating the expression.

For more information on the evaluation of property default values defined by expressions, see
“Evaluation of Expressions in Class Definitions” on page 6-8.

These properties provide a programmatic way to obtain property default values without opening class
definition files. Use these meta.property object properties to obtain property default values for
both built-in classes and classes defined in MATLAB code.

Query Default Value

The procedure for querying a default value involves:

1 Getting the meta.property object for the property whose default value you want to query.
2 Testing the logical value of the meta.property HasDefault property to determine if the

property defines a default value. MATLAB returns an error when you query the DefaultValue
property if the class does not define a default value for the property.

3 Obtaining the default value from the meta.property DefaultValue property if the
HasDefault value is true.

Use the ? operator, the metaclass function, or the meta.class.fromName static method (works
with char vector variable) to obtain a meta.class object.

The meta.class object PropertyList contains an array of meta.property objects. Identify which
property corresponds to which meta.property object using the meta.property Name property.

For example, this class defines properties with default values:

classdef MyDefs
 properties
 Material = 'acrylic'
 InitialValue = 1.0
 end
end

Follow these steps to obtain the default value defined for the Material property. Include any error
checking that is necessary for your application.

1 Get the meta.class object for the class:

mc = ?MyDefs;
2 Get an array of meta.property objects from the meta.class PropertyList property:

mp = mc.PropertyList;
3 The length of the mp array equals the number of properties. You can use the meta.property

Name property to find the property of interest:

16 Information from Class Metadata

16-18

for k = 1:length(mp)
 if (strcmp(mp(k).Name,'Material')
 ...

4 Before querying the default value of the Material property, test the HasDefault
meta.property to determine if MyClass defines a default property for this property:

if mp(k).HasDefault
 dv = mp(k).DefaultValue;
 end

The DefaultValue property is read-only. Changing the default value in the class definition changes
the value of DefaultValue property. You can query the default value of a property regardless of its
access settings.

Abstract and dynamic properties cannot define default values. Therefore, MATLAB returns an error if
you attempt to query the default value of properties with these attributes. Always test the logical
value of the meta.property HasDefault property before querying the DefaultValue property to
avoid generating an error.

Default Values Defined as Expressions

Class definitions can define property default values as MATLAB expressions (see “Evaluation of
Expressions in Class Definitions” on page 6-8 for more information). MATLAB evaluates these
expressions the first time the default value is needed, such as the first time you create an instance of
the class.

Querying the meta.property DefaultValue property causes MATLAB to evaluate a default value
expression, if it had not yet been evaluated. Therefore, querying a property default value can return
an error or warning if errors or warnings occur when MATLAB evaluates the expression. See
“Property with Expression That Errors” on page 16-20 for an example.

Property with No Explicit Default Value

MyClass does not explicitly define a default value for the Foo property:

classdef MyFoo
 properties
 Foo
 end
end

The meta.property instance for property Foo has a value of false for HasDefault. Because the
class does not explicitly define a default value for Foo, attempting to access the DefaultValue
property causes an error:

mc = ?MyFoo;
mp = mc.PropertyList(1);
mp.HasDefault

ans =

 0

dv = mp.DefaultValue;

No default value has been defined for property Foo

 Find Default Values in Property Metadata

16-19

Abstract Property

MyClass defines the Foo property as Abstract:

classdef MyAbst
 properties (Abstract)
 Foo
 end
end

The meta.property instance for property Foo has a value of false for its HasDefault property
because you cannot define a default value for an Abstract property. Attempting to access
DefaultValue causes an error:

mc = ?MyAbst;
mp = mc.PropertyList(1);
mp.HasDefault

ans =

 0

dv = mp.DefaultValue;

Property Foo is abstract and therefore cannot have a default value.

Property with Expression That Errors

MyPropEr defines the Foo property default value as an expression that errors when evaluated.

classdef MyPropEr
 properties
 Foo = sin(pie/2)
 end
end

The meta.property object for property Foo has a value of true for its HasDefault property
because Foo does have a default value:

sin(pie/2)

However, this expression returns an error (pie is a function that creates a pie graph, not the value
pi).

mc = ?MyPropEr;
mp = mc.PropertyList(1);
mp.HasDefault

ans =

 1

dv = mp.DefaultValue;

Error using pie (line 29)
Not enough input arguments.

Querying the default value causes the evaluation of the expression and returns the error.

16 Information from Class Metadata

16-20

Property With Explicitly Defined Default Value of Empty

MyEmptyProp assigns a default of [] (empty double) to the Foo property:

classdef MyEmptyProp
 properties
 Foo = []
 end
end

The meta.property object for property Foo has a value of true for its HasDefault property.
Accessing DefaultValue returns the value []:

mc = ?MyEmptyProp;
mp = mc.PropertyList(1);
mp.HasDefault

ans =

 1

dv = mp.DefaultValue;

dv =

 []

See Also

Related Examples
• “Get Information About Properties” on page 16-12

 Find Default Values in Property Metadata

16-21

Specialize Object Behavior

• “Methods That Modify Default Behavior” on page 17-2
• “Number of Arguments for subsref and subsasgn” on page 17-5
• “Modify nargout and nargin for Indexing Methods” on page 17-7
• “Concatenation Methods” on page 17-9
• “Object Converters” on page 17-10
• “Object Array Indexing” on page 17-12
• “Code Patterns for subsref and subsasgn Methods” on page 17-17
• “Indexed Reference” on page 17-23
• “Indexed Assignment” on page 17-25
• “end as Object Index” on page 17-28
• “Objects in Index Expressions” on page 17-30
• “Class with Modified Indexing” on page 17-32
• “Operator Overloading” on page 17-38

17

Methods That Modify Default Behavior

In this section...
“How to Customize Class Behavior” on page 17-2
“Which Methods Control Which Behaviors” on page 17-2
“Overload Functions and Override Methods” on page 17-3

How to Customize Class Behavior
There are functions that MATLAB calls implicitly when you perform certain actions with objects. For
example, a statement like [B(1);A(3)] involves indexed reference and vertical concatenation.

You can change how user-defined objects behave by defining methods that control specific behaviors.
To change a behavior, implement the appropriate method with the name and signature of the
MATLAB function.

Which Methods Control Which Behaviors
The following table lists the methods to implement for your class and describes the behaviors that
they control.

Class Method to Implement Description
Concatenating Objects
cat, horzcat, and vertcat Customize behavior when concatenating objects

See “Subclasses of Built-In Types with Properties” on
page 12-52

Creating Empty Arrays
empty Create empty arrays of the specified class. See “Empty

Arrays” on page 10-7
Displaying Objects
disp

display

Called when you enter disp(obj) on the command line

Called by statements that are not terminated by
semicolons. disp is often used to implement display
methods.

See “Overloading the disp Function” on page 18-34

See “Custom Display Interface” on page 18-2
Converting Objects to Other Classes
converters like double and char Convert an object to a MATLAB built-in class

See “The Character Converter” on page 19-12 and “The
Double Converter” on page 19-11

Indexing Objects

17 Specialize Object Behavior

17-2

Class Method to Implement Description
subsref and subsasgn Enables you to create nonstandard indexed reference

and indexed assignment

See “Object Array Indexing” on page 17-12
end Supports end syntax in indexing expressions using an

object; e.g., A(1:end)

See “end as Object Index” on page 17-28
numel Determine the number of elements in an array

See “Modify nargout and nargin for Indexing Methods”
on page 17-7

numArgumentsFromSubscript Overload to specify the number of values to return from
indexing expressions.

See “Number of Arguments for subsref and subsasgn” on
page 17-5

size Determine the dimensions of an array

See “Use of size and numel with Classes” on page 12-59
subsindex Support using an object in indexing expressions

See “Objects in Index Expressions” on page 17-30
Saving and Loading Objects
loadobj and saveobj Customize behavior when loading and saving objects

See “Object Save and Load”
Reshape and Rearrange
permute Rearrange dimensions of N-D array
transpose Transpose vector or matrix
ctranspose Complex conjugate transpose
reshape Reshape array
repmat Replicate array along specified dimensions
Determine Size and Shape
isscalar Determine if the input is a scalar
isvector Determine if the input is a vector
ismatrix Determine if the input is a matrix
isempty Determine if the input is empty

Overload Functions and Override Methods
Overloading and overriding are terms that describe techniques for customizing class behavior. Here
is how we use these terms in MATLAB.

 Methods That Modify Default Behavior

17-3

Overloading

Overloading means that there is more than one function or method having the same name within the
same scope. MATLAB dispatches to a particular function or method based on the dominant argument.
For example, the timeseries class overloads the MATLAB plot function. When you call plot with
a timeseries object as an input argument, MATLAB calls the timeseries class method named
plot.

To call the nonoverloaded function, use the builtin function.

Overriding

Overriding means redefining a method inherited from a superclass. MATLAB dispatches to the most
specific version of the method. That is, if the dominant argument is an object of the subclass, then
MATLAB calls the subclass method.

To control class dominance, use the InferiorClasses attribute.

See Also

Related Examples
• “Overload Functions in Class Definitions” on page 9-26
• “Object Precedence in Method Invocation” on page 9-36
• “Operator Overloading” on page 17-38

17 Specialize Object Behavior

17-4

Number of Arguments for subsref and subsasgn
In this section...
“How MATLAB Determines Number of Arguments” on page 17-5
“Syntax for subsref, and subsasgn Methods” on page 17-6

How MATLAB Determines Number of Arguments
MATLAB calls subsref or subsasgn to determine the result of executing code that involves indexed
reference or assignment. The number of elements referenced or assigned by an indexing operation
determines the number of arguments MATLAB uses to call subsref and subsasgn. That is, the
indexing code determines the number of arguments that MATLAB:

• Returns from the call to subsref
• Passes to the call to subsasgn

Therefore, the indexing code determines the value of nargout for the call to subsref and the value
of nargin for the call to subsasgn.

For example, consider the ValuesArray class.

classdef ValuesArray
 properties
 Values
 end
 methods
 function obj = ValuesArray(v)
 if nargin > 0
 obj.Values = v;
 end
 end
 end
end

Create an array of 10 ValuesArray objects.

l = ValuesArray.empty;
for k = 1:10
 l(k) = ValuesArray(k);
end

This subscripted reference returns a comma-separated list of three elements. For this statement, the
value of nargout in subsref is 3.

l(1:3).Values

ans =

 1

ans =

 2

 Number of Arguments for subsref and subsasgn

17-5

ans =

 3

The left side of a subscripted assignment statement affects the number of input arguments that
MATLAB uses to call subsasgn. This subscripted assignment assigns three values to the three
elements added to the array. For this assignment, the value of nargin within subsasgn is 5 (the
object, the indexing substructure, and the three values to assign).

[l(11:13).Values] = l(1:3).Values

l =

 1x13 ValuesArray array with properties:

 Values

If the number of right-side arguments cannot satisfy the number of left-side arguments, MATLAB
returns an error:

[l(11:13).Values] = l(1).Values

Insufficient number of outputs from right hand side of equal sign to satisfy
assignment.

Syntax for subsref, and subsasgn Methods
If a class overloads subsref to support either '{}', '.', or both types of indexing, and the
operation returns more than one value, overload subsref to return multiple values using
varargout:

function varargout = subsref(A,S)
 ...
end

If a class overloads subsasgn to support either '{}', '.', or both types of indexing, and the
operation assigns more than one value, overload subsasgn to accept multiple values using
varargin:

function A = subsasgn(A,S,varargin)
 ...
end

See Also

More About
• “Modify nargout and nargin for Indexing Methods” on page 17-7
• “Comma-Separated Lists”

17 Specialize Object Behavior

17-6

Modify nargout and nargin for Indexing Methods
In this section...
“When to Modify Number of Arguments” on page 17-7
“How to Modify Number of Arguments” on page 17-7

When to Modify Number of Arguments
By default, the number of values referenced by an indexing operation determines how many output
arguments MATLAB uses to call subsref. Similarly, the number of values to assign in an indexed
assignment operation determines how many input arguments MATLAB uses to call subsasgn.

If your class design requires that indexing operations return or assign a different number of values
than the number defined by the indexing operation, use numArgumentsFromSubscript to specify
the required number. numArgumentsFromSubscript provides control over nargout for subsref
and nargin for subsasgn.

If your class uses numArgumentsFromSubscript, implement subsref and subsasgn methods to
define the actual values returned or assigned by indexing operations.

Before MATLAB release R2015b, MATLAB produced different results for some indexing expressions
that return or assign to a comma-separated list. Use numArgumentsFromSubscript to support code
that relies on the behavior of previous releases. Also, now you can overload
numArgumentsFromSubscript instead of numel to achieve specific results without redefining how
numel works.

How to Modify Number of Arguments
When a class overloads numArgumentsFromSubscript, MATLAB calls this method instead of numel
to compute the number of arguments expected for subsref nargout and subsasgn nargin.

If classes do not overload numArgumentsFromSubscript, MATLAB calls numel to compute the
values of nargout or nargin.

MATLAB calls numArgumentsFromSubscript with three input arguments:

function n = numArgumentsFromSubscript(obj,s,indexingContext)
 ...
end

Input Argument Description
obj Object whose subsref or subsasgn method is called
s Indexing structure that contains the indexing type and indices used in the

operation
indexingContext Context in which the indexing operation occurs: indexed reference used as a

statement, index reference used as a function argument, and indexed
assignment

MATLAB uses the value returned by numArgumentsFromSubscript for indexed reference and
assignment. Determine the context in which the indexing operation executes by testing the value of

 Modify nargout and nargin for Indexing Methods

17-7

indexingContext in your implementation of numArgumentsFromSubscript. For example, test for
any or all the possible indexing contexts.
function n = numArgumentsFromSubscript(obj,~,indexingContext)
 switch indexingContext
 case matlab.mixin.util.IndexingContext.Statement
 n = ...; % nargout for indexed reference used as statement
 case matlab.mixin.util.IndexingContext.Expression
 n = ...; % nargout for indexed reference used as function argument
 case matlab.mixin.util.IndexingContext.Assignment
 n = ...; % nargin for indexed assignment
 end
end

For more information and examples, see numArgumentsFromSubscript.

Note For MATLAB version R2015b and later releases, overload numArgumentsFromSubscript
instead of numel to customize indexing for your class.

See Also

More About
• “Number of Arguments for subsref and subsasgn” on page 17-5
• “Use of size and numel with Classes” on page 12-59

17 Specialize Object Behavior

17-8

Concatenation Methods
In this section...
“Default Concatenation” on page 17-9
“Methods to Overload” on page 17-9

Default Concatenation
You can concatenate objects into arrays. For example, suppose that you have three instances of the
class MyClass, obj1, obj2, obj3. You can form arrays of these objects using brackets. Horizontal
concatenation calls horzcat:

HorArray = [obj1,obj2,obj3];

HorArray is a 1-by-3 array of class MyClass. You can concatenate the objects along the vertical
dimension, which calls vertcat:

VertArray = [obj1;obj2;obj3]

VertArray is a 3-by-1 array of class MyClass. To concatenate arrays along different dimensions, use
the cat function. For example:

ndArray = cat(3,HorArray,HorArray);

ndArray is a 1-by-3-by-2 array.

Methods to Overload
Overload horzcat, vertcat, and cat to produce specialized behaviors in your class. Overload both
horzcat and vertcat whenever you want to modify object concatenation because MATLAB uses
both functions for any concatenation operation.

See Also

Related Examples
• “Subclasses of Built-In Types with Properties” on page 12-52

 Concatenation Methods

17-9

Object Converters

In this section...
“Why Implement Converters” on page 17-10
“Converters for Package Classes” on page 17-10
“Converters and Subscripted Assignment” on page 17-11
“Converter for Heterogeneous Arrays” on page 17-11

Why Implement Converters
You can convert an object of one class to an object of another class. A converter method has the same
name as the class it converts to, such as char or double. Think of a converter method as an
overloaded constructor method of another class. The converter takes an instance of its own class and
returns an object of a different class.

Converters enable you to:

• Use methods defined for another class
• Ensure that expressions involving objects of mixed class types execute properly
• Control how instances are interpreted in other contexts

Suppose that you define a polynomial class. If you create a double method for the polynomial
class, you can use it to call other functions that require inputs of type double.

p = polynomial(...);
dp = double(p);
roots(dp)

p is a polynomial object, double is a method of the polynomial class, and roots is a standard
MATLAB function whose input arguments are the coefficients of a polynomial.

Converters for Package Classes
Classes defined in packages can have names that are a dot-separated list of names. The last name is a
class and preceding names are packages. Name the conversion methods using the package qualifiers
in the method names. For example, a conversion method to convert objects of MyClass to objects of
the PkgName.PkgClass class uses this method name:

classdef MyClass
 ...
 methods
 function objPkgClass = PkgName.PkgClass(objMyclass)
 ...
 end
 end
end

You cannot define a converter method that uses dots in the name in a separate file. Define package-
class converters in the classdef file.

17 Specialize Object Behavior

17-10

Converters and Subscripted Assignment
When you make a subscripted assignment statement like:

A(1) = myobj;

MATLAB compares the class of the Right-Side variable to the class of the Left-Side variable. If the
classes are different, MATLAB attempts to convert the Right-Side variable to the class of the Left-Side
variable. To do this conversion, MATLAB first searches for a method of the Right-Side class that has
the same name as the Left-Side class. Such a method is a converter method, which is similar to a
typecast operation in other languages.

If the Right-Side class does not define a method to convert from the Right-Side class to the Left-Side
class, MATLAB calls the Left-Side class constructor. passing it the Right-Side variable.

For example, suppose that you make the following assignments:

A(1) = objA; % Object of class ClassA
A(2) = objB; % Object of class ClassB

MATLAB attempts to call a method of ClassB named ClassA. If no such converter method exists,
MATLAB software calls the ClassA constructor, passing objB as an argument. If the ClassA
constructor cannot accept objB as an argument, then MATLAB returns an error.

Use cell arrays to store objects of different classes.

Converter for Heterogeneous Arrays
To support the formation of heterogeneous arrays using objects that are not part of the
heterogeneous hierarchy, implement a convertObject method in the root superclass. The
convertObject method must convert the nonmember object to a valid member of the
heterogeneous hierarchy.

For details on implementing the convertObject method, see matlab.mixin.Heterogeneous.

See Also

Related Examples
• “Converter Methods” on page 10-17
• “The Double Converter” on page 19-11

 Object Converters

17-11

Object Array Indexing
In this section...
“Default Indexed Reference and Assignment” on page 17-12
“What You Can Modify” on page 17-13
“When to Modify Indexing Behavior” on page 17-13
“Built-In subsref and subsasgn Called in Methods” on page 17-14
“Avoid Overriding Access Attributes” on page 17-15

Default Indexed Reference and Assignment
MATLAB classes support object array indexing by default. Many class designs require no modification
to this behavior.

Arrays enable you to reference and assign elements of the array using a subscripted notation. This
notation specifies the indices of specific array elements. For example, suppose that you create two
arrays of numbers (using randi and concatenation).

Create a 3-by-4 array of integers from 1 through 9:

A = randi(9,3,4)

A =

 4 8 5 7
 4 2 6 3
 7 5 7 7

Create a 1-by-3 array of the numbers 3, 6, 9:

B = [3 6 9];

Reference and assign elements of either array using index values in parentheses:

B(2) = A(3,4);
B

B =
 3 7 9

When you execute a statement that involves indexed reference:

C = A(3,4);

MATLAB calls the built-in subsref function to determine how to interpret the statement. Similarly, if
you execute a statement that involves indexed assignment:

C(4) = 7;

MATLAB calls the built-in subsasgn function to determine how to interpret the statement.

The MATLAB default subsref and subsasgn functions also work with user-defined objects. For
example, create an array of objects of the same class:

17 Specialize Object Behavior

17-12

for k=1:3
 objArray(k) = MyClass;
end

Referencing the second element in the object array, objArray, returns the object constructed when
k = 2:

D = objArray(2);
class(D)

ans =

MyClass

You can assign an object to an array of objects of the same class, or an uninitialized variable:

newArray(3,4) = D;

Arrays of objects behave much like numeric arrays in MATLAB. You do not need to implement any
special methods to provide standard array behavior with your class.

For general information about array indexing, see “Array Indexing”.

What You Can Modify
You can modify your class indexed reference and/or assignment behavior by implementing class
methods called subsref and subsasgn. For syntax description, see their respective reference pages.

Once you add a subsref or subsasgn method to your class, then MATLAB calls only the class
method, not the built-in function. Therefore, your class method must implement all the indexed
reference and assignment operations that you want your class to support. These operations include:

• Dot notation calls to class methods
• Dot notation reference and assignment involving properties
• Any indexing using parentheses '()'
• Any indexing using braces '{}'

Implementing subsref and subsasgn methods gives you complete control over the interpretation of
indexing expressions for objects of your class. Implementing the extent of behaviors that MATLAB
provides by default is nontrivial.

When to Modify Indexing Behavior
Default indexing for object arrays and dot notation for access to properties and methods enables
user-defined objects to behave like built-in classes. For example, suppose that you define a class with
a property called Data that contains an array of numeric data.

This statement:

obj.Data(2,3)

Returns the value contained in the second row, third column of the array. If you have an array of
objects, use an expression like:

objArray(3).Data(2,3)

 Object Array Indexing

17-13

This statement returns the value contained in the second row, third column of the third element in the
array.

Modify the default indexing behavior when your class design requires behavior that is different from
MATLAB default behavior.

Built-In subsref and subsasgn Called in Methods
MATLAB does not call class-defined subsref or subsasgn methods within the overloaded methods.
Within class methods, MATLAB always calls the built-in subsref and subsasgn functions. This
behavior occurs within the class-defined subsref and subsasgn methods too.

For example, within a class method, this dot reference:

obj.Prop

calls the built-in subsref function. To call the class-defined subsref method, use:

subsref(obj,substruct('.','Prop'))

Whenever a method requires the functionality of the class-defined subsref or subsasgn method,
the class must call the overloaded methods as functions. Do not use the operators, '()', '{}', or
'.'.

For example, suppose that you define a class to represent polynomial. This class has a subsref
method that evaluates the polynomial with the value of the independent variable equal to the
subscript. Assume that this statement defines the polynomial with its coefficients:

p = polynom([1 0 -2 -5]);

The MATLAB expression for the resulting polynomial is:

x^3 - 2*x - 5

This subscripted expression returns the value of the polynomial at x = 3:

p(3)

ans =
 16

Suppose that you want to use this feature in another class method. To do so, call the subsref
function directly. The evalEqual method accepts two polynom objects and a value at which to
evaluate the polynomials:

methods
 function ToF = evalEqual(p1,p2,x)
 % Create arguments for subsref
 subs.type = '()';
 subs.subs = {x};
 % Need to call subsref explicitly
 y1 = subsref(p1,subs);
 y2 = subsref(p2,subs);
 if y1 == y2
 ToF = true;
 else
 ToF = false;

17 Specialize Object Behavior

17-14

 end
 end
end

This behavior enables you to use standard MATLAB indexing to implement specialized behaviors. See
“Class with Modified Indexing” on page 17-32 for examples of how to use both built-in and class-
modified indexing.

Avoid Overriding Access Attributes
Because subsref is a class method, it has access to private class members. Avoid inadvertently
giving access to private methods and properties as you handle various types of reference. Consider
this subsref method defined for a class having private properties, x and y:

classdef MyPlot
 properties (Access = private)
 x
 y
 end
 properties
 Maximum
 Minimum
 Average
 end
 methods
 function obj = MyPlot(x,y)
 obj.x = x;
 obj.y = y;
 obj.Maximum = max(y);
 obj.Minimum = min(y);
 obj.Average = mean(y);
 end
 function B = subsref(A,S)
 switch S(1).type
 case '.'
 switch S(1).subs
 case 'plot'
 % Reference to A.x and A.y call built-in subsref
 B = plot(A.x,A.y);
 otherwise
 % Enable dot notation for all properties and methods
 B = A.(S.subs);
 end
 end
 end
 end
end

This subsref enables the use of dot notation to create a plot using the name 'plot'. The statement:

obj = MyPlot(1:10,1:10);
h = obj.plot;

calls the plot function and returns the handle to the graphics object.

You do not need to code each method and property name. The otherwise code in the inner switch
block manages any name reference that you do not explicitly specify in case statements. However,
using this technique exposes any private and protected class members via dot notation. For example,
you can reference the private property, x, with this statement:

obj.x

 Object Array Indexing

17-15

ans =

 1 2 3 4 5 6 7 8 9 10

The same issue applies to writing a subsasgn method that enables assignment to private or
protected properties. Your subsref and subsasgn methods might need to code each specific
property and method name explicitly to avoid violating the class design.

See Also

Related Examples
• “Code Patterns for subsref and subsasgn Methods” on page 17-17
• “Indexed Reference” on page 17-23
• “Indexed Assignment” on page 17-25

17 Specialize Object Behavior

17-16

Code Patterns for subsref and subsasgn Methods
In this section...
“Customize Indexed Reference and Assignment” on page 17-17
“Syntax for subsref and subsasgn Methods” on page 17-17
“Indexing Structure Describes Indexing Expressions” on page 17-17
“Values of the Indexing Structure” on page 17-18
“Typical Patterns for Indexing Methods” on page 17-19

Customize Indexed Reference and Assignment
User-defined classes have the same indexing behaviors as that of built-in classes. Classes can
customize indexing operations by overloading the functions that MATLAB calls to evaluate indexing
expressions. Overload the subsref and subsasgn functions when you want to define special
behaviors for indexed reference and assignment.

For an overview of object indexing, see “Object Array Indexing” on page 17-12.

Syntax for subsref and subsasgn Methods
MATLAB calls the subsref and subsasgn methods of your class with these arguments.

Method Input Output
b = subsref(obj,s) • obj — Object or object array

used in indexing expression
• s — Indexing structure

b — Result of indexing
expression

obj = subsasgn(obj,s,b) • obj — Object or object array
used in indexing expression

• s — Indexing structure
• b — Value being assigned

obj — Object or object array
after assignment

Modifying Number of Arguments

If your class design requires that indexing operations return or assign a different number of values
than the number defined by the default indexing operation, overload the
numArgumentsFromSubscript function to control nargout for subsref and nargin for
subsasgn. For more information and examples, see numArgumentsFromSubscript.

Indexing Structure Describes Indexing Expressions
The indexing structure contains information that describes the indexing expression. Class methods
use the information in the indexing structure to evaluate the expression and implement custom
behavior.

For example, the CustomIndex class defines a property that you can use in indexing expressions.

classdef CustomIndex
 properties

 Code Patterns for subsref and subsasgn Methods

17-17

 DataArray
 end
end

Create an object and assign a 5-by-5 matrix created by the magic function to the DataArray
property.

a = CustomIndex;
a.DataArray = magic(5);

This subscripted reference expression returns the first row of the 5-by-5 matrix.

a.DataArray(1,:)

ans =

 17 24 1 8 15

This expression assigns new values to the first row of the array stored in the DataArray property.

a.DataArray(1,:) = [1 2 3 4 5];

This assignment statement uses:

• A '.' type reference
• A property name following the dot (that is, DataArray)
• A range of indices (1,:) within parentheses

The indexing structure contains this information in the type and subs fields.

Values of the Indexing Structure
When executing an indexing expression, MATLAB calls the class subsref or subsasgn method, if
the class overloads these functions. One of the arguments passed to the method is the indexing
structure. The indexing structure has two fields:

• type — One of the three possible indexing types: '.', '()', '{}'
• subs — A char vector with the property name or cell array of the indices used in the expression,

including : and end.

If the indexing expression is a compound expression, then MATLAB passes an array of structures, one
struct for each level of indexing. For example, in this expression:

a.DataArray(1,:)

the indexing structure array S has these values:

• S(1).type is set to '.', indicating that the first indexing operation is a dot.
• s(1).subs is set to the property name, 'DataArray'

The second level of indexing is in the second element of the indexing structure:

• S(2).types is set to '()' indicating the second indexing operation is parentheses indexing
• S(2).subs is set to a cell array containing the indices {[1],[:]}

17 Specialize Object Behavior

17-18

Typical Patterns for Indexing Methods
To overload the subsref and subasgn functions:

• Determine the full indexing expression using the types and subs fields of the indexing structure.
• Implement the specialized behaviors for the indexing operations supported by the class.
• Return the appropriate values or modified objects in response to the call by MATLAB.

A switch statement is a convenient way to detect the first level of indexing. There are three types of
indexing—dot, parentheses, and braces. Each case block in the switch statement implements all
indexing expressions that begin with that first-level type of indexing.

The methods must implement all indexing expressions that the class supports. If you do not customize
a particular type of indexing, call the built-in function to handle that expression.

Use the length of the indexing structure array and indexing type define conditional statements for
compound indexing expressions.

Code Framework for subsref Method

The following framework for the subsref method shows how to use information in the indexing
structure in conditional statements. Your application can involve other expressions not shown here.
function varargout = subsref(obj,s)
 switch s(1).type
 case '.'
 if length(s) == 1
 % Implement obj.PropertyName
 ...
 elseif length(s) == 2 && strcmp(s(2).type,'()')
 % Implement obj.PropertyName(indices)
 ...
 else
 [varargout{1:nargout}] = builtin('subsref',obj,s);
 end
 case '()'
 if length(s) == 1
 % Implement obj(indices)
 ...
 elseif length(s) == 2 && strcmp(s(2).type,'.')
 % Implement obj(ind).PropertyName
 ...
 elseif length(s) == 3 && strcmp(s(2).type,'.') && strcmp(s(3).type,'()')
 % Implement obj(indices).PropertyName(indices)
 ...
 else
 % Use built-in for any other expression
 [varargout{1:nargout}] = builtin('subsref',obj,s);
 end
 case '{}'
 if length(s) == 1
 % Implement obj{indices}
 ...
 elseif length(s) == 2 && strcmp(s(2).type,'.')
 % Implement obj{indices}.PropertyName
 ...
 else
 % Use built-in for any other expression
 [varargout{1:nargout}] = builtin('subsref',obj,s);
 end
 otherwise
 error('Not a valid indexing expression')
 end

 Code Patterns for subsref and subsasgn Methods

17-19

Using varargout for the returned value enables the method to work with object arrays. For
example, suppose that you want to support the return of a comma-separated list with an expression
like this one:

[x1,...xn] = objArray.PropertyName(Indices)

This expression results in a two-element indexing structure array. The first-level type is dot ('.') and
the second level is parentheses ('()'). Build the varargout cell array with each value in the array.

case '.'
 ...
 if length(s)==2 && strcmp(s(2).type,'()')
 prop = s(1).subs; % Property name
 n = numel(obj); % Number of elements in array
 varargout = cell(1,n); % Preallocate cell array
 for k = 1:n
 varargout{k} = obj(k).(prop).(s(2).subs);
 end
 end
 ...
end

subsasgn Pattern

The following framework for the subsasgn method shows how to use the indexing structure in
conditional statements that implement assignment operations.
function obj = subsasgn(obj,s,varargin)

 % Allow subscripted assignment to uninitialized variable
 if isequal(obj,[])
 % obj = ClassName.empty;
 end

 switch s(1).type
 case '.'
 if length(s) == 1
 % Implement obj.PropertyName = varargin{:};
 ...
 elseif length(s) == 2 && strcmp(s(2).type,'()')
 % Implement obj.PropertyName(indices) = varargin{:};
 ...
 else
 % Call built-in for any other case
 obj = builtin('subsasgn',obj,s,varargin{:});
 end
 case '()'
 if length(s) == 1
 % Implement obj(indices) = varargin{:};
 elseif length(s) == 2 && strcmp(s(2).type,'.')
 % Implement obj(indices).PropertyName = varargin{:};
 ...
 elseif length(s) == 3 && strcmp(s(2).type,'.') && strcmp(s(3).type,'()')
 % Implement obj(indices).PropertyName(indices) = varargin{:};
 ...
 else
 % Use built-in for any other expression
 obj = builtin('subsasgn',obj,s,varargin{:});
 end
 case '{}'
 if length(s) == 1
 % Implement obj{indices} = varargin{:}
 ...
 elseif length(s) == 2 && strcmp(s(2).type,'.')
 % Implement obj{indices}.PropertyName = varargin{:}
 ...

17 Specialize Object Behavior

17-20

 % Use built-in for any other expression
 obj = builtin('subsasgn',obj,s,varargin{:});
 end
 otherwise
 error('Not a valid indexing expression')
 end
end

Using varargin for the right-side value of the assignment statement enables the method to work
with object arrays. For example, suppose that you want to support the assignment of a comma-
separated list with an expression like this one:

C = {'one';'two';'three'};
[objArray.PropertyName] = C{:}

This expression results in an indexing structure with the dot type ('.') indexing The cell array C on
the right side of the assignment statement produces a comma-separated list. This code assigns one
list item to each property in the object array.

case '.'
 if length(s)==1
 prop = s(1).subs; % Property name
 n = numel(obj); % Number of elements in array
 for k = 1:n
 obj(k).(prop) = varargin{k};
 end
 end
end

Subscripted Assignment with an Uninitialized Variable

Assigning to an element of an uninitialized variable results in a call to the subsasgn method of the
class on the right side of the assignment. For example, this class defines a subsasgn method that
simply calls the built-in subsasgn method for parenthesis indexing.

classdef MyClass
 methods
 function obj = subsasgn(obj,s,varargin)
 switch s(1).type
 case '()'
 obj = builtin('subsasgn',obj,s,varargin{:});
 end
 end
 end
end

When attempting to assign an object of MyClass to the first element of the uninitialized variable,
B(1) in the following statement, MATLAB calls the subsasgn method of MyClass with an empty
double ([]) as the first argument. The assignment can cause an error because the subsasgn method
must be passed an object of the class.

clear B
B(1) = MyClass;

The following error occurred converting from MyClass to double:
Conversion to double from MyClass is not possible.

Error in MyClass/subsasgn (line 6)
 obj = builtin('subsasgn',obj,s,varargin{:});

 Code Patterns for subsref and subsasgn Methods

17-21

The subsasgn method can detect this situation and take the appropriate action, such as returning a
useful error message if the class does not support this type of assignment, or converting the input to
an object of the class and passing it to subsasgn.

For example, because MyClass can allow subscripted assignment to an uninitialized variable, the
subsasgn method can change the first argument from the empty double to an empty MyClass
object.

Use the isequal function to check the input and the empty static method to create the empty object.

classdef MyClass
 methods
 function obj = subsasgn(obj,s,varargin)
 if isequal(obj,[])
 obj = MyClass.empty;
 end
 obj = builtin('subsasgn',obj,s,varargin{:});
 end
 end
end

Subscripted assignment to an uninitialized variable now avoids the previous error.

clear B
B(1) = MyClass;

B =

 MyClass with no properties.

See Also

Related Examples
• “Class with Modified Indexing” on page 17-32
• “Representing Hardware with Classes” on page 12-64
• “Subclasses of Built-In Types with Properties” on page 12-52

17 Specialize Object Behavior

17-22

Indexed Reference
In this section...
“How Indexed Reference Works” on page 17-23
“Compound Indexed References” on page 17-24

How Indexed Reference Works
Object indexed references are in three forms — parentheses, braces, and dot-name:

A(I)
A{I}
A.name

Each of these statements results in a call by MATLAB to the subsref of class A, or a call to the built-
in subsref function if the class of A does not implement a subsref method.

MATLAB passes two arguments to subsref and requires subsref to return the result of the indexed
reference:

B = subsref(A,S)

The first argument is the object being referenced, A. The second argument, S, is a substruct with
two fields:

• S.type is a char vector containing '()', '{}', or '.' specifying the indexing type used.
• S.subs is a cell array or char vector containing the actual index or name. A colon used as an

index is passed in the cell array as the colon character ':'. Ranges specified using a colon (e.g.,
2:5) are expanded to 2 3 4 5.

For example, the expression:

A(1:4,:)

Causes MATLAB to call subsref(A,S), where S is a 1-by-1 structure with a two-element cell array.
The cell array contains the numbers 1, 2, 3, 4, and the colon character :.

S.type = '()'
S.subs = {1:4,':'}

Returning the contents of each cell of S.subs gives the index values for the first dimension and a
char vector ':' for the second dimension:

S.subs{:}

ans =

 1 2 3 4

ans =

:

The default subsref returns all array elements in rows 1 through 4 and all the columns in the array.

 Indexed Reference

17-23

Similarly, this expression:

A{1:4}

Uses a cell array containing the numbers 1, 2, 3, 4.

S.type ='{}'
S.subs = {1:4}

The default subsref returns the contents of all cell array elements in rows 1 through 4 and all the
columns in the array.

This expression:

A.Name

Calls subsref(A,S), where the struct S has these values:

S.type = '.'
S.subs = 'Name'

Compound Indexed References
These simple calls are combined for more complicated indexing expressions. In such cases,
length(S) is the number of indexing levels. For example,

A(1,2).PropertyName(1:4)

calls subsref(A,S), where S is a 3-by-1 array of structs with the values:
S(1).type = '()' S(2).type = '.' S(3).type = '()'
S(1).subs = {1,2} S(2).subs = 'PropertyName' S(3).subs = {1:4}

See Also

Related Examples
• “Indexed Assignment” on page 17-25
• “Number of Arguments for subsref and subsasgn” on page 17-5
• “Modify nargout and nargin for Indexing Methods” on page 17-7
• “Code Patterns for subsref and subsasgn Methods” on page 17-17

17 Specialize Object Behavior

17-24

Indexed Assignment
In this section...
“How Indexed Assignment Works” on page 17-25
“Indexed Assignment to Objects” on page 17-26
“Compound Indexed Assignments” on page 17-27

How Indexed Assignment Works
Object indexed assignments are in three forms — parentheses, braces, and dot-name:

A(I) = B
A{I} = B
A.name = B

Each of these statements results in a call by MATLAB to the subsasgn method of class A, or a call to
the built-in subsasgn function if the class of A does not implement a subsasgn method.

MATLAB passes three arguments to subsasgn and requires subsasgn to return the result of the
assignment:

A = subsasgn(A,S,B)

The first argument, A, is the object being assigned the value in the third argument B.

The second argument is the indexing structure, substruct. S has two fields:

• S.type is a char vector containing '()', '{}', or '.' specifying the indexing type used.
• S.subs is a cell array or character array containing the actual indices or field name. A colon used

as an index is passed in the cell array as the character ':'. Ranges specified using a colon (e.g.,
2:5) are expanded to 2 3 4 5.

For example, the assignment statement:

A(2,3) = B;

generates a call to subsasgn:

A = subsasgn(A,S,B)

S contains:

S.type = '()'
S.subs = {2,3}

The built-in subsasgn:

• Determines the class of A. If B is not the same class as A, then MATLAB tries to construct an object
of the same class as A using B as an input argument. If this attempt fails, MATLAB returns an
error.

• If A and B are, or can be made, into the same class, then MATLAB assigns the value of B to the
array element at row 2, column 3.

 Indexed Assignment

17-25

• If A does not exist before you execute the assignment statement, then MATLAB initializes the five
array elements that come before A(2,3) with default objects of class B.

Similarly, this expression

A{2,3} = B

Uses these values for S:

S.type ='{}'
S.subs = {2,3}

The built-in subsasgn:

• Assigns B to the cell array element at row 2, column 3.
• If A does not exist before you execute the assignment statement, MATLAB initializes the five cells

that come before A(2,3) with []. The result is a 2-by-3 cell array.

This expression:

A.Name = B

Calls A = subsasgn(A,S,B) where the struct S has these values:

S.type = '.'
S.subs = 'Name'

The built-in subsasgn:

• Assigns B to the struct field Name.
• If A does not exist before you execute the assignment statement, MATLAB creates a struct

variable, A with field Name and assigns the value of B to this field location.
• If struct A exists, but has no field Name, then MATLAB adds the field Name and assigns the value

of B to the new field location.
• If struct A exists and has a Name field, then MATLAB assigns the value of B to Name.

You can redefine all or some of these assignment behaviors by implementing a subsasgn method for
your class.

Indexed Assignment to Objects
If A is an object, this expression:

A.Name = B

Calls A = subsasgn(A,S,B) where, S has these values:

S.type = '.'
S.subs = 'Name'

The default subsasgn:

• Attempts to assign B to the Name property.
• If the class of A does not have a Name property, MATLAB returns an error.

17 Specialize Object Behavior

17-26

• If the Name property has restricted access (private or protected), MATLAB determines if the
assignment is allowed based on the context in which the assignment is made.

• If the class of A defines a set method for property Name, MATLAB calls the set method.
• MATLAB applies all other property attributes before determining whether to assigning B to the

property Name.

Compound Indexed Assignments
These simple calls are combined for more complicated indexing expressions. In such cases,
length(S) is the number of indexing levels. For example,

A(1,2).PropertyName(1:4) = B

calls subsasgn(A,S,B), where S is a 3-by-1 array of structures with the values:
S(1).type = '()' S(2).type = '.' S(3).type = '()'
S(1).subs = {1,2} S(2).subs = 'PropertyName' S(3).subs = {1:4}

See Also

Related Examples
• “Indexed Reference” on page 17-23
• “Number of Arguments for subsref and subsasgn” on page 17-5
• “Modify nargout and nargin for Indexing Methods” on page 17-7
• “Code Patterns for subsref and subsasgn Methods” on page 17-17

 Indexed Assignment

17-27

end as Object Index
In this section...
“Define end Indexing for an Object” on page 17-28
“The end Method” on page 17-28

Define end Indexing for an Object
When you use end in an object indexing expression, such as A(4:end), the end function returns the
index value corresponding to the last element in that dimension.

Classes can overload the end function to implement specialized behavior. If your class defines an end
method, MATLAB calls that method to determine how to interpret the expression.

The end method has the calling syntax:

ind = end(A,k,n)

The arguments are described as follows:

• A is the object
• k is the index in the expression using the end syntax
• n is the total number of indices in the expression
• ind is the index value to use in the expression

For example, consider the 3-by-5 array A. When MATLAB encounters the expression:

A(end-1,:)

MATLAB calls the end method defined for the object A using the arguments:

ind = end(A,1,2)

These arguments mean that the end statement occurs in the first index and there are two indices.
The end class method returns the index value for the last element of the first dimension (from which
1 is subtracted in this case). The original expression is evaluated as:

A(3-1,:)

If your class implements an end method, ensure that it returns a value appropriate for the class.

The end Method
The end method for the MyDataClass example (see “Class with Modified Indexing” on page 17-32)
operates on the contents of the Data property. The objective of this method is to return a value that
can replace end in any indexing expression, such as:

obj(4:end)
obj.Data(2,3:end)

This end method determines a positive integer value for end. The method returns the value so that
MATLAB can use it in the indexing expression.

17 Specialize Object Behavior

17-28

function ind = end(obj,k,n)
 szd = size(obj.Data);
 if k < n
 ind = szd(k);
 else
 ind = prod(szd(k:end));
 end
end

See Also

Related Examples
• “Class with Modified Indexing” on page 17-32
• “Objects in Index Expressions” on page 17-30

 end as Object Index

17-29

Objects in Index Expressions
In this section...
“Objects Indexes” on page 17-30
“Ways to Implement Objects as Indices” on page 17-30
“subsindex Implementation” on page 17-30

Objects Indexes
MATLAB can use objects as indices in indexed expressions. The rules of array indexing apply —
indices must be positive integers. Therefore, MATLAB must be able to derive a value from the object
that is a positive integer for use in the indexed expression.

Indexed expressions like X(A), where A is an object, cause MATLAB to call the subsindex function.
However, if an indexing expression results in a call to an overloaded subsref or subsasgn method
defined by the class of X, then MATLAB does not call subsindex.

Ways to Implement Objects as Indices
There are several ways to implement indexing of one object by another object, X(A):

• Define a subsindex method in the class of A that converts A to an integer. MATLAB calls A's
subsindex method to perform indexing operations when the class of X does not overload
subsref or subsasgn.

• If the class of X overloads subsref or subsasgn, these methods can call the subsindex method
of A explicitly. The class of A must implement a subsindex method that returns an appropriate
value.

• If the class of X overloads subsref or subsasgn, these methods can contain code that
determines an integer index value. In this case, the class of A does not implement a subsindex
method.

subsindex Implementation
subsindex must return the value of the object as a zero-based integer index value in the range 0 to
prod(size(X))-1.

Suppose that you want to use object A to index into object B. B can be a single object or an array,
depending on the class designs.

C = B(A);

Here are two examples of subsindex methods. The first assumes you can convert class A to a
uint8. The second assumes class A stores an index value in a property.

• The subsindex method implemented by class A can convert the object to numeric format to be
used as an index:

function ind = subsindex(obj)
 ind = uint8(obj);
end

17 Specialize Object Behavior

17-30

The class of obj implements a uint8 method to provide the conversion from the object to an
integer value.

• Class A implements subsindex to return a numeric value that is stored in a property:

function ind = subsindex(obj)
 ind = obj.ElementIndex;
end

Note subsindex values are 0-based, not 1-based.

See Also
numArgumentsFromSubscript | subsasgn | subsref

Related Examples
• “end as Object Index” on page 17-28

More About
• “Modify nargout and nargin for Indexing Methods” on page 17-7

 Objects in Index Expressions

17-31

Class with Modified Indexing
In this section...
“How to Modify Class Indexing” on page 17-32
“Class Description” on page 17-32
“Specialize Subscripted Reference — subsref” on page 17-33
“Specialize Subscripted Assignment — subsasgn” on page 17-34
“Implement Addition for Object Data — double and plus” on page 17-35
“MyDataClass.m” on page 17-36

How to Modify Class Indexing
This example defines a class that modifies the default indexing behavior by implementing subsref
and subsasgn methods. The class also implements type conversion and addition by implementing a
double converter method and a plus method.

The objective of the class design is to:

• Enable you to treat an object of the class as a numeric array
• Be able to contain nonnumeric and numeric data in an object of the class

Class Description
The class has three properties:

• Data — numeric test data
• Description — description of test data
• Date — date test was conducted

Assume that you have the following random data (randi):

d = randi(9,3,4)

d =

 8 9 3 9
 9 6 5 2
 2 1 9 9

Create an instance of the class:

obj = MyDataClass(d,'Test001')

obj =

 MyDataClass with properties:

 Data: [3x4 double]
 Description: 'Test001'
 Date: [2012 1 7 9 32 34.5190]

17 Specialize Object Behavior

17-32

The constructor arguments pass the values for the Data and Description properties. The clock
function assigns the value to the Date property from within the constructor. This approach captures
the time and date information when each instance is created.

Here is the preliminary code listing without the subsref, subsasgn double, and plus methods.

classdef MyDataClass
 properties
 Data
 Description
 end
 properties (SetAccess = private)
 Date
 end
 methods
 function obj = MyDataClass(data,desc)
 if nargin > 0
 obj.Data = data;
 end
 if nargin > 1
 obj.Description = desc;
 end
 obj.Date = clock;
 end
 end
end

Specialize Subscripted Reference — subsref
Implement a subsref method to support both the default and a specialized type of indexing.

• The default indexed reference behavior for scalar objects:

obj.Data(2,3)

ans =

 5

• And to add the functionality to index into the Data property with an expression like this
statement:

obj(2,3)

If you redefine '()' indexing to support access to the Data property, you cannot create arrays of
MyDataClass objects and use '()' indexing to access individual objects. You can reference only
scalar objects.

To achieve the design goals, the subsref method must handle all indexing types. The subsref
method:

• Calls the builtin subsref function for '.' indexing
• Returns an error for '{}' indexing
• Defines its own version of '()' indexing.

The result: obj(i) is equivalent to obj.Data(i).

 Class with Modified Indexing

17-33

function sref = subsref(obj,s)
 % obj(i) is equivalent to obj.Data(i)
 switch s(1).type
 case '.'
 sref = builtin('subsref',obj,s);
 case '()'
 if length(s) < 2
 sref = builtin('subsref',obj.Data,s);
 else
 sref = builtin('subsref',obj,s);
 end
 case '{}'
 error('MYDataClass:subsref',...
 'Not a supported subscripted reference')
 end
end

Specialize Subscripted Assignment — subsasgn
To support the equivalent of the indexed reference behavior with indexed assignment, implement a
subsasgn method.

• Support the default indexed assignment:

obj.Data(2,3) = 9;
• Add the functionality to assign values to the Data property with an expression like this statement:

obj(2,3) = 9;

Like the subsref method, the subsasgn method:

• Calls the builtin subsasgn function for '.' indexing
• Returns an error for '{}' indexing
• Defines its own version of '()' indexing.

The substruct function redefines the index type and index subscripts structure that MATLAB passes
to subsref and subsasgn.

function obj = subsasgn(obj,s,val)
 if isempty(s) && isa(val,'MyDataClass')
 obj = MyDataClass(val.Data,val.Description);
 end
 switch s(1).type
 case '.'
 obj = builtin('subsasgn',obj,s,val);
 case '()'
 if length(s)<2
 if isa(val,'MyDataClass')
 error('MyDataClass:subsasgn',...
 'Object must be scalar')
 elseif isa(val,'double')
 % Redefine the struct s to make the call: obj.Data(i)
 snew = substruct('.','Data','()',s(1).subs(:));
 obj = subsasgn(obj,snew,val);
 end
 end

17 Specialize Object Behavior

17-34

 case '{}'
 error('MyDataClass:subsasgn',...
 'Not a supported subscripted assignment')
 end
end

Implement Addition for Object Data — double and plus
First, implement a double method that converts an object to an array of doubles. By implementing a
double converter method, it is possible to add a MyDataClass object to another class of object.
However, the other class must implement a double method that also returns an array of doubles. For
more information on type conversion, see “Object Converters” on page 17-10.

Allow direct addition of the Data property values by implementing a plus method. Implementing a
plus method enables the use of the + operator for addition of MyDataClass objects.

Because the plus method implements addition by adding double arrays, MATLAB:

• Apply the rules of addition when adding MyDataClass objects
• Returns errors for any condition that can cause errors in default numeric addition. For example,

dimension mismatch.

The plus method uses the double method to convert the object to numeric values before performing
the addition:

function a = double(obj)
 a = obj.Data;
end

function c = plus(obj,b)
 c = double(obj) + double(b);
end

For example, the plus method enables you to add a scalar number to the object Data array.

Here are the values of the Data, displayed using indexed reference:

obj(:,:)

ans =

 8 9 3 9
 9 6 9 2
 2 1 9 9

Add 7 to the array contained in the Data property:

obj + 7

ans =

 15 16 10 16
 16 13 16 9
 9 8 16 16

 Class with Modified Indexing

17-35

MyDataClass.m
This definition for MyDataClass includes the end indexing method discussed in “end as Object
Index” on page 17-28. extraneous

classdef MyDataClass
 % Example for "A Class with Modified Indexing"
 properties
 Data
 Description
 end
 properties (SetAccess = private)
 Date
 end
 methods
 function obj = MyDataClass(data,desc)
 % Support 0-2 args
 if nargin > 0
 obj.Data = data;
 end
 if nargin > 1
 obj.Description = desc;
 end
 obj.Date = clock;
 end

 function sref = subsref(obj,s)
 % obj(i) is equivalent to obj.Data(i)
 switch s(1).type
 case '.'
 sref = builtin('subsref',obj,s);
 case '()'
 if length(s)<2
 sref = builtin('subsref',obj.Data,s);
 else
 sref = builtin('subsref',obj,s);
 end
 case '{}'
 error('MyDataClass:subsref',...
 'Not a supported subscripted reference')
 end
 end

 function obj = subsasgn(obj,s,val)
 if isempty(s) && isa(val,'MyDataClass')
 obj = MyDataClass(val.Data,val.Description);
 end
 switch s(1).type
 case '.'
 obj = builtin('subsasgn',obj,s,val);
 case '()'
 %
 if length(s)<2
 if isa(val,'MyDataClass')
 error('MyDataClass:subsasgn',...
 'Object must be scalar')
 elseif isa(val,'double')

17 Specialize Object Behavior

17-36

 snew = substruct('.','Data','()',s(1).subs(:));
 obj = subsasgn(obj,snew,val);
 end
 end
 case '{}'
 error('MyDataClass:subsasgn',...
 'Not a supported subscripted assignment')
 end
 end

 function a = double(obj)
 a = obj.Data;
 end

 function c = plus(obj,b)
 c = double(obj) + double(b);
 end

 function ind = end(obj,k,n)
 szd = size(obj.Data);
 if k < n
 ind = szd(k);
 else
 ind = prod(szd(k:end));
 end
 end
 end
end

See Also

Related Examples
• “end as Object Index” on page 17-28
• “Number of Arguments for subsref and subsasgn” on page 17-5

 Class with Modified Indexing

17-37

Operator Overloading

In this section...
“Why Overload Operators” on page 17-38
“How to Define Operators” on page 17-38
“Sample Implementation — Addable Objects” on page 17-39
“MATLAB Operators and Associated Functions” on page 17-40

Why Overload Operators
By implementing operators that are appropriate for your class, you can integrate objects of your class
into the MATLAB language. For example, objects that contain numeric data can define arithmetic
operations like +, *, - so that you can use these objects in arithmetic expressions. By implementing
relational operators, you can use objects in conditional statements, like switch and if statements.

How to Define Operators
You can implement MATLAB operators to work with objects of your class. To implement operators,
define the associated class methods.

Each operator has an associated function (e.g., the + operator has an associated plus.m function).
You can implement any operator by creating a class method with the appropriate name. This method
can perform whatever steps are appropriate for the operation being implemented.

For a list of operators and associated function names, see “MATLAB Operators and Associated
Functions” on page 17-40.

Object Precedence in Operations

User-defined classes have a higher precedence than built-in classes. For example, suppose q is an
object of class double and p is a user-defined class. Both of these expressions generate a call to the
plus method in the user-define class, if it exists:

q + p
p + q

Whether this method can add objects of class double and the user-defined class depends on how you
implement the method.

When p and q are objects of different classes, MATLAB applies the rules of precedence to determine
which method to use.

“Object Precedence in Method Invocation” on page 9-36 provides information on how MATLAB
determines which method to call.

Operator Precedence

Overloaded operators retain the original MATLAB precedence for the operator. For information on
operator precedence, see “Operator Precedence”.

17 Specialize Object Behavior

17-38

Sample Implementation — Addable Objects
The Adder class implements addition for objects of this class by defining a plus method. Adder
defines addition of objects as the addition of the NumericData property values. The plus method
constructs and returns an Adder object whose NumericData property value is the result of the
addition.

The Adder class also implements the less than operator (<) by defining a lt method. The lt method
returns a logical value after comparing the values in each object NumericData property.

classdef Adder
 properties
 NumericData
 end
 methods
 function obj = Adder(val)
 obj.NumericData = val;
 end
 function r = plus(obj1,obj2)
 a = double(obj1);
 b = double(obj2);
 r = Adder(a + b);
 end
 function d = double(obj)
 d = obj.NumericData;
 end
 function tf = lt(obj1,obj2)
 if obj1.NumericData < obj2.NumericData
 tf = true;
 else
 tf = false;
 end
 end
 end
end

Using a double converter enables you to add numeric values to Adder objects and to perform
addition on objects of the class.

a = Adder(1:10)

a =

 Adder with properties:

 NumericData: [1 2 3 4 5 6 7 8 9 10]

Add two objects:

a + a

ans =

 Adder with properties:

 NumericData: [2 4 6 8 10 12 14 16 18 20]

Add an object with any value that can be cast to double:

 Operator Overloading

17-39

b = uint8(255) + a

b =

 Adder with properties:

 NumericData: [256 257 258 259 260 261 262 263 264 265]

Compare objects a and b using the < operator:

a < b

ans =

 1

Ensure that your class provides any error checking required to implement your class design.

MATLAB Operators and Associated Functions
The following table lists the function names for MATLAB operators. Implementing operators to work
with arrays (scalar expansion, vectorized arithmetic operations, and so on), can also require
modifying indexing and concatenation. Use the links in this table to find specific information on each
function.

Operation Method to Define Description
a + b plus(a,b) Binary addition
a - b minus(a,b) Binary subtraction
-a uminus(a) Unary minus
+a uplus(a) Unary plus
a.*b times(a,b) Element-wise multiplication
a*b mtimes(a,b) Matrix multiplication
a./b rdivide(a,b) Right element-wise division
a.\b ldivide(a,b) Left element-wise division
a/b mrdivide(a,b) Matrix right division
a\b mldivide(a,b) Matrix left division
a.^b power(a,b) Element-wise power
a^b mpower(a,b) Matrix power
a < b lt(a,b) Less than
a > b gt(a,b) Greater than
a <= b le(a,b) Less than or equal to
a >= b ge(a,b) Greater than or equal to
a ~= b ne(a,b) Not equal to
a == b eq(a,b) Equality
a & b and(a,b) Logical AND
a | b or(a,b) Logical OR

17 Specialize Object Behavior

17-40

Operation Method to Define Description
~a not(a) Logical NOT
a:d:b

a:b

colon(a,d,b)

colon(a,b)

Colon operator

a' ctranspose(a) Complex conjugate transpose
a.' transpose(a) Matrix transpose
[a b] horzcat(a,b,...) Horizontal concatenation
[a; b] vertcat(a,b,...) Vertical concatenation
a(s1,s2,...sn) subsref(a,s) Subscripted reference
a(s1,...,sn) = b subsasgn(a,s,b) Subscripted assignment
b(a) subsindex(a) Subscript index

See Also

Related Examples
• “Define Arithmetic Operators” on page 19-16
• “Methods That Modify Default Behavior” on page 17-2

 Operator Overloading

17-41

Customizing Object Display

• “Custom Display Interface” on page 18-2
• “How CustomDisplay Works” on page 18-7
• “Role of size Function in Custom Displays” on page 18-9
• “Customize Display for Heterogeneous Arrays” on page 18-10
• “Class with Default Object Display” on page 18-11
• “Choose a Technique for Display Customization” on page 18-15
• “Customize Property Display” on page 18-18
• “Customize Header, Property List, and Footer” on page 18-21
• “Customize Display of Scalar Objects” on page 18-26
• “Customize Display of Object Arrays” on page 18-30
• “Overloading the disp Function” on page 18-34

18

Custom Display Interface
In this section...
“Command Window Display” on page 18-2
“Default Object Display” on page 18-2
“CustomDisplay Class” on page 18-3
“Methods for Customizing Object Display” on page 18-3

Command Window Display
MATLAB displays information in the command window when a statement that is not terminated with
a semicolon returns a variable. For example, this statement creates a structure with a field that
contains the number 7.

a.field1 = 7

MATLAB displays the variable name, class, and the value.

a =

 struct with fields:

 field1: 7

MATLAB provides user-defined classes with similar display functionality. User-defined classes can
customize how MATLAB displays objects of the class using the API provided by the
matlab.mixin.CustomDisplay class. To use this API, derive your class from
matlab.mixin.CustomDisplay.

Default Object Display
MATLAB adds default methods named disp and display to all MATLAB classes that do not
implement their own methods with those names. These methods are not visible, but create the default
simple display.

The default simple display consists of the following parts:

• A header showing the class name, and the dimensions for nonscalar arrays.
• A list of all nonhidden public properties, shown in the order of definition in the class.

The actual display depends on whether the object is scalar or nonscalar. Also, there are special
displays for a scalar handle to a deleted object and empty object arrays. Objects in all of these states
are displayed differently if the objects have no properties.

The details function creates the default detailed display. The detailed display adds these items to
the simple display:

• Use of fully qualified class names
• Link to handle class, if the object is a handle
• Links to methods, events, and superclasses functions executed on the object.

18 Customizing Object Display

18-2

See “Class with Default Object Display” on page 18-11 for an example of how MATLAB displays
objects.

Properties Displayed by Default

MATLAB displays object properties that have public get access and are not hidden (see “Property
Attributes” on page 8-6). Inherited abstract properties are excluded from display. When the object
being displayed is scalar, any dynamic properties attached to the object are also included.

CustomDisplay Class
The matlab.mixin.CustomDisplay class provides an interface that you can use to customize
object display for your class. To use this interface, derive your class from CustomDisplay:

classdef MyClass < matlab.mixin.CustomDisplay

The CustomDisplay class is HandleCompatible, so you can use it in combination with both value
and handle superclasses.

Note You cannot use matlab.mixin.CustomDisplay to derive a custom display for enumeration
classes.

disp, display, and details

The CustomDisplay interface does not allow you to override disp, display, and details.
Instead, override any combination of the customization methods defined for this purpose.

Methods for Customizing Object Display
There are two groups of methods that you use to customize object display for your class:

• Part builder methods build the strings used for the standard display. Override any of these
methods to change the respective parts of the display.

• State handler methods are called for objects in specific states, like scalar, nonscalar, and so on.
Override any of these methods to handle objects in a specific state.

All of these methods have protected access and must be defined as protected in your subclass of
CustomDisplay (that is, Access = protected).

Parts of an Object Display

There are three parts that makeup the standard object display — header, property list, and footer

For example, here is the standard object display for a containers.Map object:

 Custom Display Interface

18-3

The default object display does not include a footer. The detailed display provides more information:

You can customize how MATLAB displays objects as a result of expressions that display objects in the
command window such as unterminated statements that return objects or calls to disp and
display. The results displayed when calling details on an object or object array are not changed
by the CustomDisplay API.

Part Builder Methods

Each part of the object display has an associated method that assembles the respective part of the
display.

Method Purpose Default
getHeader Create the text used for the header. Returns the char vectors, [class(obj),

' with properties:'] linking the
class name to a help popup

getPropertyGroups Define how and what properties display,
including order, values, and grouping.

Returns an array of PropertyGroup
objects, which determines how to display
the properties

getFooter Create the text used for the footer. There are two footers:

• Simple display — Returns an empty
char vector

• Detailed display — Returns linked calls
to methods, events, and
superclasses for this class

18 Customizing Object Display

18-4

Object States That Affect Display

There are four object states that affect how MATLAB displays objects:

• Valid scalar object
• Nonscalar object array
• Empty object array
• Scalar handle to a deleted object

State Handler Methods

Each object state has an associated method that MATLAB calls whenever displaying objects that are
in that particular state.

State Handler Method Called for Object in This State
displayScalarObject (isa(obj,'handle') && isvalid(obj)) &&

prod(size(obj)) == 1
displayNonScalarObject prod(size(obj)) > 1
displayEmptyObject prod(size(obj)) == 0
displayScalarHandleToDeletedObject isa(obj,'handle') && isscalar(obj) &&

~isvalid(obj)

Utility Methods

The CustomDisplay class provides utility methods that return strings that are used in various parts
of the different display options. These static methods return text that simplifies the creation of
customized object displays.

If the computer display does not support hypertext linking, the strings are returned without the links.

Method Inputs Outputs
convertDimensionsToString Valid object array Object dimensions converted to a

char vector; determined by calling
size(obj)

displayPropertyGroups PropertyGroup array Displays the titles and property
groups defined

getClassNameForHeader Object Simple class name linked to the
object’s documentation

getDeletedHandleText None Text 'handle to deleted' linked
to the documentation on deleted
handles

getDetailedFooter Object Text containing phrase 'Methods,
Events, Superclasses', with
each link executing the respective
command on the input object

getDetailedHeader Object Text containing linked class name,
link to handle page (if handle class)
and 'with properties:'

 Custom Display Interface

18-5

Method Inputs Outputs
getHandleText None Text 'handle' linked to a section

of the documentation that describes
handle objects

getSimpleHeader Object Text containing linked class name
and the phrase 'with
properties:'

See Also

Related Examples
• “How CustomDisplay Works” on page 18-7

18 Customizing Object Display

18-6

How CustomDisplay Works
In this section...
“Steps to Display an Object” on page 18-7
“Methods Called for a Given Object State” on page 18-7

Steps to Display an Object
When displaying an object, MATLAB determines the state of the object and calls the appropriate
method for that state (see “Object States That Affect Display” on page 18-5).

For example, suppose obj is a valid scalar object of a class derived from CustomDisplay. If you type
obj at the command line without terminating the statement with a semicolon:

>> obj

The following sequence results in the display of obj:

1 MATLAB determines the class of obj and calls the disp method to display the object.
2 disp calls size to determine if obj is scalar or nonscalar
3 When obj is a scalar handle object, disp calls isvalid to determine if obj is the handle of a

deleted object. Deleted handles in nonscalar arrays do not affect the display.
4 disp calls the state handler method for an object of the state of obj. In this case, obj is a valid

scalar that results in a call to:

displayScalarObject(obj)
5 displayScalarObject calls the display part-builder methods to provide the respective header,

property list, and footer.

...
header = getHeader(obj);
disp(header)
...
groups = getPropertyGroups(obj)
displayPropertyGroups(obj,groups)
...
footer = getFooter
disp(footer)

MATLAB follows a similar sequence for nonscalar object arrays and empty object arrays.

In the case of scalar handles to deleted objects, disp calls the
displayScalarHandleToDeletedObject method, which displays the default text for handles to
deleted objects without calling any part-builder methods.

Methods Called for a Given Object State
The following diagram illustrates the methods called to display an object that derives from
CustomDisplay. The disp method calls the state handler method that is appropriate for the state of
the object or object array being displayed.

Only an instance of a handle class can be in a state of scalar handle to a deleted object.

 How CustomDisplay Works

18-7

See Also

Related Examples
• “Class with Default Object Display” on page 18-11

18 Customizing Object Display

18-8

Role of size Function in Custom Displays
In this section...
“How size Is Used” on page 18-9
“Precautions When Overloading size” on page 18-9

How size Is Used
In the process of building the custom display, CustomDisplay methods call the size function at
several points:

• disp calls size to determine which state handler method to invoke.
• The default getHeader method calls size to determine whether to display a scalar or nonscalar

header.
• The default displayPropertyGroups method calls size to determine if it should look up

property values when the property group is a cell array of property names. By default, only scalar
objects display the values of properties.

Precautions When Overloading size
If your class overloads the size function, then MATLAB calls the overloading version. You must
ensure that the implementation of size is consistent with the way you want to display objects of the
class.

An unusual or improper implementation of size can result in undesirable display behavior. For
example, suppose a class overloads size reports an object as scalar when it is not. In this class, a
property list consisting of a cell array of strings results in the property values of the first object of the
array being displayed. This behavior can give the impression that all objects in the array have the
same property values.

However, reporting an object as scalar when in fact the object is empty results in the object
displaying as an empty object array. The default methods of the CustomDisplay interface always
determine if the input is an empty array before attempting to access property values.

As you override CustomDisplay methods to implement your custom object display, consider how an
overloading size method can affect the result.

See Also

Related Examples
• “Methods That Modify Default Behavior” on page 17-2

 Role of size Function in Custom Displays

18-9

Customize Display for Heterogeneous Arrays
You can call only sealed methods on nonscalar heterogeneous arrays. If you want to customize classes
that are part of a heterogeneous hierarchy, you must override and declare as Sealed all the methods
that are part of the CustomDisplay interface.

The versions of disp and display that are inherited from matlab.mixin.CustomDisplay are
sealed. However, these methods call all of the part builder (“Part Builder Methods” on page 18-4) and
state handler methods (“State Handler Methods” on page 18-5).

To use the CustomDisplay interface, the root class of the heterogeneous hierarchy can declare
these methods as Sealed and Access = protected.

If you do not need to override a particular method, then call the superclass method, as shown in the
following code.

For example, the following code shows modifications to the getPropertyGroups and
displayScalarObject methods, while using the superclass implementation of all others.
classdef RootClass < matlab.mixin.CustomDisplay & matlab.mixin.Heterogeneous
 %...
 methods (Sealed, Access = protected)
 function header = getHeader(obj)
 header = getHeader@matlab.mixin.CustomDisplay(obj);
 end

 function groups = getPropertyGroups(obj)
 % Override of this method
 % ...
 end

 function footer = getFooter(obj)
 footer = getFooter@matlab.mixin.CustomDisplay(obj);
 end

 function displayNonScalarObject(obj)
 displayNonScalarObject@matlab.mixin.CustomDisplay(obj);
 end

 function displayScalarObject(obj)
 % Override of this method
 % ...
 end

 function displayEmptyObject(obj)
 displayEmptyObject@matlab.mixin.CustomDisplay(obj);
 end

 function displayScalarHandleToDeletedObject(obj)
 displayScalarHandleToDeletedObject@matlab.mixin.CustomDisplay(obj);
 end
 end
end

You do not need to declare the inherited static methods as Sealed.

See Also

Related Examples
• “Designing Heterogeneous Class Hierarchies” on page 10-20

18 Customizing Object Display

18-10

Class with Default Object Display
In this section...
“The EmployeeInfo Class” on page 18-11
“Default Display — Scalar” on page 18-11
“Default Display — Nonscalar” on page 18-12
“Default Display — Empty Object Array” on page 18-12
“Default Display — Handle to Deleted Object” on page 18-13
“Default Display — Detailed Display” on page 18-13

The EmployeeInfo Class
The EmployeeInfo class defines a number of properties to store information about company
employees. This simple class serves as the example class used in display customization sample
classes.

EmployeeInfo derives from the matlab.mixin.CustomDisplay class to enable customization of
the object display.

EmployeeInfo is also a handle class. Therefore instances of this class can be in the state referred to
as a handle to a deleted object. This state does not occur with value classes (classes not derived from
handle).

classdef EmployeeInfo < handle & matlab.mixin.CustomDisplay
 properties
 Name
 JobTitle
 Department
 Salary
 Password
 end
 methods
 function obj = EmployeeInfo
 obj.Name = input('Name: ');
 obj.JobTitle = input('Job Title: ');
 obj.Department = input('Department: ');
 obj.Salary = input('Salary: ');
 obj.Password = input('Password: ');
 end
 end
end

The matlab.mixin.CustomDisplay is handle compatible. Therefore, superclasses can be either
handle or value classes.

Default Display — Scalar
Here is the creation and display of a scalar EmployeeInfo object. By default, MATLAB displays
properties and their values for scalar objects.

Provide inputs for the constructor:

 Class with Default Object Display

18-11

>>Emp123 = EmployeeInfo;
Name: 'Bill Tork'
Job Title: 'Software Engineer'
Department: 'Product Development'
Salary: 1000
Password: 'bill123'

Display the object:

>>Emp123

Emp123 =

 EmployeeInfo with properties:

 Name: 'Bill Tork'
 JobTitle: 'Software Engineer'
 Department: 'Product Development'
 Salary: 1000
 Password: 'bill123'

Testing for Scalar Objects

To test for scalar objects, use isscalar.

Default Display — Nonscalar
The default display for an array of objects does not show property values. For example, concatenating
two EmployeeInfo objects generates this display:

>>[Emp123,Emp124]
ans

 1x2 EmployeeInfo array with properties:

 Name
 JobTitle
 Department
 Salary
 Password

Testing for Nonscalar Objects

To test for nonscalar objects, use a negated call to isscalar .

Default Display — Empty Object Array
An empty object array has at least one dimension equal to zero.

>> Empt = EmployeeInfo.empty(0,5)

Empt =

 0x5 EmployeeInfo array with properties:

 Name

18 Customizing Object Display

18-12

 JobTitle
 Department
 Salary
 Password

Testing for Empty Object Arrays

Use isempty to test for empty object arrays. An empty object array is not scalar because its
dimensions can never be 1–by-1.

>> emt = EmployeeInfo.empty

emt =

 0x0 EmployeeInfo array with properties:

 Name
 JobTitle
 Department
 Salary
 Password

>> isscalar(emt)

ans =

 0

Default Display — Handle to Deleted Object
When a handle object is deleted, the handle variable can remain in the workspace.

>> delete(Emp123)
>> Emp123
Emp123 =
 handle to deleted EmployeeInfo

Testing for Handles to Deleted Objects

To test for a handle to a deleted object, use isvalid.

Note isvalid is a handle class method. Calling isvalid on a value class object causes an error.

Default Display — Detailed Display
The details method does not support customization and always returns the standard detailed display:

details(Emp123)
 EmployeeInfo handle with properties:

 Name: 'Bill Tork'
 JobTitle: 'Software Engineer'
 Department: 'Product Development'
 Salary: 1000
 Password: 'bill123'

 Class with Default Object Display

18-13

 Methods, Events, Superclasses

See Also

Related Examples
• “Custom Display Interface” on page 18-2

18 Customizing Object Display

18-14

Choose a Technique for Display Customization
In this section...
“Ways to Implement a Custom Display” on page 18-15
“Sample Approaches Using the Interface” on page 18-15

Ways to Implement a Custom Display
The way you customize object display using the matlab.mixin.CustomDisplay class depends on:

• What parts of the display you want to customize
• What object states you want to use the custom display

If you are making small changes to the default layout, then override the relevant part builder
methods (“Part Builder Methods” on page 18-4). For example, suppose you want to:

• Change the order or value of properties, display a subset of properties, or create property groups
• Modify the header text
• Add a footer

If you are defining a nonstandard display for a particular object state (scalar, for example), then the
best approach is to override the appropriate state handler method (“State Handler Methods” on page
18-5).

In some cases, a combination of method overrides might be the best approach. For example, your
implementation of displayScalarObject might

• Use some of the utility methods (“Utility Methods” on page 18-5) to build your own display strings
using parts from the default display

• Call a part builder method to get the default text for that particular part of the display
• Implement a completely different display for scalar objects.

Once you override any CustomDisplay method, MATLAB calls your override in all cases where the
superclass method would have been called. For example, if you override the getHeader method,
your override must handle all cases where a state handler method calls getHeader. (See “Methods
Called for a Given Object State” on page 18-7)

Sample Approaches Using the Interface
Here are some simple cases that show what methods to use for the particular customized display.

Change the Display of Scalar Objects

Use a nonstandard layout for scalar object display that is fully defined in the displayScalarObject
method:

classdef MyClass < matlab.mixin.CustomDisplay
 ...
 methods (Access = protected)
 function displayScalarObject(obj)
 % Implement the custom display for scalar obj

 Choose a Technique for Display Customization

18-15

 end
 end
end

Custom Property List with Standard Layout

Use standard display layout, but create a custom property list for scalar and nonscalar display:

classdef MyClass < matlab.mixin.CustomDisplay
 ...
 methods(Access = protected)
 function groups = getPropertyGroups(obj)
 % Return PropertyGroup instances
 end
 end
end

Custom Property List for Scalar Only

Use standard display layout, but create a custom property list for scalar only. Call the superclass
getPropertyGroups for the nonscalar case.
classdef MyClass < matlab.mixin.CustomDisplay
 properties
 Prop1
 Prop2
 Prop3
 end
 methods(Access = protected)
 function groups = getPropertyGroups(obj)
 if isscalar(obj)
 % Scalar case: change order
 propList = {'Prop2','Prop1','Prop3'};
 groups = matlab.mixin.util.PropertyGroup(propList)
 else
 % Nonscalar case: call superclass method
 groups = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 end
 end
 end
end

Custom Property List with Modified Values

Change the values displayed for some properties in the scalar case by creating property/value pairs in
a struct. This getPropertyGroups method displays only Prop1 and Prop2, and displays the value
of Prop2 as Prop1 divided by Prop3.
classdef MyClass < matlab.mixin.CustomDisplay
 properties
 Prop1
 Prop2
 Prop3
 end
 methods(Access = protected)
 function groups = getPropertyGroups(obj)
 if isscalar(obj)
 % Specify the values to be displayed for properties
 propList = struct('Prop1',obj.Prop1,...
 'Prop2',obj.Prop1/obj.Prop3);
 groups = matlab.mixin.util.PropertyGroup(propList)
 else
 % Nonscalar case: call superclass method
 groups = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 end
 end

18 Customizing Object Display

18-16

 end
end

Complete Class Definitions

For complete class implementations, see these sections:

• “Customize Property Display” on page 18-18

“Customize Header, Property List, and Footer” on page 18-21

“Customize Display of Scalar Objects” on page 18-26

“Customize Display of Object Arrays” on page 18-30

 Choose a Technique for Display Customization

18-17

Customize Property Display
In this section...
“Objective” on page 18-18
“Change the Property Order” on page 18-18
“Change the Values Displayed for Properties” on page 18-18

Objective
Change the order and number of properties displayed for an object of your class.

Change the Property Order
Suppose your class definition contains the following property definition:

properties
 Name
 JobTitle
 Department
 Salary
 Password
end

In the default scalar object display, MATLAB displays all the public properties along with their values.
However, you want to display only Department, JobTitle, and Name, in that order. You can do this
by deriving from CustomDisplay and overriding the getPropertyGroups method.

Your override

• Defines method Access as protected to match the definition in the CustomDisplay superclass
• Creates a cell array of property names in the desired order
• Returns a PropertyGroup object constructed from the property list cell array
methods (Access = protected)
 function propgrp = getPropertyGroups(~)
 proplist = {'Department','JobTitle','Name'};
 propgrp = matlab.mixin.util.PropertyGroup(proplist);
 end
end

When you create a PropertyGroup object using a cell array of property names, MATLAB
automatically

• Adds the property values for a scalar object display
• Uses the property names without values for a nonscalar object display (including empty object

arrays)

The getPropertyGroups method is not called to create the display for a scalar handle to a deleted
object.

Change the Values Displayed for Properties
Given the same class properties used in the previous section, you can change the value displayed for
properties by building the property list as a struct and specifying values for property names. This

18 Customizing Object Display

18-18

override of the getPropertyGroups method uses the default property display for nonscalar objects
by calling the superclass getPropertyGroups method. For scalar objects, the override:

• Changes the value displayed for the Password property to a '*' character for each character in
the password.

• Displays the text 'Not Available' for the Salary property.
methods (Access = protected)
 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 else
 pd(1:length(obj.Password)) = '*';
 propList = struct('Department',obj.Department,...
 'JobTitle',obj.JobTitle,...
 'Name',obj.Name,...
 'Salary','Not available',...
 'Password',pd);
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 end
 end
end

The object display looks like this:

 EmployeeInfo with properties:

 Department: 'Product Development'
 JobTitle: 'Software Engineer'
 Name: 'Bill Tork'
 Salary: 'Not available'
 Password: '*******'

Full Class Listing
classdef EmployeeInfo < handle & matlab.mixin.CustomDisplay
 properties
 Name
 JobTitle
 Department
 Salary
 Password
 end
 methods
 function obj = EmployeeInfo
 obj.Name = input('Name: ');
 obj.JobTitle = input('Job Title: ');
 obj.Department = input('Department: ');
 obj.Salary = input('Salary: ');
 obj.Password = input('Password: ');
 end
 end
 methods (Access = protected)
 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 else
 pd(1:length(obj.Password)) = '*';
 propList = struct('Department',obj.Department,...
 'JobTitle',obj.JobTitle,...
 'Name',obj.Name,...
 'Salary','Not available',...
 'Password',pd);
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 end
 end
 end
end

 Customize Property Display

18-19

See Also

Related Examples
• “Choose a Technique for Display Customization” on page 18-15

18 Customizing Object Display

18-20

Customize Header, Property List, and Footer
In this section...
“Objective” on page 18-21
“Design of Custom Display” on page 18-21
“getHeader Method Override” on page 18-22
“getPropertyGroups Override” on page 18-23
“getFooter Override” on page 18-23

Objective
Customize each of the three parts of the display — header, property groups, and footer.

Design of Custom Display

Note This example uses the EmployeeInfo class described in the “Class with Default Object
Display” on page 18-11 section.

For the header:

• Use default header for nonscalar object arrays.
• Build header text with linked class name and department name (from Department property)

For properties:

• Nonscalar object arrays display a subset of property names in a different order than the default.
• Scalar objects create two property groups that have titles (Public Info and Personal Info).

For the footer:

• Add a footer to the display, only when the object is a valid scalar that displays property values.

Here is the customized display of an object of the EmployeeInfo class.

Emp123 =

EmployeeInfo Dept: Product Development

 Public Info
 Name: 'Bill Tork'
 JobTitle: 'Software Engineer'

 Personal Info
 Salary: 1000
 Password: 'bill123'

Company Private

Here is the custom display of an array of EmployeeInfo objects:

 Customize Header, Property List, and Footer

18-21

[Emp123,Emp124]

ans =

 1x2 EmployeeInfo array with properties:

 Department
 Name
 JobTitle

Here is the display of an empty object array:

>> EmployeeInfo.empty(0,5)

ans =

 0x5 EmployeeInfo array with properties:

 Department
 Name
 JobTitle

Here is the display of a handle to a delete object (EmployeeInfo is a handle class):

>> delete(Emp123)
>> Emp123

Emp123 =

 handle to deleted EmployeeInfo

Implementation

The EmployeeInfo class overrides three matlab.mixin.CustomDisplay methods to implement
the display shown:

• getHeader
• getPropertyGroups
• getFooter

Each method must produce the desired results with each of the following inputs:

• Scalar object
• Nonscalar object array
• Empty object array

getHeader Method Override
MATLAB calls getHeader to get the header text. The EmployeeInfo class overrides this method to
implement the custom header for scalar display. Here is how it works:

• Nonscalar (including empty object) arrays call the superclass getHeader, which returns the
default header.

• Scalar handles to deleted objects do not result in a call to getHeader.

18 Customizing Object Display

18-22

• Scalar inputs build a custom header using the getClassNameForHeader static method to return
linked class name text, and the value of the Department property.

Here is the EmployeeInfo override of the getHeader method. The required protected access is
inherited from the superclass.
methods (Access = protected)
 function header = getHeader(obj)
 if ~isscalar(obj)
 header = getHeader@matlab.mixin.CustomDisplay(obj);
 else
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 newHeader = [className,' Dept: ',obj.Department];
 header = sprintf('%s\n',newHeader);
 end
 end
end

getPropertyGroups Override
MATLAB calls getPropertyGroups to get the PropertyGroup objects, which control how
properties are displayed. This method override defines two different property lists depending on the
object’s state:

• For nonscalar inputs, including empty arrays and arrays containing handles to deleted objects,
create a property list as a cell array to reorder properties.

By default, MATLAB does not display property values for nonscalar inputs.
• For scalar inputs, create two property groups with titles. The scalar code branch lists properties in

a different order than the nonscalar case and includes Salary and Password properties.
MATLAB automatically assigns property values.

• Scalar handles to deleted objects do not result in a call to getPropertyGroups.

Both branches return a matlab.mixin.util.PropertyGroup object, which determines how to
displays the object properties.

Here is the EmployeeInfo override of the getPropertyGroups method. The protected access is
inherited from the superclass.
methods (Access = protected)
 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propList = {'Department','Name','JobTitle'};
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 else
 gTitle1 = 'Public Info';
 gTitle2 = 'Personal Info';
 propList1 = {'Name','JobTitle'};
 propList2 = {'Salary','Password'};
 propgrp(1) = matlab.mixin.util.PropertyGroup(propList1,gTitle1);
 propgrp(2) = matlab.mixin.util.PropertyGroup(propList2,gTitle2);
 end
 end
end

getFooter Override
MATLAB calls getFooter to get the footer text. The EmployeeInfo getFooter method defines a
footer for the display, which is included only when the input is a valid scalar object. In all other cases,
getFooter returns an empty char vector.

 Customize Header, Property List, and Footer

18-23

Scalar handles to deleted objects do not result in a call to getFooter.

methods (Access = protected)
 function footer = getFooter(obj)
 if isscalar(obj)
 footer = sprintf('%s\n','Company Private');
 else
 footer = '';
 end
 end
end

Complete Class Listing
classdef EmployeeInfo < handle & matlab.mixin.CustomDisplay
 properties
 Name
 JobTitle
 Department
 Salary
 Password
 end
 methods
 function obj = EmployeeInfo
 obj.Name = input('Name: ');
 obj.JobTitle = input('Job Title: ');
 obj.Department = input('Department: ');
 obj.Salary = input('Salary: ');
 obj.Password = input('Password: ');
 end
 end

 methods (Access = protected)
 function header = getHeader(obj)
 if ~isscalar(obj)
 header = getHeader@matlab.mixin.CustomDisplay(obj);
 else
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 newHeader = [className,' Dept: ',obj.Department];
 header = sprintf('%s\n',newHeader);
 end
 end

 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propList = {'Department','Name','JobTitle'};
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 else
 gTitle1 = 'Public Info';
 gTitle2 = 'Personal Info';
 propList1 = {'Name','JobTitle'};
 propList2 = {'Salary','Password'};
 propgrp(1) = matlab.mixin.util.PropertyGroup(propList1,gTitle1);
 propgrp(2) = matlab.mixin.util.PropertyGroup(propList2,gTitle2);
 end
 end

 function footer = getFooter(obj)
 if isscalar(obj)
 footer = sprintf('%s\n','Company Private');
 else
 footer = '';
 end
 end
 end
end

18 Customizing Object Display

18-24

See Also

Related Examples
• “Choose a Technique for Display Customization” on page 18-15

 Customize Header, Property List, and Footer

18-25

Customize Display of Scalar Objects
In this section...
“Objective” on page 18-26
“Design Of Custom Display” on page 18-26
“displayScalarObject Method Override” on page 18-27
“getPropertyGroups Override” on page 18-27

Objective
Customize the display of scalar objects.

Design Of Custom Display

Note This example uses the EmployeeInfo class described in the “Class with Default Object
Display” on page 18-11 section.

The objective of this customized display is to:

• Modify the header to include the department name obtained from the Department property
• Group properties into two categories titled Public Info and Personal Info.
• Modify which properties are displayed
• Modify the values displayed for Personal Info category
• Use the default displayed for nonscalar objects, including empty arrays, and scalar deleted

handles

For example, here is the customized display of an object of the EmployeeInfo class.

Emp123 =

EmployeeInfo Dept: Product Development

 Public Info
 Name: 'Bill Tork'
 JobTitle: 'Software Engineer'

 Personal Info
 Salary: 'Level: 10'
 Password: '*******'

Implementation

The EmployeeInfo class overrides two matlab.mixin.CustomDisplay methods to implement the
display shown:

• displayScalarObject — Called to display valid scalar objects
• getPropertyGroups — Builds the property groups for display

18 Customizing Object Display

18-26

displayScalarObject Method Override
MATLAB calls displayScalarObject to display scalar objects. The EmployeeInfo class overrides
this method to implement the scalar display. Once overridden, this method must control all aspects of
scalar object display, including creating the header, property groups, and footer, if used.

This implementation:

• Builds a custom header using the getClassNameForHeader static method to return linked class
name text and the value of the Department property to get the department name.

• Uses sprintf to add a new line to the header text
• Displays the header with the built-in disp function.
• Calls the getPropertyGroups override to define the property groups (see following section).
• Displays the property groups using the displayPropertyGroups static method.

Here is the EmployeeInfo override of the displayScalarObject method. The required protected
access is inherited from the superclass.
methods (Access = protected)
 function displayScalarObject(obj)
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 scalarHeader = [className,' Dept: ',obj.Department];
 header = sprintf('%s\n',scalarHeader);
 disp(header)
 propgroup = getPropertyGroups(obj);
 matlab.mixin.CustomDisplay.displayPropertyGroups(obj,propgroup)
 end
end

getPropertyGroups Override
MATLAB calls getPropertyGroups when displaying scalar or nonscalar objects. However, MATLAB
does not call this method when displaying a scalar handle to a deleted object.

The EmployeeInfo class overrides this method to implement the property groups for scalar object
display.

This implementation calls the superclass getPropertyGroups method if the input is not scalar. If
the input is scalar, this method:

• Defines two titles for the two groups
• Creates a cell array of property names that are included in the first group. MATLAB adds the

property values for the display
• Creates a struct array of property names with associated property values for the second group.

Using a struct instead of a cell array enables you to replace the values that are displayed for the
Salary and Password properties without changing the personal information stored in the object
properties.

• Constructs two matlab.mixin.util.PropertyGroup objects, which are used by the
displayScalarObject method.

Here is the EmployeeInfo override of the getPropertyGroups method. The required protected
access is inherited from the superclass.
methods (Access = protected)
 function propgrp = getPropertyGroups(obj)

 Customize Display of Scalar Objects

18-27

 if ~isscalar(obj)
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 else
 gTitle1 = 'Public Info';
 gTitle2 = 'Personal Info';
 propList1 = {'Name','JobTitle'};
 pd(1:length(obj.Password)) = '*';
 level = round(obj.Salary/100);
 propList2 = struct('Salary',...
 ['Level: ',num2str(level)],...
 'Password',pd);
 propgrp(1) = matlab.mixin.util.PropertyGroup(propList1,gTitle1);
 propgrp(2) = matlab.mixin.util.PropertyGroup(propList2,gTitle2);
 end
 end
end

Complete Class Listing
classdef EmployeeInfo4 < handle & matlab.mixin.CustomDisplay
 properties
 Name
 JobTitle
 Department
 Salary
 Password
 end
 methods
 function obj = EmployeeInfo4
 obj.Name = input('Name: ');
 obj.JobTitle = input('Job Title: ');
 obj.Department = input('Department: ');
 obj.Salary = input('Salary: ');
 obj.Password = input('Password: ');
 end
 end

 methods (Access = protected)
 function displayScalarObject(obj)
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 scalarHeader = [className,' Dept: ',obj.Department];
 header = sprintf('%s\n',scalarHeader);
 disp(header)
 propgroup = getPropertyGroups(obj);
 matlab.mixin.CustomDisplay.displayPropertyGroups(obj,propgroup)
 end

 function propgrp = getPropertyGroups(obj)
 if ~isscalar(obj)
 propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
 else
 % property groups for scalars
 gTitle1 = 'Public Info';
 gTitle2 = 'Personal Info';
 propList1 = {'Name','JobTitle'};
 pd(1:length(obj.Password)) = '*';
 level = round(obj.Salary/100);
 propList2 = struct('Salary',...
 ['Level: ',num2str(level)],...
 'Password',pd);
 propgrp(1) = matlab.mixin.util.PropertyGroup(propList1,gTitle1);
 propgrp(2) = matlab.mixin.util.PropertyGroup(propList2,gTitle2);
 end
 end
 end
end

18 Customizing Object Display

18-28

See Also

Related Examples
• “Choose a Technique for Display Customization” on page 18-15

 Customize Display of Scalar Objects

18-29

Customize Display of Object Arrays
In this section...
“Objective” on page 18-30
“Design of Custom Display” on page 18-30
“The displayNonScalarObject Override” on page 18-31
“The displayEmptyObject Override” on page 18-32

Objective
Customize the display of nonscalar objects, including empty object arrays.

Design of Custom Display

Note This example uses the EmployeeInfo class described in the “Class with Default Object
Display” on page 18-11 section.

The objective of this customized display is to:

• Construct a custom header using some elements of the default header
• Display a subset of property-specific information for each object in the array.
• List handles to deleted objects in the array using a char vector with links to documentation for

handle objects and the class.
• Display empty objects with a slight modification to the default header

Here is the customized display of an array of three EmployeeInfo objects

1x3 EmployeeInfo array with members:
1. Employee:
 Name: 'Bill Tork'
 Department: 'Product Development'

2. Employee:
 Name: 'Alice Blackwell'
 Department: 'QE'

3. Employee:
 Name: 'Nancy Green'
 Department: 'Documentation'

Deleted object handles in the array indicate their state:

1x3 EmployeeInfo members:

1. Employee:
 Name: 'Bill Tork'
 Department: 'Product Development'

2. handle to deleted EmployeeInfo

18 Customizing Object Display

18-30

3. Employee:
 Name: 'Nancy Green'
 Department: 'Documentation'

To achieve the desired result, the EmployeeInfo class overrides the following methods of the
matlab.mixin.CustomDisplay class:

• displayNonScalarObject — Called to display nonempty object arrays
• displayEmptyObject — Called to display empty object arrays

The displayNonScalarObject Override
MATLAB calls the displayNonScalarObject method to display object arrays. The override of this
method in the EmployeeInfo class:

• Builds header text using convertDimensionsToString to obtain the array size and
getClassNameForHeader to get the class name with a link to the help for that class.

• Displays the modified header text.
• Loops through the elements in the array, building two different subheaders depending on the

individual object state. In the loop, this method:

• Detects handles to deleted objects (using the isvalid handle class method). Uses
getDeletedHandleText and getClassNameForHeader to build text for array elements that
are handles to deleted objects.

• Builds a custom subheader for valid object elements in the array
• Creates a PropertyGroup object containing the Name and Department properties for valid

objects
• Uses the displayPropertyGroups static method to generate the property display for valid

objects.

Here is the implementation of displayNonScalarObjects:
methods (Access = protected)
 function displayNonScalarObject(objAry)
 dimStr = matlab.mixin.CustomDisplay.convertDimensionsToString(objAry);
 cName = matlab.mixin.CustomDisplay.getClassNameForHeader(objAry);
 headerStr = [dimStr,' ',cName,' members:'];
 header = sprintf('%s\n',headerStr);
 disp(header)
 for ix = 1:length(objAry)
 o = objAry(ix);
 if ~isvalid(o)
 str1 = matlab.mixin.CustomDisplay.getDeletedHandleText;
 str2 = matlab.mixin.CustomDisplay.getClassNameForHeader(o);
 headerInv = [str1,' ',str2];
 tmpStr = [num2str(ix),'. ',headerInv];
 numStr = sprintf('%s\n',tmpStr);
 disp(numStr)
 else
 numStr = [num2str(ix),'. Employee:'];
 disp(numStr)
 propList = struct('Name',o.Name,...
 'Department',o.Department);
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 matlab.mixin.CustomDisplay.displayPropertyGroups(o,propgrp);
 end
 end
 end
end

 Customize Display of Object Arrays

18-31

The displayEmptyObject Override
MATLAB calls the displayEmptyObject method to display empty object arrays. The
implementation of this method in the EmployeeInfo class builds a custom header for empty objects
following these steps:

• Gets the array dimensions in character format using the convertDimensionsToString static
method.

• Gets text with the class name linked to the helpPopup function using the
getClassNameForHeader static method.

• Builds and displays the custom text for empty arrays.

methods (Access = protected)
 function displayEmptyObject(obj)
 dimstr = matlab.mixin.CustomDisplay.convertDimensionsToString(obj);
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 emptyHeader = [dimstr,' ',className,' with no employee information'];
 header = sprintf('%s\n',emptyHeader);
 disp(header)
 end
end

For example, an empty EmployeeInfo object displays like this:

Empt = EmployeeInfo.empty(0,5)

Empt =

0x5 EmployeeInfo with no employee information

Complete Class Listing
classdef EmployeeInfo < handle & matlab.mixin.CustomDisplay
 properties
 Name
 JobTitle
 Department
 Salary
 Password
 end
 methods
 function obj = EmployeeInfo
 obj.Name = input('Name: ');
 obj.JobTitle = input('Job Title: ');
 obj.Department = input('Department: ');
 obj.Salary = input('Salary: ');
 obj.Password = input('Password: ');
 end
 end
 methods (Access = protected)
 function displayNonScalarObject(objAry)
 dimStr = matlab.mixin.CustomDisplay.convertDimensionsToString(objAry);
 cName = matlab.mixin.CustomDisplay.getClassNameForHeader(objAry);
 headerStr = [dimStr,' ',cName,' members:'];
 header = sprintf('%s\n',headerStr);
 disp(header)
 for ix = 1:length(objAry)
 o = objAry(ix);
 if ~isvalid(o)
 str1 = matlab.mixin.CustomDisplay.getDeletedHandleText;
 str2 = matlab.mixin.CustomDisplay.getClassNameForHeader(o);
 headerInv = [str1,' ',str2];
 tmpStr = [num2str(ix),'. ',headerInv];
 numStr = sprintf('%s\n',tmpStr);
 disp(numStr)

18 Customizing Object Display

18-32

 else
 numStr = [num2str(ix),'. Employee'];
 disp(numStr)
 propList = struct('Name',o.Name,...
 'Department',o.Department);
 propgrp = matlab.mixin.util.PropertyGroup(propList);
 matlab.mixin.CustomDisplay.displayPropertyGroups(o,propgrp);
 end
 end
 end

 function displayEmptyObject(obj)
 dimstr = matlab.mixin.CustomDisplay.convertDimensionsToString(obj);
 className = matlab.mixin.CustomDisplay.getClassNameForHeader(obj);
 emptyHeader = [dimstr,' ',className,' with no employee information'];
 header = sprintf('%s\n',emptyHeader);
 disp(header)
 end
 end
end

See Also

Related Examples
• “Choose a Technique for Display Customization” on page 18-15

 Customize Display of Object Arrays

18-33

Overloading the disp Function
In this section...
“Display Methods” on page 18-34
“Overloaded disp” on page 18-34
“Relationship Between disp and display” on page 18-34

Display Methods
Subclassing matlab.mixin.CustomDisplay is the best approach to customizing object display.
However, if you do not derive your class from matlab.mixin.CustomDisplay, overload the disp
function to change how MATLAB displays objects of your class.

MATLAB calls the display function whenever an object is referred to in a statement that is not
terminated by a semicolon. For example, the following statement creates the variable a. MATLAB
calls display, which displays the value of a in the command line.

a = 5

a =
 5

display then calls disp.

Overloaded disp
The built-in display function prints the name of the variable that is being displayed, if an
assignment is made, or otherwise uses ans as the variable name. Then display calls disp to handle
the actual display of the values.

If the variable that is being displayed is an object of a class that overloads disp, then MATLAB
always calls the overloaded method. MATLAB calls display with two arguments and passes the
variable name as the second argument.

Relationship Between disp and display
MATLAB invokes the built-in display function when the following occur:

• MATLAB executes a statement that returns a value and is not terminated with a semicolon.
• There is no left-side variable, then MATLAB prints ans = followed by the value.
• Code explicitly invokes the display function.

When invoking display:

• If the input argument is an existing variable, display prints the variable name and equal sign,
followed by the value.

• If the input is the result of an expression, display does not print ans =.

MATLAB invokes the built-in disp function when the following occurs:

18 Customizing Object Display

18-34

• The built-in display function calls disp.
• Code explicitly invokes disp.

For empty built-in types (numeric types, char, struct, and cell) the display function displays:

• [] — for numeric types
• "0x0 struct array with no fields." — for empty structs.
• "0x0 empty cell array" — for empty cell arrays.
• "0x0 empty char array" — for empty char arrays
• "0x0 empty string array" — for empty string arrays

disp differs from display in these ways:

• disp does not print the variable name or ans.
• disp prints nothing for built-in types (numeric types, char, struct, and cell) when the value is

empty.

See Also

Related Examples
• “Custom Display Interface” on page 18-2
• “Overload disp for DocPolynom” on page 19-13

 Overloading the disp Function

18-35

Defining Custom Data Types

19

Representing Polynomials with Classes

In this section...
“Object Requirements” on page 19-2
“DocPolynom Class Members” on page 19-2
“DocPolynom Class Synopsis” on page 19-4
“The DocPolynom Constructor” on page 19-10
“Remove Irrelevant Coefficients” on page 19-11
“Convert DocPolynom Objects to Other Types” on page 19-11
“Overload disp for DocPolynom” on page 19-13
“Display Evaluated Expression” on page 19-13
“Redefine Indexed Reference” on page 19-14
“Define Arithmetic Operators” on page 19-16

Object Requirements
This example implements a class to represent polynomials in the MATLAB language. The design
requirements are:

• Value class behavior—a polynomial object should behave like MATLAB numeric variables when
copied and passed to functions.

• Specialized display and indexing
• Objects can be scalar only. The specialization of display and indexing functionality preclude

normal array behavior.
• Arithmetic operations
• Double converter simplifying the use of polynomial object with existing MATLAB functions that

accept numeric inputs.

DocPolynom Class Members
The class definition specifies a property for data storage and defines a folder (@DocPolynom) that
contains the class definition.

The following table summarizes the properties defined for the DocPolynom class.

DocPolynom Class Properties

Name Class Default Description
coef double [] Vector of polynomial coefficients [highest

order ... lowest order]

The following table summarizes the methods for the DocPolynom class.

19 Defining Custom Data Types

19-2

DocPolynom Class Methods
Name Description
DocPolynom Class constructor
double Converts a DocPolynom object to a double (that is, returns its coefficients

in a vector)
char Creates a formatted display of the DocPolynom object as powers of x and

is used by the disp method
disp Determines how MATLAB displays DocPolynom objects on the command

line
subsref Enables you to specify a value for the independent variable as a subscript,

access the coef property with dot notation, and call methods with dot
notation.

plus Implements addition of DocPolynom objects
minus Implements subtraction of DocPolynom objects
mtimes Implements multiplication of DocPolynom objects

Using the DocPolynom Class

The following examples illustrate basic use of the DocPolynom class.

Create DocPolynom objects to represent the following polynomials. The argument to the constructor
function contains the polynomial coefficients and .

p1 = DocPolynom([1 0 -2 -5])

p1 =
 x^3 - 2*x - 5

p2 = DocPolynom([2 0 3 2 -7])

p2 =
 2*x^4 + 3*x^2 + 2*x - 7

Find the roots of the polynomial by passing the coefficients to the roots function.

roots(p1.coef)

ans =

 2.0946 + 0.0000i
 -1.0473 + 1.1359i
 -1.0473 - 1.1359i

Add the two polynomials p1 and p2.

MATLAB calls the plus method defined for the DocPolynom class when you add two DocPolynom
objects.

p1 + p2

ans =

2*x^4 + x^3 + 3*x^2 - 12

 Representing Polynomials with Classes

19-3

DocPolynom Class Synopsis
Example Code Discussion
classdef DocPolynom Value class that implements a data

type for polynomials.
 properties
 coef
 end

Vector of polynomial coefficients
[highest order ... lowest order]

 methods For general information about
methods, see “Ordinary Methods” on
page 9-6

 function obj = DocPolynom(c)
 if nargin > 0
 if isa(c,'DocPolynom')
 obj.coef = c.coef;
 else
 obj.coef = c(:).';
 end
 end
 end

Class constructor creates objects
using:

• Coefficient vector of existing
object

• Coefficient vector passed as
argument

See “The DocPolynom Constructor”
on page 19-10

 function obj = set.coef(obj,val)
 if ~isa(val,'double')
 error('Coefficients must be doubles')
 end
 ind = find(val(:).'~=0);
 if ~isempty(ind);
 obj.coef = val(ind(1):end);
 else
 obj.coef = val;
 end
 end

Set method for coef property:

• Allows coefficients only of type
double

• Removes leading zeros from the
coefficient vector.

See “Remove Irrelevant Coefficients”
on page 19-11

 function c = double(obj)
 c = obj.coef;
 end

Convert DocPolynom object to
double by returning the coefficients.

See “Convert DocPolynom Objects to
Other Types” on page 19-11

19 Defining Custom Data Types

19-4

Example Code Discussion
function str = char(obj)
 if all(obj.coef == 0)
 s = '0';
 str = s;
 return
 else
 d = length(obj.coef)-1;
 s = cell(1,d);
 ind = 1;
 for a = obj.coef;
 if a ~= 0;
 if ind ~= 1
 if a > 0
 s(ind) = {' + '};
 ind = ind + 1;
 else
 s(ind) = {' - '};
 a = -a;
 ind = ind + 1;
 end
 end
 if a ~= 1 || d == 0
 if a == -1
 s(ind) = {'-'};
 ind = ind + 1;
 else
 s(ind) = {num2str(a)};
 ind = ind + 1;
 if d > 0
 s(ind) = {'*'};
 ind = ind + 1;
 end
 end
 end
 if d >= 2
 s(ind) = {['x^' int2str(d)]};
 ind = ind + 1;
 elseif d == 1
 s(ind) = {'x'};
 ind = ind + 1;
 end
 end
 d = d - 1;
 end
 end
 str = [s{:}];
end

Convert DocPolynom object to char
that represents the expression:

y = f(x)

See “Convert DocPolynom Objects to
Other Types” on page 19-11

 function disp(obj)
 c = char(obj);
 if iscell(c)
 disp([' ' c{:}])
 else
 disp(c)
 end
 end

Overload disp function. Display
objects as output of char method.

For information about this code, see
“Overload disp for DocPolynom” on
page 19-13

 Representing Polynomials with Classes

19-5

Example Code Discussion
 function dispPoly(obj,x)
 p = char(obj);
 e = @(x)eval(p);
 y = zeros(length(x));
 disp(['y = ',p])
 for k = 1:length(x)
 y(k) = e(x(k));
 disp([' ',num2str(y(k)),...
 ' = f(x = ',...
 num2str(x(k)),')'])
 end
 end

Return evaluated expression with
formatted output.

Uses output of char method to
evaluate polynomial at specified
values of independent variable.

For information about this code, see
“Display Evaluated Expression” on
page 19-13

 function b = subsref(a,s)
 switch s(1).type
 case '()'
 ind = s.subs{:};
 b = polyval(a.coef,ind);
 case '.'
 switch s(1).subs
 case 'coef'
 b = a.coef;
 case 'disp'
 disp(a)
 otherwise
 if length(s)>1
 b = a.(s(1).subs)(s(2).subs{:});
 else
 b = a.(s.subs);
 end
 end
 otherwise
 error('Specify value for x as obj(x)')
 end
 end

Redefine indexed reference for
DocPolynom objects.

For information about this code, see
“Redefine Indexed Reference” on
page 19-14

19 Defining Custom Data Types

19-6

Example Code Discussion
 function r = plus(obj1,obj2)
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] + [zm,obj2.coef]);
 end

 function r = minus(obj1,obj2)
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] - [zm,obj2.coef]);
 end

 function r = mtimes(obj1,obj2)
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 r = DocPolynom(conv(obj1.coef,obj2.coef));
 end
 end

Define three arithmetic operators:

• Polynomial addition
• Polynomial subtraction
• Polynomial multiplication

For information about this code, see
“Define Arithmetic Operators” on
page 19-16.

For general information about
defining operators, see “Operator
Overloading” on page 17-38

 end
end

end statements for methods and for
classdef.

Expand for Class Code

classdef DocPolynom
 % Documentation example
 % A value class that implements a data type for polynomials
 % See Implementing a Class for Polynomials in the
 % MATLAB documentation for more information.

 properties
 coef
 end

 % Class methods
 methods
 function obj = DocPolynom(c)
 if nargin > 0
 if isa(c,'DocPolynom')
 obj.coef = c.coef;
 else
 obj.coef = c(:).';
 end
 end
 end % DocPolynom
 function obj = set.coef(obj,val)
 if ~isa(val,'double')
 error('Coefficients must be doubles')
 end
 % Remove leading zeros

 Representing Polynomials with Classes

19-7

 ind = find(val(:).'~=0);
 if ~isempty(ind);
 obj.coef = val(ind(1):end);
 else
 obj.coef = val;
 end
 end % set.coef

 function c = double(obj)
 c = obj.coef;
 end % double

 function str = char(obj)
 % Created a formated display of the polynom
 % as powers of x
 if all(obj.coef == 0)
 s = '0';
 str = s;
 return
 else
 d = length(obj.coef)-1;
 s = cell(1,d);
 ind = 1;
 for a = obj.coef;
 if a ~= 0;
 if ind ~= 1
 if a > 0
 s(ind) = {' + '};
 ind = ind + 1;
 else
 s(ind) = {' - '};
 a = -a; %#ok<FXSET>
 ind = ind + 1;
 end
 end
 if a ~= 1 || d == 0
 if a == -1
 s(ind) = {'-'};
 ind = ind + 1;
 else
 s(ind) = {num2str(a)};
 ind = ind + 1;
 if d > 0
 s(ind) = {'*'};
 ind = ind + 1;
 end
 end
 end
 if d >= 2
 s(ind) = {['x^' int2str(d)]};
 ind = ind + 1;
 elseif d == 1
 s(ind) = {'x'};
 ind = ind + 1;
 end
 end
 d = d - 1;
 end

19 Defining Custom Data Types

19-8

 end
 str = [s{:}];
 end % char

 function disp(obj)
 % DISP Display object in MATLAB syntax
 c = char(obj);
 if iscell(c)
 disp([' ' c{:}])
 else
 disp(c)
 end
 end % disp

 function dispPoly(obj,x)
 % evaluate obj at x
 p = char(obj);
 e = @(x)eval(p);
 y = zeros(length(x));
 disp(['y = ',p])
 for k = 1:length(x)
 y(k) = e(x(k));
 disp([' ',num2str(y(k)),...
 ' = f(x = ',...
 num2str(x(k)),')'])
 end
 end

 function b = subsref(a,s)
 % SUBSREF Implementing the following syntax:
 % obj([1 ...])
 % obj.coef
 % obj.disp
 % out = obj.method(args)
 % out = obj.method
 switch s(1).type
 case '()'
 ind = s.subs{:};
 b = polyval(a.coef,ind);
 case '.'
 switch s(1).subs
 case 'coef'
 b = a.coef;
 case 'disp'
 disp(a)
 otherwise
 if length(s)>1
 b = a.(s(1).subs)(s(2).subs{:});
 else
 b = a.(s.subs);
 end
 end
 otherwise
 error('Specify value for x as obj(x)')
 end
 end % subsref

 function r = plus(obj1,obj2)

 Representing Polynomials with Classes

19-9

 % PLUS Implement obj1 + obj2 for DocPolynom
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] + [zm,obj2.coef]);
 end % plus

 function r = minus(obj1,obj2)
 % MINUS Implement obj1 - obj2 for DocPolynoms.
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] - [zm,obj2.coef]);
 end % minus

 function r = mtimes(obj1,obj2)
 % MTIMES Implement obj1 * obj2 for DocPolynoms.
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 r = DocPolynom(conv(obj1.coef,obj2.coef));
 end % mtimes
 end % methods
end % classdef

The DocPolynom Constructor
The following function is the DocPolynom class constructor, which is in the file @DocPolynom/
DocPolynom.m:

methods
 function obj = DocPolynom(c)
 if isa(c,'DocPolynom')
 obj.coef = c.coef;
 else
 obj.coef = c(:).';
 end
 end
end

Constructor Calling Syntax

It is possible to all the DocPolynom constructor with two different arguments:

• Input argument is a DocPolynom object — If you call the constructor function with an input
argument that is already a DocPolynom object, the constructor returns a new DocPolynom object
with the same coefficients as the input argument. The isa function checks for this input.

• Input argument is a coefficient vector — If the input argument is not a DocPolynom object, the
constructor attempts to reshape the values into a vector and assign them to the coef property.

The coef property set method restricts property values to doubles. See “Remove Irrelevant
Coefficients” on page 19-11 for a description of the property set method.

An example use of the DocPolynom constructor is the statement:

19 Defining Custom Data Types

19-10

p = DocPolynom([1 0 -2 -5])
p =
 x^3 - 2*x -5

This statement creates an instance of the DocPolynom class with the specified coefficients. Note that
the display of the object shows the equivalent polynomial using MATLAB language syntax. The
DocPolynom class implements this display using the disp and char class methods.

Remove Irrelevant Coefficients
MATLAB software represents polynomials as row vectors containing coefficients ordered by
descending powers. Zeros in the coefficient vector represent terms that drop out of the polynomial.
Leading zeros, therefore, can be ignored when forming the polynomial.

Some DocPolynom class methods use the length of the coefficient vector to determine the degree of
the polynomial. It is useful, therefore, to remove leading zeros from the coefficient vector so that its
length represents the true value.

The DocPolynom class stores the coefficient vector in a property that uses a set method to remove
leading zeros from the specified coefficients before setting the property value.

methods
 function obj = set.coef(obj,val)
 if ~isa(val,'double')
 error('Coefficients must be doubles')
 end
 ind = find(val(:).'~=0);
 if ~isempty(ind);
 obj.coef = val(ind(1):end);
 else
 obj.coef = val;
 end
 end
end

Convert DocPolynom Objects to Other Types
The DocPolynom class defines two methods to convert DocPolynom objects to other classes:

• double — Converts to the double numeric type so functions can perform mathematical operations
on the coefficients.

• char — Converts to characters used to format output for display in the command window

The Double Converter

The double converter method for the DocPolynom class simply returns the coefficient vector:

methods
 function c = double(obj)
 c = obj.coef;
 end
end

For the DocPolynom object p:

p = DocPolynom([1 0 -2 -5]);

 Representing Polynomials with Classes

19-11

the statement:

c = double(p)

returns:

c=
 1 0 -2 -5

which is of class double:

class(c)
ans =
 double

The Character Converter

The char method produces a char vector that represents the polynomial displayed as powers of x.
The char vector returned is a syntactically correct MATLAB expression.

The char method uses a cell array to collect the char vector components that make up the displayed
polynomial.

The disp method uses the char method to format the DocPolynom object for display. The evalPoly
method uses char to create the MATLAB expression to evaluate.

Users of DocPolynom objects are not likely to call the char or disp methods directly, but these
methods enable the DocPolynom class to behave like other data classes in MATLAB.

Here is the char method.
methods
 function str = char(obj)
 if all(obj.coef == 0)
 s = '0';
 str = s;
 return
 else
 d = length(obj.coef)-1;
 s = cell(1,d);
 ind = 1;
 for a = obj.coef;
 if a ~= 0;
 if ind ~= 1
 if a > 0
 s(ind) = {' + '};
 ind = ind + 1;
 else
 s(ind) = {' - '};
 a = -a;
 ind = ind + 1;
 end
 end
 if a ~= 1 || d == 0
 if a == -1
 s(ind) = {'-'};
 ind = ind + 1;
 else
 s(ind) = {num2str(a)};
 ind = ind + 1;
 if d > 0
 s(ind) = {'*'};
 ind = ind + 1;
 end
 end

19 Defining Custom Data Types

19-12

 end
 if d >= 2
 s(ind) = {['x^' int2str(d)]};
 ind = ind + 1;
 elseif d == 1
 s(ind) = {'x'};
 ind = ind + 1;
 end
 end
 d = d - 1;
 end
 end
 str = [s{:}];
 end
end

Overload disp for DocPolynom
To provide a more useful display of DocPolynom objects, this class overloads disp in the class
definition.

This disp method relies on the char method to produce a text representation of the polynomial,
which it then displays on the screen.

The char method returns a cell array or the character '0' if the coefficients are all zero.

methods
 function disp(obj)
 c = char(obj);
 if iscell(c)
 disp([' ' c{:}])
 else
 disp(c)
 end
 end
end

When MATLAB Calls the disp Method

The statement:

p = DocPolynom([1 0 -2 -5])

creates a DocPolynom object. Because the statement is not terminated with a semicolon, the
resulting output is displayed on the command line:

p =
 x^3 - 2*x - 5

Display Evaluated Expression
The char converter method forms a MATLAB expression for the polynomial represented by a
DocPolynom object. The dispPoly method evaluates the expression returned by the char method
with a specified value for x.

methods
 function dispPoly(obj,x)
 p = char(obj);
 e = @(x)eval(p);

 Representing Polynomials with Classes

19-13

 y = zeros(length(x));
 disp(['y = ',p])
 for k = 1:length(x)
 y(k) = e(x(k));
 disp([' ',num2str(y(k)),...
 ' = f(x = ',...
 num2str(x(k)),')'])
 end
 end
end

Create a DocPolynom object p:

p = DocPolynom([1 0 -2 -5])

p =

x^3 - 2*x - 5

Evaluate the polynomial at x equal to three values, [3 5 9]:

dispPoly(p,[3 5 9])

y = x^3 - 2*x - 5
 16 = f(x = 3)
 110 = f(x = 5)
 706 = f(x = 9)

Redefine Indexed Reference
The DocPolynom class redefines indexed reference to support the use of objects representing
polynomials. In the DocPolynom class, a subscripted reference to an object causes an evaluation of
the polynomial with the value of the independent variable equal to the subscript.

For example, given the following polynomial:

Create a DocPolynom object p:

p = DocPolynom([1 0 -2 -5])

p =
 x^3 - 2*x - 5

The following subscripted expression evaluates the value of the polynomial at x = 3 and at x = 4,
and returns the resulting values:

p([3 4])

ans =
 16 51

Indexed Reference Design Objectives

Redefine the default subscripted reference behavior by implementing a subsref method.

19 Defining Custom Data Types

19-14

If a class defines a subsref method, MATLAB calls this method for objects of this class whenever a
subscripted reference occurs. The subsref method must define all the indexed reference behaviors,
not just a specific case that you want to change.

The DocPolynom subsref method implements the following behaviors:

• p(x = [a1...an]) — Evaluate polynomial at x = a.
• p.coef — Access coef property value
• p.disp — Display the polynomial as a MATLAB expression without assigning an output.
• obj = p.method(args) — Use dot notation to call methods arguments and return a modified

object.
• obj = p.method — Use dot notation to call methods without arguments and return a modified

object.

subsref Implementation Details

The subsref method overloads the subsref function.

For example, consider a call to the polyval function:

p = DocPolynom([1 0 -2 -5])
p =
 x^3 - 2*x - 5
polyval(p.coef,[3 5 7])
ans =
 16 110 324

The polyval function requires the:

• Polynomial coefficients
• Values of the independent variable at which to evaluate the polynomial

The polyval function returns the value of f(x) at these values. subsref calls polyval through the
statements:

case '()'
 ind = s.subs{:};
 b = polyval(a.coef,ind);

When implementing subsref to support method calling with arguments using dot notation, both the
type and subs structure fields contain multiple elements.

The subsref method implements all subscripted reference explicitly, as show in the following code
listing.

methods
 function b = subsref(a,s)
 switch s(1).type
 case '()'
 ind = s.subs{:};
 b = polyval(a.coef,ind);
 case '.'
 switch s(1).subs
 case 'coef'
 b = a.coef;

 Representing Polynomials with Classes

19-15

 case 'disp'
 disp(a)
 otherwise
 if length(s)>1
 b = a.(s(1).subs)(s(2).subs{:});
 else
 b = a.(s.subs);
 end
 end
 otherwise
 error('Specify value for x as obj(x)')
 end
 end
end

Define Arithmetic Operators
Several arithmetic operations are meaningful on polynomials. The DocPolynom class implements
these methods:

Method and Syntax Operator Implemented
plus(a,b) Addition
minus(a,b) Subtraction
mtimes(a,b) Matrix multiplication

When overloading arithmetic operators, consider the data types you must support. The plus, minus,
andmtimes methods are defined for the DocPolynom class to handle addition, subtraction, and
multiplication on DocPolynom — DocPolynom and DocPolynom — double combinations of
operands.

Define + Operator

If either p or q is a DocPolynom object, this expression:

p + q

Generates a call to a function @DocPolynom/plus, unless the other object is of higher precedence.

The following method overloads the plus (+) operator for the DocPolynom class:
methods
 function r = plus(obj1,obj2)
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] + [zm,obj2.coef]);
 end
end

Here is how the function works:

• Ensure that both input arguments are DocPolynom objects so that expressions such as

p + 1

that involve both a DocPolynom and a double, work correctly.

19 Defining Custom Data Types

19-16

• Access the two coefficient vectors and, if necessary, pad one of them with zeros to make both the
same length. The actual addition is simply the vector sum of the two coefficient vectors.

• Call the DocPolynom constructor to create a properly typed object that is the result of adding the
polynomials.

Define - Operator

Implement the minus operator (-) using the same approach as the plus (+) operator.

The minus method computes p - q. The dominant argument must be a DocPolynom object.
methods
 function r = minus(obj1,obj2)
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 k = length(obj2.coef) - length(obj1.coef);
 zp = zeros(1,k);
 zm = zeros(1,-k);
 r = DocPolynom([zp,obj1.coef] - [zm,obj2.coef]);
 end
end

Define the * Operator

Implement the mtimes method to compute the product p*q. The mtimes method implements matrix
multiplication since the multiplication of two polynomials is the convolution (conv) of their coefficient
vectors:

methods
 function r = mtimes(obj1,obj2)
 obj1 = DocPolynom(obj1);
 obj2 = DocPolynom(obj2);
 r = DocPolynom(conv(obj1.coef,obj2.coef));
 end
end

Using the Arithmetic Operators

Given the DocPolynom object:

p = DocPolynom([1 0 -2 -5]);

The following two arithmetic operations call the DocPolynom plus and mtimes methods:

q = p+1;
r = p*q;

to produce

q =
 x^3 - 2*x - 4

r =
x^6 - 4*x^4 - 9*x^3 + 4*x^2 + 18*x + 20

 Representing Polynomials with Classes

19-17

Designing Related Classes

20

A Class Hierarchy for Heterogeneous Arrays
In this section...
“Interfaces Based on Heterogeneous Arrays” on page 20-2
“Define Heterogeneous Hierarchy” on page 20-2
“Assets Class” on page 20-4
“Stocks Class” on page 20-5
“Bonds Class” on page 20-6
“Cash Class” on page 20-8
“Default Object” on page 20-9
“Operating on an Assets Array” on page 20-11

Interfaces Based on Heterogeneous Arrays
A heterogeneous class hierarchy lets you create arrays containing objects of different classes that are
related though inheritance. You can define class methods that operate on these heterogeneous arrays
as a whole.

A class design based on heterogeneous arrays provides a more convenient interface than, for
example, extracting elements from a cell array and operating on these elements individually. For
more information on the design of class hierarchies that support heterogeneous arrays, see
“Designing Heterogeneous Class Hierarchies” on page 10-20.

All heterogeneous hierarchies derive from matlab.mixin.Heterogeneous.

Define Heterogeneous Hierarchy

Note This example does not use valid terminology or techniques for managing financial assets. The
purpose of this example is only to illustrate techniques for defining heterogeneous class hierarchies.

This example implements a system of classes to represent financial assets, such as stocks, bonds, and
cash. Classes to represent categories of assets have certain common requirements. Each instance has
one of the following:

• Textual description
• Type (stock, bond, or cash)
• Means to determine the current value of the asset

Heterogeneous arrays of these objects need methods that can operate on the whole array. These
operations include:

• Creating a table of information about all assets contained in the array
• Graphing the relative contribution of each asset type contained in the array

These requirements are factored into the class that is the root of the hierarchy. The root class derives
from matlab.mixin.Heterogeneous. In the following diagram, the Assets class is the root of the

20 Designing Related Classes

20-2

hierarchy. The Stocks, Bonds, and Cash classes provide the specialization required for each type of
asset.

 A Class Hierarchy for Heterogeneous Arrays

20-3

Assets Class
The Assets class:

• Derives directly from matlab.mixin.Heterogeneous
• Is the root of the heterogeneous hierarchy
• Is abstract
• Is the class of heterogeneous arrays composed of any mixture of Stock, Bond, and Cash objects

Properties

The Assets class defines two properties:

• Description — A general description of the individual asset constrained to be of class char.
• Type — The type of asset defined as an abstract property that each subclass implements.

Methods

The Assets class defines these methods:

• pie — A sealed method that creates a pie chart showing the relative mix of asset types.
• makeReport — A sealed method that creates a report listing the assets.
• getCurrentValue — An abstract method that each concrete subclass must implement to return

the current value of the asset.
• getDefaultScalarElement — matlab.mixin.Heterogeneous class method overridden in

the Assets class to specify a default object. The Assets class is abstract so it cannot be used as
the default object. For more information, see “Default Object” on page 20-9.

Methods in Heterogeneous Hierarchies

Methods defined by the Assets class are either:

• Concrete methods (fully implemented) that subclasses do not override
• Abstract methods (signatures only) that subclasses implement

Concrete methods defined by superclasses in a heterogeneous hierarchy must specify the Sealed
attribute. Sealing these methods prevents subclasses from overriding methods implemented by the
superclass. When calling methods on a heterogeneous array, MATLAB calls the methods defined by
the class of the array (Assets in this example).

The pie and makeReport methods are examples of sealed methods that operate on heterogeneous
arrays composed of Stock, Bond, and Cash objects.

Abstract methods defined by the superclasses in a heterogeneous hierarchy must specify the
Abstract attribute. Defining an abstract method in a superclass ensures that concrete subclasses
have an implementation for that exact method name. Use these methods element-wise so that each
object calls its own method.

The getCurrentValue method is an example of an abstract method that is implemented by each
subclass to get the current value of each asset.

Each type of subclass object calculates its current value in a different way. If you add another
category of asset by adding another subclass to the hierarchy, this class must implement its own

20 Designing Related Classes

20-4

version of a getCurrentValue method. Because all subclasses implement a getCurrentValue
method, the pie and makeReport methods work with newly added subclasses.

For more information on the Sealed and Abstract method attributes, see “Method Attributes” on
page 9-4.

Assets Class Code

The Assets class and other classes in the hierarchy are contained in a package called financial.

classdef Assets < matlab.mixin.Heterogeneous
 % file: +financial/@Assets/Assets.m
 properties
 Description char = 'Assets'
 end
 properties (Abstract, SetAccess = private)
 Type
 end
 methods (Abstract)
 % Not implemented by Assets class
 value = getCurrentValue(obj)
 end
 methods (Static, Sealed, Access = protected)
 function defaultObject = getDefaultScalarElement
 defaultObject = financial.DefaultAsset;
 end
 end
 methods (Sealed)
 % Implemented in separate files
 % +financial/@Assets/pie.m
 % +financial/@Assets/makeReport.m
 pie(assetArray)
 makeReport(assetArray)
 end
end

For code listings for pie and makeReport, see “Operating on an Assets Array” on page 20-11.

Stocks Class
The Stocks class represents a specific type of financial asset. It is a concrete class that implements
the abstract members defined by the Assets class, and defines class properties and methods specific
to this type of asset.

Properties

The Stocks class defines these properties:

• NumShares — The number of shares held for this asset.
• Symbol — The ticker symbol corresponding to this stock.
• Type — Stocks class implementation of the abstract property defined by the Assets class. This

concrete property must use the same attributes as the abstract version (that is, SetAccess
private).

• SharePrice — Dependent property for the price per share. The get.SharePrice method
obtains the current share price from web services when this property is queried.

 A Class Hierarchy for Heterogeneous Arrays

20-5

Methods

The Stocks class defines these methods:

• Stocks — The constructor assigns property values and supports a default constructor called with
no input arguments.

• getCurrentValue — This method is the Stocks class implementation of the abstract method
defined by the Assets class. It returns the current value of this asset.

• get.SharePrice — The property get method for the dependent SharePrice property returns
the current share price of this stock. For information on how to access web services from
MATLAB, see the webread function.

Stocks Class Code

classdef Stocks < financial.Assets
 properties
 NumShares double = 0
 Symbol string
 end
 properties (SetAccess = private)
 Type = "Stocks"
 end
 properties (Dependent)
 SharePrice double
 end
 methods
 function sk = Stocks(description,numshares,symbol)
 if nargin == 0
 description = '';
 numshares = 0;
 symbol = '';
 end
 sk.Description = description;
 sk.NumShares = numshares;
 sk.Symbol = symbol;
 end
 function value = getCurrentValue(sk)
 value = sk.NumShares*sk.SharePrice;
 end
 function pps = get.SharePrice(sk)
 % Implement web access to obtain
 % Current price per share
 % Returning dummy value
 pps = 1;
 end
 end
end

Bonds Class
The Bonds class represents a specific type of financial asset. It is a concrete class that implements
the abstract members defined by the Assets class and defines class properties and methods specific
to this type of asset.

20 Designing Related Classes

20-6

Properties

The Bonds class defines these properties:

• FaceValue — Face value of the bond.
• Yield — Annual interest rate of the bond.
• Type — Bonds class implementation of the abstract property defined by the Assets class. This

concrete property must use the same attributes as the abstract version (that is, SetAccess
private).

• CurrentYield — Dependent property for the current yield, The get.CurrentYield property
get method obtains the value from web services.

Methods

The Bonds class defines these methods:

• Bonds — The constructor assigns property values and supports a default constructor called with
no input arguments.

• getCurrentVlaue — This method is the Bonds class implementation of the abstract method
defined by the Assets class. It returns the current value of this asset.

• get.CurrentYield — The property get method for the dependent CurrentYield property
returns the current yield on this bond. For information on how to access web serviced from
MATLAB, see the webread function.

Bonds Class Code

classdef Bonds < financial.Assets
 properties
 FaceValue double = 0
 Yield double = 0
 end
 properties (SetAccess = private)
 Type = "Bonds"
 end
 properties (Dependent)
 CurrentYield double
 end
 methods
 function b = Bonds(description,facevalue,yield)
 if nargin == 0
 description = '';
 facevalue = 0;
 yield = 0;
 end
 b.Description = description;
 b.FaceValue = facevalue;
 b.Yield = yield;
 end
 function mv = getCurrentValue(b)
 y = b.Yield;
 cy = b.CurrentYield;
 if cy <= 0 || y <= 0
 mv = b.FaceValue;
 else
 mv = b.FaceValue*y/cy;

 A Class Hierarchy for Heterogeneous Arrays

20-7

 end
 end
 function r = get.CurrentYield(b)
 % Implement web access to obtain
 % Current yield for this bond
 % Returning dummy value
 r = 0.24;
 end
 end
end

Cash Class
The Cash class represents a specific type of financial asset. It is a concrete class that implements the
abstract members defined by the Assets class and defines class properties and methods specific to
this type of asset.

Properties

The Cash class defines these properties:

• Amount — The amount of cash held in this asset.
• Type — Cash class implementation of the abstract property defined by the Assets class. This

concrete property must use the same attributes as the abstract version (that is, SetAccess
private).

Methods

The Cash class defines these methods:

• Cash — The constructor assigns property values and supports a default constructor called with no
input arguments.

• getCurrentValue — This method is the Cash class implementation of the abstract method
defined by the Assets class. It returns the current value of this asset.

• save — This method adds the specified amount of cash to the existing amount and returns a new
Cash object with the current amount.

• spend — This method deducts the specified amount from the current amount and returns a new
Cash object with the current amount.

Cash Class Code

classdef Cash < financial.Assets
 properties
 Amount double = 0
 end
 properties (SetAccess = private)
 Type = "Cash"
 end
 methods
 function c = Cash(description,amount)
 if nargin == 0
 description = '';
 amount = 0;
 end

20 Designing Related Classes

20-8

 c.Description = description;
 c.Amount = amount;
 end
 function value = getCurrentValue(c)
 value = c.Amount;
 end
 function c = save(c,amount)
 newValue = c.Amount + amount;
 c.Amount = newValue;
 end
 function c = spend(c,amount)
 newValue = c.Amount - amount;
 if newValue < 0
 c.Amount = 0;
 disp('Your balance is $0.00')
 else
 c.Amount = newValue;
 end
 end
 end
end

Default Object
The design of this class hierarchy uses an abstract root class (Assets). Therefore, the Assets class
must specify a concrete class to use as a default object by overriding getDefaultScalarElement.
In this case, options include:

• Use one of the existing concrete classes for the default object.
• Define a concrete class in the hierarchy to use for the default object.

This implementation adds the DefaultAsset class to the hierarchy as a subclass of the Assets
class. MATLAB creates objects of this class when:

• Creating arrays using indexed assignment with gaps in index numbers
• Loading heterogeneous arrays from MAT-files when MATLAB cannot find the class of an array

element.

This diagram shows the addition of the DefaultAsset class:

 A Class Hierarchy for Heterogeneous Arrays

20-9

DefaultAsset Class Code
classdef DefaultAsset < financial.Assets
 % file: +financial/@DefaultAsset/DefaultAsset.m
 properties (SetAccess = private)
 Type = "DefaultAsset"

20 Designing Related Classes

20-10

 end
 methods
 function obj = DefaultAsset
 obj.Description = 'Place holder';
 end
 function value = getCurrentValue(~)
 value = 0;
 end
 end
end

Operating on an Assets Array
The Assets class defines these methods to operate on heterogeneous arrays of asset objects:

• pie — Creates a pie chart showing the mix of asset types in the array.
• makeReport — Uses the MATLAB table object to display a table of asset information.

To operate on a heterogeneous array, a method must be defined for the class of the heterogeneous
array and must be sealed. In this case, the class of heterogeneous arrays is always the Assets class.
MATLAB does not use the class of the individual elements of the heterogeneous array when
dispatching to methods.

makeReport Method Code

The Assets class makeReport method builds a table using the common properties and
getCurrentValue method for each object in the array.

function makeReport(obj)
 numMembers = length(obj);
 descs = cell(1,numMembers);
 types(numMembers) = "";
 values(numMembers) = 0;
 for k = 1:numMembers
 descs{k} = obj(k).Description;
 types(k) = obj(k).Type;
 values(k) = obj(k).getCurrentValue;
 end
 t = table;
 t.Description = descs';
 t.Type = types';
 t.Value = values';
 disp(t)
end

The Assets class pie method calls the getCurrentValue method element-wise on objects in the
array to obtain the data for the pie chart.

pie Method Code

function pie(assetArray)
 stockAmt = 0; bondAmt = 0; cashAmt = 0;
 for k=1:length(assetArray)
 if isa(assetArray(k),'financial.Stocks')
 stockAmt = stockAmt + assetArray(k).getCurrentValue;
 elseif isa(assetArray(k),'financial.Bonds')

 A Class Hierarchy for Heterogeneous Arrays

20-11

 bondAmt = bondAmt + assetArray(k).getCurrentValue;
 elseif isa(assetArray(k),'financial.Cash')
 cashAmt = cashAmt + assetArray(k).getCurrentValue;
 end
 end
 k = 1;
 if stockAmt ~= 0
 label(k) = {'Stocks'};
 pieVector(k) = stockAmt;
 k = k +1;
 end
 if bondAmt ~= 0
 label(k) = {'Bonds'};
 pieVector(k) = bondAmt;
 k = k +1;
 end
 if cashAmt ~= 0
 label(k) = {'Cash'};
 pieVector(k) = cashAmt;
 end
 pie(pieVector,label)
 tv = stockAmt + bondAmt + cashAmt;
 stg = {['Total Value of Assets: $',num2str(tv,'%0.2f')]};
 title(stg,'FontSize',10)
end

Folders and Files

Asset class:

+financial/@Assets/Assets.m
+financial/@Assets/makeReport.m
+financial/@Assets/pie.m

Stocks class:

+financial/@Stocks/Stocks.m

Bonds class:

+financial/@Bonds/Bonds.m

Cash class:

+financial/@Cash/Cash.m

DefaultAsset class:

+financial/@DefaultAsset/DefaultAsset.m

Create an Assets Array

These statements create a heterogeneous array by concatenating the Stocks, Bonds, and Cash
objects. Calling the makeReport and pie methods creates the output shown.

s = financial.Stocks('Acme Motor Company',100,string('A'));
b = financial.Bonds('3 Month T',700,0.3);
c(1) = financial.Cash('Bank Account',500);
c(2) = financial.Cash('Gold',500);

20 Designing Related Classes

20-12

assetArray = [s,b,c];
makeReport(assetArray)
pie(assetArray)

 Description Type Value
 ______________________ _______ ______

 {'Acme Motor Company'} "Stock" 1232.5
 {'3 Month T' } "Bonds" 875
 {'Bank Account' } "Cash" 500
 {'Gold' } "Cash" 500

See Also

Related Examples
• “Designing Heterogeneous Class Hierarchies” on page 10-20
• “Validate Property Values” on page 8-19
• “Set and Get Methods for Dependent Properties” on page 8-50

 A Class Hierarchy for Heterogeneous Arrays

20-13

	Using Object-Oriented Design in MATLAB
	Why Use Object-Oriented Design
	Approaches to Writing MATLAB Programs
	When Should You Create Object-Oriented Programs

	Handle Object Behavior
	What Is a Handle?
	Copies of Handles
	Handle Objects Modified in Functions
	Determine If an Object Is a Handle
	Deleted Handle Objects

	Basic Example
	Create a Simple Class
	Design Class
	Create Object
	Access Properties
	Call Methods
	Add Constructor
	Vectorize Methods
	Overload Functions
	BasicClass Code Listing

	MATLAB Classes Overview
	Role of Classes in MATLAB
	Classes
	Some Basic Relationships

	Developing Classes — Typical Workflow
	Formulating a Class
	Specifying Class Components
	BankAccount Class Implementation
	Formulating the AccountManager Class
	Implementing the AccountManager Class
	AccountManager Class Synopsis
	Using BankAccount Objects

	Representing Structured Data with Classes
	Objects as Data Structures
	Structure of the Data
	The TensileData Class
	Create an Instance and Assign Data
	Restrict Properties to Specific Values
	Simplifying the Interface with a Constructor
	Calculate Data on Demand
	Displaying TensileData Objects
	Method to Plot Stress vs. Strain
	TensileData Class Synopsis

	Implementing Linked Lists with Classes
	Class Definition Code
	dlnode Class Design
	Create Doubly Linked List
	Why a Handle Class for Linked Lists?
	dlnode Class Synopsis
	Specialize the dlnode Class

	Static Data
	Static Data
	What Is Static Data
	Static Variable
	Static Data Object
	Constant Data

	Class Definition—Syntax Reference
	Class Files and Folders
	Class Definition Files
	Options for Class Folders
	Options for Class Files
	Group Classes with Package Folders

	Class Components
	Class Building Blocks
	Class Definition Block
	Properties Block
	Methods Block
	Events Block
	A Complete Class
	Enumeration Classes
	Related Information

	Classdef Block
	How to Specify Attributes and Superclasses
	Class Attribute Syntax
	Superclass Syntax
	Local Functions in Class File

	Class Properties
	The Properties Block
	Access to Property Values

	Define Class Methods and Functions
	The Methods Block
	Method Calling Syntax
	Private Methods
	More Detailed Information on Methods
	Class-Related Functions
	How to Overload Functions and Operators
	Rules for Defining Methods in Separate Files

	Events and Listeners
	Define and Trigger Events
	Listen for Events

	Attribute Specification
	Attribute Syntax
	Attribute Descriptions
	Attribute Values
	Simpler Syntax for true/false Attributes

	Call Superclass Methods on Subclass Objects
	Superclass Relation to Subclass
	How to Call Superclass Methods
	How to Call Superclass Constructor

	Representative Class Code
	Class Calculates Area
	Description of Class Definition

	MATLAB Code Analyzer Warnings
	Syntax Warnings and Property Names
	Variable/Property Name Conflict Warnings
	Exception to Variable/Property Name Rule

	Objects In Conditional Statements
	Enable Use of Objects in Conditional Statements
	How MATLAB Evaluates Switch Statements
	How to Define the eq Method
	Enumerations in Switch Statements

	Operations on Objects
	Object Operations
	Help on Objects
	Functions to Test Objects
	Functions to Query Class Components

	Use of Editor and Debugger with Classes
	Write Class Code in the Editor
	How to Refer to Class Files
	How to Debug Class Files

	Automatic Updates for Modified Classes
	When MATLAB Loads Class Definitions
	Consequences of Automatic Update
	What Happens When Class Definitions Change
	Ensure Defining Folder Remains in Scope
	Actions That Do Not Trigger Updates
	Multiple Updates to Class Definitions
	Object Validity with Deleted Class File
	When Updates Are Not Possible
	Potential Consequences of Class Updates
	Interactions with the Debugger
	Updates to Class Attributes
	Updates to Property Definitions
	Updates to Method Definitions
	Updates to Event Definitions

	Compatibility with Previous Versions
	New Class-Definition Syntax Introduced with MATLAB Software Version 7.6
	Changes to Class Constructors
	New Features Introduced with Version 7.6
	Examples of Old and New

	Comparison of MATLAB and Other OO Languages
	Some Differences from C++ and Java Code
	Object Modification
	Static Properties
	Common Object-Oriented Techniques

	Defining and Organizing Classes
	User-Defined Classes
	What Is a Class Definition
	Attributes for Class Members
	Kinds of Classes
	Constructing Objects
	Class Hierarchies
	classdef Syntax
	Class Code

	Class Attributes
	Specifying Class Attributes
	Specifying Attributes
	Class-Specific Attributes

	Evaluation of Expressions in Class Definitions
	Why Use Expressions
	Where to Use Expressions in Class Definitions
	How MATLAB Evaluates Expressions
	When MATLAB Evaluates Expressions
	Expression Evaluation in Handle and Value Classes

	Folders Containing Class Definitions
	Class Definitions on the Path
	Class and Path Folders
	Using Path Folders
	Using Class Folders
	Functions in Private Folders Within Class Folders
	Class Precedence and MATLAB Path
	Changing Path to Update Class Definition

	Class Precedence
	Use of Class Precedence
	Why Mark Classes as Inferior
	InferiorClasses Attribute

	Packages Create Namespaces
	Package Folders
	Internal Packages
	Referencing Package Members Within Packages
	Referencing Package Members from Outside the Package
	Packages and the MATLAB Path

	Import Classes
	Syntax for Importing Classes
	Import Static Methods
	Import Package Functions
	Package Function and Class Method Name Conflict
	Clearing Import List

	Value or Handle Class — Which to Use
	Comparison of Handle and Value Classes
	Basic Difference
	Behavior of MATLAB Built-In Classes
	User-Defined Value Classes
	User-Defined Handle Classes
	Determining Equality of Objects
	Functionality Supported by Handle Classes

	Which Kind of Class to Use
	Examples of Value and Handle Classes
	When to Use Value Classes
	When to Use Handle Classes

	The Handle Superclass
	Building on the Handle Class
	Handle Class Methods
	Event and Listener Methods
	Relational Methods
	Test Handle Validity
	When MATLAB Destroys Objects

	Handle Class Destructor
	Basic Knowledge
	Syntax of Handle Class Destructor Method
	Handle Object During delete Method Execution
	Support Destruction of Partially Constructed Objects
	When to Define a Destructor Method
	Destructors in Class Hierarchies
	Object Lifecycle
	Restrict Access to Object Delete Method
	Nondestructor Delete Methods
	External References to MATLAB Objects

	Find Handle Objects and Properties
	Find Handle Objects
	Find Handle Object Properties

	Implement Set/Get Interface for Properties
	The Standard Set/Get Interface
	Subclass Syntax
	Get Method Syntax
	Set Method Syntax
	Class Derived from matlab.mixin.SetGet
	Set Priority for Matching Partial Property Names

	Implement Copy for Handle Classes
	Copy Method for Handle Classes
	Customize Copy Operation
	Copy Properties That Contain Handles
	Exclude Properties from Copy

	Properties — Storing Class Data
	Ways to Use Properties
	What Are Properties
	Types of Properties

	Property Syntax
	Property Definition Block
	Access Property Values
	Inheritance of Properties
	Specify Property Attributes

	Property Attributes
	Purpose of Property Attributes
	Specifying Property Attributes
	Table of Property Attributes

	Property Definition
	What You Can Define
	Initialize Property Values
	Property Default Values
	Initializing Properties to Handle Objects
	Assign Property Values in Constructor
	Property Attributes
	Methods to Set and Get Property Values
	Reference Object Properties Using Variables

	Mutable and Immutable Properties
	Set Access to Property Values
	Define Immutable Property

	Validate Property Values
	Property Validation in Class Definitions
	Sample Class Using Property Validation
	Order of Validation
	Abstract Property Validation
	Objects Not Updated When Changing Validation
	Validation During Load Operation

	Property Class and Size Validation
	Property Class and Size
	Property Size Validation
	Property Class Validation
	Default Values Per Size and Class

	Property Validation Functions
	MATLAB Validation Functions
	Validate Property Using Functions
	Define Validation Functions
	Add Support for Validation Functions

	Metadata Interface to Property Validation
	Property Access Methods
	Properties Provide Access to Class Data
	Property Set and Get Methods
	Set and Get Method Execution and Property Events
	Access Methods and Properties Containing Arrays
	Access Methods and Arrays of Objects
	Modify Property Values with Access Methods

	Property Set Methods
	Overview of Property Access Methods
	Property Set Method Syntax
	Validate Property Set Value
	When Set Method Is Called

	Property Get Methods
	Overview of Property Access Methods
	Property Get Method Syntax
	Calculate Value for Dependent Property
	Errors Not Returned from Get Method
	Get Method Behavior

	Set and Get Methods for Dependent Properties
	Calculate Dependent Property Value
	When to Use Set Methods with Dependent Properties
	Private Set Access with Dependent Properties

	Properties Containing Objects
	Assigning Objects as Default Property Values
	Assigning to Read-Only Properties Containing Objects
	Assignment Behavior

	Dynamic Properties — Adding Properties to an Instance
	What Are Dynamic Properties
	Define Dynamic Properties
	List Object Dynamic Properties

	Set and Get Methods for Dynamic Properties
	Create Access Methods for Dynamic Properties
	Shared Set and Get Methods

	Dynamic Property Events
	Dynamic Properties and Ordinary Property Events
	Dynamic-Property Events
	Listen for a Specific Property Name
	PropertyAdded Event Callback Execution
	PropertyRemoved Event Callback Execution
	How to Find meta.DynamicProperty Objects

	Dynamic Properties and ConstructOnLoad

	Methods — Defining Class Operations
	Methods in Class Design
	Class Methods
	Examples and Syntax
	Kinds of Methods
	Method Naming

	Method Attributes
	Purpose of Method Attributes
	Specifying Method Attributes
	Table of Method Attributes

	Ordinary Methods
	Ordinary Methods Operate on Objects
	Methods Inside classdef Block
	Method Files

	Methods in Separate Files
	Class Folders
	Define Method in Function File
	Specify Method Attributes in classdef File
	Methods You Must Define in the classdef File

	Method Invocation
	Determining Which Method Is Invoked
	Referencing Names with Expressions—Dynamic Reference
	Index into Result of Method Call
	Controlling Access to Methods
	Invoking Superclass Methods in Subclass Methods
	Invoking Built-In Functions

	Class Constructor Methods
	Purpose of Class Constructor Methods
	Basic Structure of Constructor Methods
	Guidelines for Constructors
	Default Constructor
	When to Define Constructors
	Related Information
	Initializing Objects in Constructor
	No Input Argument Constructor Requirement
	Subclass Constructors
	Implicit Call to Inherited Constructor
	Errors During Class Construction
	Output Object Suppressed

	Static Methods
	What Are Static Methods
	Why Define Static Methods
	Defining Static Methods
	Calling Static Methods
	Inheriting Static Methods

	Overload Functions in Class Definitions
	Why Overload Functions
	Implementing Overloaded MATLAB Functions
	Rules for Naming to Avoid Conflicts

	Class Support for Array-Creation Functions
	Extend Array-Creation Functions for Your Class
	Which Syntax to Use
	Implement Support for Array-Creation Functions

	Object Precedence in Method Invocation
	Object Precedence
	Defining Precedence

	Dominant Argument in Overloaded Graphics Functions
	Graphics Object Precedence
	Dominant Argument
	Defining Class Precedence
	Calls to Inferior-Class Methods

	Class Methods for Graphics Callbacks
	Referencing the Method
	Syntax for Method Callbacks
	Use a Class Method for a Slider Callback

	Object Arrays
	Construct Object Arrays
	Build Arrays in the Constructor
	Referencing Property Values in Object Arrays

	Initialize Object Arrays
	Calls to Constructor
	Initial Value of Object Properties

	Empty Arrays
	Creating Empty Arrays
	Assigning Values to an Empty Array

	Initialize Arrays of Handle Objects
	Related Information

	Accessing Dynamic Properties in Arrays
	Implicit Class Conversion
	Class Conversion Mechanism
	Concatenation
	Subscripted Assignment

	Concatenating Objects of Different Classes
	Basic Knowledge
	MATLAB Concatenation Rules
	Concatenating Objects
	Calling the Dominant-Class Constructor
	Converter Methods

	Designing Heterogeneous Class Hierarchies
	Creating Classes That Support Heterogeneous Arrays
	MATLAB Arrays
	Heterogeneous Hierarchies
	Heterogeneous Arrays
	Heterogeneous Array Concepts
	Nature of Heterogeneous Arrays
	Unsupported Hierarchies
	Default Object
	Conversion During Assignment and Concatenation
	Empty Arrays of Heterogeneous Abstract Classes

	Heterogeneous Array Constructors
	Building Arrays in Superclass Constructors
	When Errors Can Occur
	Initialize Array in Superclass Constructor
	Sample Implementation
	Potential Error

	Events — Sending and Responding to Messages
	Overview Events and Listeners
	Why Use Events and Listeners
	Events and Listeners Basics
	Event Syntax
	Create Listener

	Define Custom Event Data
	Class Event Data Requirements
	Define and Trigger Event
	Define Event Data
	Create Listener for Overflow Event

	Observe Changes to Property Values
	Implement Property Set Listener
	PushButton Class Design

	Event and Listener Concepts
	The Event Model
	Limitations
	Default Event Data
	Events Only in Handle Classes
	Property-Set and Query Events
	Listeners

	Event Attributes
	Specify Event Attributes

	Events and Listeners Syntax
	Components to Implement
	Name Events
	Trigger Events
	Listen to Events
	Define Event-Specific Data

	Listener Lifecycle
	Control Listener Lifecycle
	Temporarily Deactivate Listeners
	Permanently Delete Listeners

	Listener Callback Syntax
	Specifying Listener Callbacks
	Input Arguments for Callback Function
	Additional Arguments for Callback Function

	Callback Execution
	When Callbacks Execute
	Listener Order of Execution
	Callbacks That Call notify
	Manage Callback Errors
	Invoke Functions from Function Handles

	Determine If Event Has Listeners
	Do Listeners Exist for This Event?
	Why Test for Listeners
	Coding Patterns
	Listeners in Heterogeneous Arrays

	Listen for Changes to Property Values
	Create Property Listeners
	Property Event and Listener Classes

	Assignment When Property Value Is Unchanged
	AbortSet When Value Does Not Change
	How MATLAB Compares Values
	When to Use AbortSet
	Implement AbortSet
	Using AbortSet with Property Validation

	Techniques for Using Events and Listeners
	Example Overview
	Techniques Demonstrated in This Example
	Summary of fcneval Class
	Summary of fcnview Class
	Methods Inherited from Handle Class
	Using the fcneval and fcnview Classes
	Implement UpdateGraph Event and Listener
	The PostSet Event Listener
	Enable and Disable Listeners
	@fcneval/fcneval.m Class Code
	@fcnview/fcnview.m Class Code

	How to Build on Other Classes
	Hierarchies of Classes — Concepts
	Classification
	Develop the Abstraction
	Design of Class Hierarchies
	Super and Subclass Behavior
	Implementation and Interface Inheritance

	Subclass Syntax
	Subclass Definition Syntax
	Subclass double

	Design Subclass Constructors
	Call Superclass Constructor Explicitly
	Call Superclass Constructor from Subclass
	Subclass Constructor Implementation
	Call Only Direct Superclass from Constructor

	Control Sequence of Constructor Calls
	Modify Inherited Methods
	When to Modify Superclass Methods
	Extend Superclass Methods
	Reimplement Superclass Process in Subclass
	Redefine Superclass Methods
	Implement Abstract Method in Subclass

	Modify Inherited Properties
	Superclass Property Modification
	Private Local Property Takes Precedence in Method

	Subclassing Multiple Classes
	Specify Multiple Superclasses
	Class Member Compatibility
	Multiple Inheritance

	Specify Allowed Subclasses
	Basic Knowledge
	Why Control Allowed Subclasses
	Specify Allowed Subclasses
	Define Sealed Hierarchy of Classes

	Class Members Access
	Basic Knowledge
	Applications for Access Control Lists
	Specify Access to Class Members
	Properties with Access Lists
	Methods with Access Lists
	Abstract Methods with Access Lists

	Property Access List
	Method Access List
	Event Access List
	Handle Compatible Classes
	Basic Knowledge
	When to Use Handle Compatible Classes
	Handle Compatibility Rules
	Identify Handle Objects

	How to Define Handle-Compatible Classes
	What Is Handle Compatibility?
	Subclassing Handle-Compatible Classes

	Methods for Handle Compatible Classes
	Methods for Handle and Value Objects
	Modify Value Objects in Methods

	Handle-Compatible Classes and Heterogeneous Arrays
	Heterogeneous Arrays
	Methods Must Be Sealed
	Template Technique

	Subclasses of MATLAB Built-In Types
	MATLAB Built-In Types
	Built-In Types You Can Subclass
	Why Subclass Built-In Types
	Which Functions Work with Subclasses of Built-In Types
	Behavior of Built-In Functions with Subclass Objects
	Built-In Subclasses That Define Properties

	Behavior of Inherited Built-In Methods
	Subclass double
	Built-In Data Value Methods
	Built-In Data Organization Methods
	Built-In Indexing Methods
	Built-In Concatenation Methods

	Subclasses of Built-In Types Without Properties
	Specialized Numeric Types
	A Class to Manage uint8 Data
	Using the DocUint8 Class

	Subclasses of Built-In Types with Properties
	Specialized Numeric Types with Additional Data Storage
	Subclasses with Properties
	Property Added
	Methods Implemented
	Class Definition Code
	Using ExtendDouble
	Concatenation of ExtendDouble Objects

	Use of size and numel with Classes
	size and numel
	Built-In Class Behavior
	Subclasses Inherit Behavior
	Classes Not Derived from Built-In Classes
	Change the Behavior of size or numel
	Overload numArgumentsFromSubscript Instead of numel

	Representing Hardware with Classes
	Objective
	Why Derive from int32
	Implementation
	Construct MuxCard Object
	Call Methods of int32

	Determine Array Class
	Query the Class Name
	Test for Array Class
	Test for Specific Types
	Test for Most Derived Class

	Abstract Classes and Class Members
	Abstract Classes
	Declare Classes as Abstract
	Determine If a Class Is Abstract
	Find Inherited Abstract Properties and Methods

	Define an Interface Superclass
	Interfaces
	Interface Class Implementing Graphs

	Saving and Loading Objects
	Save and Load Process for Objects
	Save and Load Objects
	What Information Is Saved?
	How Is the Property Data Loaded?
	Errors During Load

	Reduce MAT-File Size for Saved Objects
	Default Values
	Dependent Properties
	Transient Properties
	Avoid Saving Unwanted Variables

	Save Object Data to Recreate Graphics Objects
	What to Save
	Regenerate When Loading
	Change to a Stairstep Chart

	Improve Version Compatibility with Default Values
	Version Compatibility
	Using a Default Property Value

	Avoid Property Initialization Order Dependency
	Control Property Loading
	Dependent Property with Private Storage
	Property Value Computed from Other Properties

	Modify the Save and Load Process
	When to Modify the Save and Load Process
	How to Modify the Save and Load Process
	Implementing saveobj and loadobj Methods
	Additional Considerations

	Basic saveobj and loadobj Pattern
	Using saveobj and loadobj
	Handle Load Problems

	Maintain Class Compatibility
	Rename Property
	Update Property When Loading
	Maintaining Compatible Versions of a Class
	Version 2 of the PhoneBookEntry Class

	Initialize Objects When Loading
	Calling Constructor When Loading Objects
	Initializing Objects in the loadobj Method

	Save and Load Objects from Class Hierarchies
	Saving and Loading Subclass Objects
	Reconstruct the Subclass Object from a Saved struct

	Restore Listeners
	Create Listener with loadobj
	Use Transient Property to Load Listener
	Using the BankAccount and AccountManager Classes

	Enumerations
	Named Values
	Kinds of Predefined Names
	Techniques for Defining Enumerations

	Define Enumeration Classes
	Enumeration Class
	Construct an Enumeration Member
	Convert to Superclass Value
	Define Methods in Enumeration Classes
	Define Properties in Enumeration Classes
	Enumeration Class Constructor Calling Sequence

	Refer to Enumerations
	Instances of Enumeration Classes
	Conversion of Characters to Enumerations
	Enumeration Arrays

	Enumerations for Property Values
	Syntax for Property/Enumeration Definition
	Example of Restricted Property

	Operations on Enumerations
	Operations Supported by Enumerations
	Example Enumeration Class
	Default Methods
	Convert Enumeration Members to Strings or char Vectors
	Convert Enumeration Arrays to String Arrays or Cell Arrays of char Vectors
	Relational Operations with Enumerations, Strings, and char Vectors
	Enumerations in switch Statements
	Enumeration Set Membership
	Enumeration Text Comparison Methods
	Get Information About Enumerations
	Testing for an Enumeration

	Hide Enumeration Members
	Hide Pure Enumerations
	Find Hidden Enumeration Members

	Enumeration Class Restrictions
	Enumerations Derived from Built-In Classes
	Subclassing Built-In Classes
	Derive Enumeration Class from Numeric Class
	How to Alias Enumeration Names
	Superclass Constructor Returns Underlying Value
	Default Converter

	Mutable Handle vs. Immutable Value Enumeration Members
	Select Handle- or Value-Based Enumerations
	Value-Based Enumeration Classes
	Handle-Based Enumeration Classes
	Represent State with Enumerations

	Enumerations That Encapsulate Data
	Enumeration Classes with Properties
	Store Data in Properties

	Save and Load Enumerations
	Basic Knowledge
	Built-In and Value-Based Enumeration Classes
	Simple and Handle-Based Enumeration Classes
	Causes: Load as struct Instead of Object

	Constant Properties
	Define Class Properties with Constant Values
	Defining Named Constants
	Constant Property Assigned a Handle Object
	Constant Property Assigned Any Object
	Constant Properties — No Support for Get Events

	Information from Class Metadata
	Class Metadata
	What Is Class Metadata?
	The meta Package
	Metaclass Objects
	Metaclass Object Lifecycle

	Class Introspection with Metadata
	Using Class Metadata
	Inspect the EmployeeData Class
	Metaclass EnumeratedValues Property

	Find Objects with Specific Values
	Find Handle Objects
	Find by Attribute Settings

	Get Information About Properties
	The meta.property Object
	How to Find Properties with Specific Attributes

	Find Default Values in Property Metadata
	Default Values
	meta.property Data

	Specialize Object Behavior
	Methods That Modify Default Behavior
	How to Customize Class Behavior
	Which Methods Control Which Behaviors
	Overload Functions and Override Methods

	Number of Arguments for subsref and subsasgn
	How MATLAB Determines Number of Arguments
	Syntax for subsref, and subsasgn Methods

	Modify nargout and nargin for Indexing Methods
	When to Modify Number of Arguments
	How to Modify Number of Arguments

	Concatenation Methods
	Default Concatenation
	Methods to Overload

	Object Converters
	Why Implement Converters
	Converters for Package Classes
	Converters and Subscripted Assignment
	Converter for Heterogeneous Arrays

	Object Array Indexing
	Default Indexed Reference and Assignment
	What You Can Modify
	When to Modify Indexing Behavior
	Built-In subsref and subsasgn Called in Methods
	Avoid Overriding Access Attributes

	Code Patterns for subsref and subsasgn Methods
	Customize Indexed Reference and Assignment
	Syntax for subsref and subsasgn Methods
	Indexing Structure Describes Indexing Expressions
	Values of the Indexing Structure
	Typical Patterns for Indexing Methods

	Indexed Reference
	How Indexed Reference Works
	Compound Indexed References

	Indexed Assignment
	How Indexed Assignment Works
	Indexed Assignment to Objects
	Compound Indexed Assignments

	end as Object Index
	Define end Indexing for an Object
	The end Method

	Objects in Index Expressions
	Objects Indexes
	Ways to Implement Objects as Indices
	subsindex Implementation

	Class with Modified Indexing
	How to Modify Class Indexing
	Class Description
	Specialize Subscripted Reference — subsref
	Specialize Subscripted Assignment — subsasgn
	Implement Addition for Object Data — double and plus
	MyDataClass.m

	Operator Overloading
	Why Overload Operators
	How to Define Operators
	Sample Implementation — Addable Objects
	MATLAB Operators and Associated Functions

	Customizing Object Display
	Custom Display Interface
	Command Window Display
	Default Object Display
	CustomDisplay Class
	Methods for Customizing Object Display

	How CustomDisplay Works
	Steps to Display an Object
	Methods Called for a Given Object State

	Role of size Function in Custom Displays
	How size Is Used
	Precautions When Overloading size

	Customize Display for Heterogeneous Arrays
	Class with Default Object Display
	The EmployeeInfo Class
	Default Display — Scalar
	Default Display — Nonscalar
	Default Display — Empty Object Array
	Default Display — Handle to Deleted Object
	Default Display — Detailed Display

	Choose a Technique for Display Customization
	Ways to Implement a Custom Display
	Sample Approaches Using the Interface

	Customize Property Display
	Objective
	Change the Property Order
	Change the Values Displayed for Properties

	Customize Header, Property List, and Footer
	Objective
	Design of Custom Display
	getHeader Method Override
	getPropertyGroups Override
	getFooter Override

	Customize Display of Scalar Objects
	Objective
	Design Of Custom Display
	displayScalarObject Method Override
	getPropertyGroups Override

	Customize Display of Object Arrays
	Objective
	Design of Custom Display
	The displayNonScalarObject Override
	The displayEmptyObject Override

	Overloading the disp Function
	Display Methods
	Overloaded disp
	Relationship Between disp and display

	Defining Custom Data Types
	Representing Polynomials with Classes
	Object Requirements
	DocPolynom Class Members
	DocPolynom Class Synopsis
	The DocPolynom Constructor
	Remove Irrelevant Coefficients
	Convert DocPolynom Objects to Other Types
	Overload disp for DocPolynom
	Display Evaluated Expression
	Redefine Indexed Reference
	Define Arithmetic Operators

	Designing Related Classes
	A Class Hierarchy for Heterogeneous Arrays
	Interfaces Based on Heterogeneous Arrays
	Define Heterogeneous Hierarchy
	Assets Class
	Stocks Class
	Bonds Class
	Cash Class
	Default Object
	Operating on an Assets Array

