MATLAB®
Object-Oriented Programming

7

MATLAB

R2021a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Object-Oriented Programming
© COPYRIGHT 1984-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

March 2008 Online only New for MATLAB 7.6 (Release 2008a)
October 2008 Online only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
March 2016 Online only Revised for Version 9.0 (Release 2016a)
September 2016 Online only Revised for Version 9.1 (Release 2016b)
March 2017 Online only Revised for Version 9.2 (Release 2017a)
September 2017 Online only Revised for Version 9.3 (Release 2017b)
March 2018 Online only Revised for MATLAB 9.4 (Release 2018a)
September 2018 Online only Revised for Version 9.5 (Release 2018b)
March 2019 Online only Revised for MATLAB 9.6 (Release 2019a)
September 2019 Online only Revised for MATLAB 9.7 (Release 2019b)
March 2020 Online only Revised for MATLAB 9.8 (Release 2020a)
September 2020 Online only Revised for MATLAB 9.9 (Release 2020b)

March 2021 Online only Revised for MATLAB 9.10 (Release 2021a)

Contents

Using Object-Oriented Design in MATLAB

1]

Why Use Object-Oriented Design 1-2
Approaches to Writing MATLAB Programsc.uuuuunnnn. 1-2
When Should You Create Object-Oriented Programs 1-2

Handle Object Behavior 1-7
WhatIsaHandle? 1-7
Copiesof Handles 1-7
Handle Objects Modified in Functions 1-8
Determine If an ObjectIsaHandle 1-9
Deleted Handle Objects i 1-9

Basic Example
2

CreateaSimpleClass 2-2
Design Class . v v oot 2-2
Create Object oo 2-3
Access Properties 2-3
Call Methods oot e e e 2-3
Add Constructor vt 2-4
Vectorize Methods i 2-4
Overload Functions i 2-5
BasicClass Code Listingc i 2-6

MATLAB Classes Overview
3

Role of Classes in MATLAB i 3-2
ClaSSES v v e et e 3-2
Some Basic Relationships 3-3

Developing Classes — Typical Workflow 3-6
Formulating a Classttt 3-6
Specifying Class Componentscoiiiiiiinneennn.. 3-7
BankAccount Class Implementation 3-7
Formulating the AccountManager Class 3-10
Implementing the AccountManager Class 3-11
AccountManager Class Synopsisc.covi i 3-11

Using BankAccount Objects 3-12

Representing Structured Data with Classes 3-14
Objects as Data Structures 3-14
Structure of the Datao 3-14
The TensileData Classot 3-15
Create an Instance and AssignData 3-15
Restrict Properties to SpecificValues 3-16
Simplifying the Interface with a Constructor 3-16
Calculate Dataon Demandt 3-17
Displaying TensileData Objects 3-18
Method to Plot Stressvs. Strain, 3-18
TensileData Class SYnopsis oo iiii e e 3-19

Implementing Linked Lists with Classes 3-23
Class Definition Code i 3-23
dlnode Class DeSign oot e e 3-23
Create Doubly Linked List 3-24
Why a Handle Class for Linked Lists? 3-25
dlnode Class SYNopSiS . .o vttt e 3-25
Specialize the dlnode Class 3-34

4

StaticData 4-2
WhatIs StaticData 4-2
Static Variable e 4-2
Static Data Object o i 4-3
Constant Data i e 4-4

S|

Class Filesand Folders 5-2
Class Definition Files e 5-2
Options for Class Folders 5-2
Optionsfor Class Files i e 5-2
Group Classes with Package Folders 5-3

Class Components 5-4
Class Building Blocks e 5-4
Class Definition Block i 5-4
Properties Block 5-5
Methods Block e 5-5
Events BIoCK e 5-5
AComplete Classt e 5-6
Enumeration Classes e 5-6
Related Information 5-7

vi Contents

Classdef Block
How to Specify Attributes and Superclasses
Class Attribute Syntax
Superclass Syntax
Local FunctionsinClass File

Class Properties i
The Properties Block
Access to Property Values e

Define Class Methods and Functions
The Methods Block e
Method Calling Syntax i
Private Methods e
More Detailed Information on Methods
Class-Related Functions
How to Overload Functions and Operators
Rules for Defining Methods in Separate Files

Events and Listeners
Define and Trigger Events i,
Listen for EVents oot

Attribute Specification
Attribute Syntax
Attribute Descriptions
Attribute Values
Simpler Syntax for true/false Attributes

Call Superclass Methods on Subclass Objects
Superclass Relationto Subclass
How to Call Superclass Methods
How to Call Superclass Constructor

Representative ClassCode0u....
Class Calculates ATeaottt et
Description of Class Definition

MATILIAB Code Analyzer Warnings
Syntax Warnings and Property Namescovuinnnnn.
Variable/Property Name Conflict Warnings
Exception to Variable/Property Name Rule

Objects In Conditional Statements
Enable Use of Objects in Conditional Statements
How MATLAB Evaluates Switch Statements
How to DefinetheeqMethod
Enumerations in Switch Statements,

Operationson Objects
Object Operationsttt e
Helpon Objects e e
Functions to Test Objects
Functions to Query Class Componentsc.covvvuun..

Use of Editor and Debugger with Classes 5-37

Write Class Code inthe Editor 5-37
HowtoRefertoClass Files 5-37
HowtoDebug Class Files 5-37
Automatic Updates for Modified Classes 5-39
When MATLAB Loads Class Definitions 5-39
Consequences of Automatic Update 5-39
What Happens When Class Definitions Change 5-40
Ensure Defining Folder Remainsin Scopet 5-40
Actions That Do Not Trigger Updates 5-41
Multiple Updates to Class Definitions 5-41
Object Validity with Deleted Class File 5-41
When Updates Are Not Possible 5-41
Potential Consequences of Class Updates 5-41
Interactions with the Debugger 5-42
Updates to Class Attributes 5-42
Updates to Property Definitions 5-42
Updates to Method Definitions 5-43
Updates to Event Definitions 5-44
Compatibility with Previous Versions 5-46
New Class-Definition Syntax Introduced with MATLAB Software Version 7.6
... 5-46
Changes to Class Constructors 5-46
New Features Introduced with Version 7.6 5-47
Examplesof Oldand New 5-47
Comparison of MATLAB and Other OO Languages 5-49
Some Differences from C++ andJavaCode 5-49
Object Modification0t 5-50
Static Properties e 5-53
Common Object-Oriented Techniques 5-53

Defining and Organizing Classes

6/

User-Defined Classes 6-2
What Is a Class Definition 6-2
Attributes for Class Members 6-2
Kinds of Classesttt 6-2
Constructing Objects i 6-3
Class Hierarchies e 6-3
classdef Syntax e 6-3
Class Code . ..ot e 6-3

Class Attributes 6-5
Specifying Class Attributes 6-5
Specifying Attributes 6-7
Class-Specific Attributes 6-7

viii Contents

Evaluation of Expressions in Class Definitions 6-8
Why Use EXPressionsottt et e 6-8
Where to Use Expressions in Class Definitions 6-8
How MATLAB Evaluates Expressionsc..uiiiun.... 6-10
When MATLAB Evaluates Expressions 6-10
Expression Evaluation in Handle and Value Classes 6-10

Folders Containing Class Definitions 6-13
Class Definitionsonthe Path 6-13
Classand Path Folders 6-13
Using Path Folders i 6-13
Using Class Folders e 6-14
Functions in Private Folders Within Class Folders 6-14
Class Precedence and MATLABPath 6-15
Changing Path to Update Class Definition 6-16

Class Precedence0ty 6-18
Use of Class Precedenceiuiiiinneeinnnennn. 6-18
Why Mark Classes as Inferior 6-18
InferiorClasses Attribute 6-18

Packages Create Namespaces0uiiiiinnnennnn. 6-20
Package Folders i 6-20
Internal Packages i 6-20
Referencing Package Members Within Packages 6-21
Referencing Package Members from Outside the Package 6-21
Packages and the MATLAB Path 6-22

Import Classes e 6-24
Syntax for Importing Classescouiiiiiin ... 6-24
Import Static Methods 6-24
Import Package Functions, 6-24
Package Function and Class Method Name Conflict 6-25
Clearing Import List 6-25

Value or Handle Class — Which to Use

7

Comparison of Handle and Value Classes 7-2
Basic Difference 7-2
Behavior of MATLAB Built-In Classes, 7-2
User-Defined Value Classeso . 7-3
User-Defined Handle Classes 7-4
Determining Equality of Objects 7-6
Functionality Supported by Handle Classes 7-7

Which Kind of ClasstoUse 7-9
Examples of Value and Handle Classes 7-9
When to Use Value ClassSesttt i 7-9
When to Use Handle Classes, 7-9

ix

X

Contents

8|

The Handle Superclass 7-11
Buildingonthe Handle Classo iiiiiinennnnnn. 7-11
Handle Class Methodsccviiiiin.., 7-11
Event and Listener Methods 7-11
Relational Methods i 7-12
Test Handle Validity 7-12
When MATLAB Destroys Objects, 7-12

Handle Class Destructor 7-13
Basic Knowledge e 7-13
Syntax of Handle Class Destructor Method 7-13
Handle Object During delete Method Execution 7-14
Support Destruction of Partially Constructed Objects 7-15
When to Define a Destructor Method 7-15
Destructors in Class Hierarchies 7-16
Object Lifecycle e 7-16
Restrict Access to Object Delete Method 7-17
Nondestructor Delete Methods 7-18
External References to MATLAB Objects 7-18

Find Handle Objects and Properties 7-21
Find Handle Objects i i 7-21
Find Handle Object Properties 7-21

Implement Set/Get Interface for Properties 7-22
The Standard Set/Get Interface 7-22
Subclass Syntax 7-22
Get Method Syntax i e 7-22
Set Method Syntax i 7-23
Class Derived from matlab.mixin.SetGet 7-23
Set Priority for Matching Partial Property Names 7-27

Implement Copy for Handle Classes 7-30
Copy Method for Handle Classescouuiiiinnnnnnnn. 7-30
Customize Copy Operationuiiiinininnnennnan 7-31
Copy Properties That Contain Handles 7-32
Exclude Properties from Copy 7-33

Properties — Storing Class Data

Ways to Use Properties 8-2
What Are Properties e 8-2
Types of Propertiest 8-2

Property Syntax e 8-4
Property Definition Block 8-4
Access Property Values 8-5
Inheritance of Properties i 8-5
Specify Property Attributes 8-5

Property Attributes
Purpose of Property Attributes
Specifying Property Attributes L
Table of Property Attributes

Property Definition
WhatYouCanDefine i
Initialize Property Values i,
Property Default Values i
Initializing Properties to Handle Objects,
Assign Property Values in Constructor
Property Attributes
Methods to Set and Get Property Values
Reference Object Properties Using Variables

Mutable and Immutable Properties
Set Access to Property Values i,
Define Immutable Property i

Validate Property Values
Property Validation in Class Definitions
Sample Class Using Property Validation
Order of Validation
Abstract Property Validation
Objects Not Updated When Changing Validation
Validation During Load Operation

Property Class and Size Validation
Property Classand Size00t
Property Size Validation
Property Class Validation
Default Values Per Sizeand Class

Property Validation Functions
MATLAB Validation Functions
Validate Property Using Functions
Define Validation Functions
Add Support for Validation Functions

Metadata Interface to Property Validation

Property Access Methods
Properties Provide AccesstoClassData
Property Set and Get Methods
Set and Get Method Execution and Property Events
Access Methods and Properties Containing Arrays
Access Methods and Arrays of Objects
Modify Property Values with Access Methods

Property Set Methods i
Overview of Property Access Methods
Property Set Method Syntax
Validate Property SetValue
When Set Method Is Called

xii

Contents

Property Get Methods 8-48

Overview of Property Access Methods 8-48
Property Get Method Syntax 8-48
Calculate Value for Dependent Property 8-48
Errors Not Returned from Get Method 8-49
Get Method Behavior0 8-49
Set and Get Methods for Dependent Properties 8-50
Calculate Dependent Property Value 8-51
When to Use Set Methods with Dependent Properties 8-51
Private Set Access with Dependent Properties 8-52
Properties Containing Objects 8-53
Assigning Objects as Default Property Values 8-53
Assigning to Read-Only Properties Containing Objects 8-53
Assignment Behavior 8-53
Dynamic Properties — Adding Properties to an Instance 8-55
What Are Dynamic Properties, 8-55
Define Dynamic Properties 8-55
List Object Dynamic Properties 8-57
Set and Get Methods for Dynamic Properties 8-59
Create Access Methods for Dynamic Properties 8-59
Shared Set and Get Methods 8-60
Dynamic Property Events 8-61
Dynamic Properties and Ordinary Property Events 8-61
Dynamic-Property Events i 8-61
Listen for a Specific Property Name 8-62
PropertyAdded Event Callback Execution 8-63
PropertyRemoved Event Callback Execution 8-63
How to Find meta.DynamicProperty Objects 8-63
Dynamic Properties and ConstructOnload 8-65

Methods — Defining Class Operations

9

Methodsin Class Design i .. 9-2
ClassMethods i 9-2
Examples and Syntax i 9-2
Kindsof Methods i 9-2
Method Naming e 9-3

Method Attributes 9-4
Purpose of Method Attributes 9-4
Specifying Method Attributes 9-4
Table of Method Attributes 9-4

Ordinary Methods 9-6
Ordinary Methods Operate on Objects 9-6

Methods Inside classdef Block

Method Files

Methods in Separate Files

Class Folders

Define Method in Function File
Specify Method Attributes in classdef File
Methods You Must Define in the classdef File

Method Invocation

Determining Which Method Is Invoked
Referencing Names with Expressions—Dynamic Reference
Index into Result of Method Call
Controlling Accessto Methods
Invoking Superclass Methods in Subclass Methods
Invoking Built-In Functions

Class Constructor Methods
Purpose of Class Constructor Methods
Basic Structure of Constructor Methods
Guidelines for Constructors

Default Constructor

When to Define Constructors

Related Information

Initializing Objects in Constructor
No Input Argument Constructor Requirement
Subclass Constructorst
Implicit Call to Inherited Constructor
Errors During Class Construction
Output Object Suppressed,

Static Methods

What Are Static Methods
Why Define Static Methods
Defining Static Methods
Calling Static Methods i
Inheriting Static Methods

Overload Functions in Class Definitions
Why Overload Functions
Implementing Overloaded MATLAB Functions
Rules for Naming to Avoid Conflicts

Class Support for Array-Creation Functions
Extend Array-Creation Functions for Your Class

Which Syntax to Use

Implement Support for Array-Creation Functions

Object Precedence in Method Invocation

Object Precedence .
Defining Precedence

Dominant Argument in Overloaded Graphics Functions
Graphics Object Precedence,

Dominant Argument

xiii

Defining Class Precedencec0iiiiiiinnennnn.. 9-38

Calls to Inferior-Class Methods 9-39
Class Methods for Graphics Callbacks 9-41
Referencing the Method 9-41
Syntax for Method Callbacks 9-41

Use a Class Method for a Slider Callback 9-42
Object Arrays

Construct Object Arrays 10-2
Build Arrays in the Constructor 10-2
Referencing Property Values in Object Arrays 10-2
Initialize Object Arrays i 10-5
Callsto Constructor i e 10-5
Initial Value of Object Properties oo, 10-6
Empty Arrays o 10-7
Creating Empty ArTays oot 10-7
Assigning Valuestoan Empty Array 10-7
Initialize Arrays of Handle Objects 10-9
Related Information L. 10-10
Accessing Dynamic Properties in Arrays 10-11
Implicit Class Conversionc0u..... 10-13
Class Conversion Mechanism, 10-13
Concatenationt e 10-13
Subscripted Assignment 10-13
Concatenating Objects of Different Classes 10-15
Basic Knowledge i 10-15
MATLAB ConcatenationRules 10-15
Concatenating Objects 10-15
Calling the Dominant-Class Constructor 10-16
Converter Methods i i 10-17
Designing Heterogeneous Class Hierarchies 10-20
Creating Classes That Support Heterogeneous Arrays 10-20
MATLAB ATTAYS .« o v v o oe vt et et e e e et e e et e 10-20
Heterogeneous Hierarchies 10-20
Heterogeneous ATrayso oottt e e 10-21
Heterogeneous Array Conceptscoviiiinneennnnn... 10-21
Nature of Heterogeneous Arraysouuinneennnnn .. 10-22
Unsupported Hierarchies 10-24
Default Object 10-25
Conversion During Assignment and Concatenation 10-26
Empty Arrays of Heterogeneous Abstract Classes 10-26

xiv Contents

Heterogeneous Array Constructors 10-27

Building Arrays in Superclass Constructors 10-27
When Errors Can OCCUTottt e e i e 10-27
Initialize Array in Superclass Constructor 10-27
Sample Implementation 10-28
Potential Error 10-30

Events — Sending and Responding to Messages

11|

Overview Events and Listeners 11-2
Why Use Events and Listeners, 11-2
Events and Listeners Basics 11-2
Event Syntax i 11-2
Create Listener e e 11-3

Define Custom EventData 11-5
Class Event Data Requirements 11-5
Define and Trigger Event i 11-5
DefineEventData i 11-6
Create Listener for Overflow Event 11-6

Observe Changes to Property Values 11-8

Implement Property Set Listener 11-10
PushButton Class Designttt 11-10

Event and Listener Concepts 11-12
The EventModel i 11-12
Limitations e 11-12
Default EventData, 11-13
Events Onlyin Handle Classesciiuiiinnn... 11-13
Property-Setand Query Events 11-13
LiStenerS . . o e 11-14

Event Attributes 11-15
Specify Event Attributes 11-15

Events and Listeners Syntax 11-17
Components to Implement 11-17
Name Events 11-17
Trigger Events e 11-17
ListentoEvents 11-18
Define Event-SpecificData 11-20

Listener Lifecycle 11-22
Control Listener Lifecycle i 11-22
Temporarily Deactivate Listeners 11-22
Permanently Delete Listeners 11-22

Listener Callback Syntax 11-23
Specifying Listener Callbacks 11-23

xvi

Contents

12

Input Arguments for Callback Function 11-23
Additional Arguments for Callback Function 11-24
Callback Execution 11-26
When Callbacks Executet 11-26
Listener Order of Execution, 11-26
Callbacks That Callnotify 11-26
Manage Callback ETrors 11-26
Invoke Functions from Function Handles 11-26
Determine If Event Has Listeners 11-28
Do Listeners Exist for This Event? 11-28

Why Test for Listenerscc .. 11-28
Coding Patterns i e 11-28
Listeners in Heterogeneous Arraysccvviv e 11-28
Listen for Changes to Property Values 11-31
Create Property Listeners 11-31
Property Event and Listener Classesc.ovuu.i... 11-32
Assignment When Property Value Is Unchanged 11-34
AbortSet When Value Does Not Change 11-34
How MATLAB Compares Values, 11-34
When to Use AbortSet 11-34
Implement AbortSet 11-35
Using AbortSet with Property Validation 11-36
Techniques for Using Events and Listeners 11-38
Example OVEIVIEW e 11-38
Techniques Demonstrated in This Example 11-38
Summary of fcneval Class oot 11-39
Summary of fcnview Classo oo 11-39
Methods Inherited from Handle Class 11-40
Using the fcneval and fcnview Classesot 11-40
Implement UpdateGraph Event and Listener 11-42

The PostSet Event Listener 11-45
Enable and Disable Listeners 11-46
@fcneval/fcnevalm Class Code oo oo 11-47
@fcnview/fcnviewm Class Codeo oo 11-48
How to Build on Other Classes

Hierarchies of Classes — Concepts 12-2
Classificationt 12-2
Develop the Abstraction 12-2
Design of Class Hierarchies i, 12-2
Super and Subclass Behavior 12-3
Implementation and Interface Inheritance 12-3
Subclass Syntax 12-5
Subclass Definition Syntax 12-5

Subclassdouble 12-5

Design Subclass Constructors 12-7
Call Superclass Constructor Explicitly 12-7
Call Superclass Constructor from Subclass 12-7
Subclass Constructor Implementation 12-8
Call Only Direct Superclass from Constructor 12-9
Control Sequence of ConstructorCalls 12-11
Modify Inherited Methods 12-13
When to Modify Superclass Methods 12-13
Extend Superclass Methods 12-13
Reimplement Superclass Process in Subclass 12-14
Redefine Superclass Methods 12-15
Implement Abstract Method in Subclass 12-15
Modify Inherited Properties 12-17
Superclass Property Modification 12-17
Private Local Property Takes Precedence in Method 12-17
Subclassing Multiple Classes 12-19
Specify Multiple Superclasses i, 12-19
Class Member Compatibility 12-19
Multiple Inheritance 12-20
Specify Allowed Subclasses 12-21
Basic Knowledge 12-21
Why Control Allowed Subclasses viii... 12-21
Specify Allowed Subclassesc.. i 12-21
Define Sealed Hierarchy of Classes, 12-22
Class Members ACCeSS 12-24
Basic Knowledge 12-24
Applications for Access Control Lists, 12-25
Specify Access to Class Memberscouiiinn.... 12-25
Properties with Access Lists i 12-26
Methods with Access Lists i 12-26
Abstract Methods with Access Lists 12-29
Property Access List 12-30
Method Access List i, 12-31
Event Access List 12-32
Handle Compatible Classes 12-33
Basic Knowledge 12-33
When to Use Handle Compatible Classes 12-33
Handle Compatibility Rules 12-33
Identify Handle Objects 12-34
How to Define Handle-Compatible Classes 12-35
What Is Handle Compatibility? 12-35
Subclassing Handle-Compatible Classes 12-37

xvii

xviii

Contents

Methods for Handle Compatible Classes
Methods for Handle and Value Objects
Modify Value Objectsin Methods

Handle-Compatible Classes and Heterogeneous Arrays
Heterogeneous Arrayscc ittt ittt e e e
Methods Must Be Sealed,
Template Technique

Subclasses of MATLAB Built-InTypes
MATLAB Built-In Typeso v v e e e
Built-In Types You Can Subclass,
Why Subclass Built-In Typeso
Which Functions Work with Subclasses of Built-In Types
Behavior of Built-In Functions with Subclass Objects
Built-In Subclasses That Define Properties

Behavior of Inherited Built-In Methods
Subclassdouble
Built-In Data Value Methods
Built-In Data Organization Methods
Built-In Indexing Methods
Built-In Concatenation Methods

Subclasses of Built-In Types Without Properties
Specialized Numeric Typest
A Classto Manageuint8 Data
Using the DocUint8 Class

Subclasses of Built-In Types with Properties
Specialized Numeric Types with Additional Data Storage
Subclasses with Properties
Property Added
Methods Implemented i
Class Definition Codet
Using ExtendDouble
Concatenation of ExtendDouble Objects

Use of size and numel with Classes
sizeandnumel
Built-In Class Behavior
Subclasses Inherit Behavior
Classes Not Derived from Built-In Classes
Change the Behavior of sizeornumel
Overload numArgumentsFromSubscript Instead of numel

Representing Hardware with Classes
Objective . .. o e
Why Derive from int32
Implementation
Construct MuxCard Object
Call Methods of int32,

Determine Array Class
Querythe Class Name0 i

Test for Array Classovi ittt e 12-67

Test for Specific Typeso 12-68
Test for Most Derived Classc i, 12-68
Abstract Classes and Class Members 12-70
AbStract Classes oot 12-70
Declare Classesas Abstract 12-70
Determine If a ClassIsAbstract 12-72
Find Inherited Abstract Properties and Methods 12-72
Define an Interface Superclass 12-74
Interfaces e 12-74
Interface Class Implementing Graphs 12-74

13|

Save and Load Process for Objects 13-2
Save and Load Objects i 13-2
What InformationIs Saved? i 13-2
How Is the Property Data Loaded? 13-2
Errors During Load i i 13-3

Reduce MAT-File Size for Saved Objects 13-4
Default Values 13-4
Dependent Properties e 13-4
Transient Properties i e 13-4
Avoid Saving Unwanted Variables 13-4

Save Object Data to Recreate Graphics Objects 13-5
Whatto Save 13-5
Regenerate When Loadingo, 13-5
Change toa Stairstep Chart 13-6

Improve Version Compatibility with Default Values 13-7
Version Compatibility 13-7
Using a Default Property Value 13-7

Avoid Property Initialization Order Dependency 13-9
Control Property Loading i 13-9
Dependent Property with Private Storage 13-9
Property Value Computed from Other Properties 13-11

Modify the Save and Load Process 13-12
When to Modify the Save and Load Process 13-12
How to Modify the Save and Load Process 13-12
Implementing saveobj and loadobj Methods 13-12
Additional Considerationsciiiiiinnrennn. 13-13

Basic saveobj and loadobj Pattern 13-14
Using saveobjand loadobj i 13-14
Handle Load Problems 13-15

xix

XX

Contents

Maintain Class Compatibility 13-17

14

Rename Property i 13-17
Update Property When Loading 13-18
Maintaining Compatible VersionsofaClass 13-19
Version 2 of the PhoneBookEntry Class 13-20
Initialize Objects When Loading 13-22
Calling Constructor When Loading Objects 13-22
Initializing Objects in the loadobj Method 13-22
Save and Load Objects from Class Hierarchies 13-24
Saving and Loading Subclass Objects 13-24
Reconstruct the Subclass Object from a Saved struct 13-24
Restore Listeners 13-26
Create Listener withloadobj 13-26
Use Transient Property to Load Listener 13-26
Using the BankAccount and AccountManager Classes 13-27
Enumerations
Named Values i 14-2
Kinds of Predefined Names i, 14-2
Techniques for Defining Enumerations 14-2
Define Enumeration Classesc...... 14-4
Enumeration Class i 14-4
Construct an Enumeration Member 14-4
Convert to SuperclassValue 14-4
Define Methods in Enumeration Classeso.... 14-5
Define Properties in Enumeration Classes 14-6
Enumeration Class Constructor Calling Sequence 14-7
Refer to Enumerations 14-9
Instances of Enumeration Classesovvviiinn.... 14-9
Conversion of Characters to Enumerations 14-10
Enumeration Atrays 14-12
Enumerations for Property Values 14-14
Syntax for Property/Enumeration Definition 14-14
Example of Restricted Property 14-14
Operations on Enumerations 14-16
Operations Supported by Enumerations 14-16
Example Enumeration Class 14-16
Default Methods i i 14-16
Convert Enumeration Members to Strings or char Vectors 14-17
Convert Enumeration Arrays to String Arrays or Cell Arrays of char Vectors
.. 14-17
Relational Operations with Enumerations, Strings, and char Vectors ... 14-18
Enumerations in switch Statements 14-19

Enumeration Set Membership 14-20

Enumeration Text Comparison Methods 14-21
Get Information About Enumerations 14-21
Testing for an Enumeration 14-22
Hide Enumeration Members 14-23
Hide Pure Enumerations 14-24
Find Hidden Enumeration Members 14-24
Enumeration Class Restrictions 14-26
Enumerations Derived from Built-InClasses 14-27
Subclassing Built-In Classesc.u ... 14-27
Derive Enumeration Class from NumericClass 14-27
How to Alias Enumeration Names 14-28
Superclass Constructor Returns Underlying Value 14-29
Default Convertero 14-30
Mutable Handle vs. Immutable Value Enumeration Members 14-32
Select Handle- or Value-Based Enumerations 14-32
Value-Based Enumeration Classesouiinn... 14-32
Handle-Based Enumeration Classes 14-33
Represent State with Enumerations 14-35
Enumerations That Encapsulate Data 14-37
Enumeration Classes with Properties 14-37
Store Datain Properties 14-37
Save and Load Enumerations 14-40
Basic Knowledge 14-40
Built-In and Value-Based Enumeration Classes 14-40
Simple and Handle-Based Enumeration Classes 14-40
Causes: Load as struct Instead of Object 14-40

15

Define Class Properties with Constant Values 15-2
Defining Named Constants00t ernnn.. 15-2
Constant Property Assigned a Handle Object 15-3
Constant Property Assigned Any Object 15-4
Constant Properties — No Support for GetEvents 15-5

Information from Class Metadata

16|

Class Metadata i 16-2
What Is Class Metadata? 16-2
Themeta Package 16-2

xxi

xxii

17|

Contents

Metaclass Objects i 16-3
Metaclass Object Lifecycle i 16-3
Class Introspection with Metadata 16-5
Using Class Metadata i, 16-5
Inspect the EmployeeData Classccoiiiiinnen. 16-5
Metaclass EnumeratedValues Property 16-7
Find Objects with SpecificValues 16-9
Find Handle Objects i i e 16-9

Find by Attribute Settings 16-10

Get Information About Properties 16-12
The meta.property Object 16-12
How to Find Properties with Specific Attributes 16-14
Find Default Values in Property Metadata 16-17
Default Values e 16-17
meta.propertyData 16-17
Specialize Object Behavior

Methods That Modify Default Behavior 17-2
How to Customize Class Behavior 17-2
Which Methods Control Which Behaviors 17-2
Overload Functions and Override Methods 17-3
Number of Arguments for subsref and subsasgn 17-5
How MATLAB Determines Number of Arguments 17-5
Syntax for subsref, and subsasgn Methods 17-6
Modify nargout and nargin for Indexing Methods 17-7
When to Modify Number of Arguments 17-7
How to Modify Number of Arguments 17-7
Concatenation Methods 17-9
Default Concatenation i 17-9
Methodsto Overload i, 17-9
Object Converters 17-10
Why Implement Converters 17-10
Converters for Package Classes, 17-10
Converters and Subscripted Assignment 17-11
Converter for Heterogeneous Arraysc.covvvveinn .. 17-11
Object Array Indexing 17-12
Default Indexed Reference and Assignment 17-12
What You Can Modify i 17-13
When to Modify Indexing Behavior 17-13
Built-In subsref and subsasgn Called in Methods 17-14
Avoid Overriding Access Attributes 17-15

Code Patterns for subsref and subsasgn Methods 17-17

Customize Indexed Reference and Assignment 17-17
Syntax for subsref and subsasgn Methods 17-17
Indexing Structure Describes Indexing Expressions 17-17
Values of the Indexing Structure 17-18
Typical Patterns for Indexing Methods 17-19
Indexed Reference i 17-23
How Indexed Reference Works 17-23
Compound Indexed References 17-24
Indexed Assignment 17-25
How Indexed Assignment Works 17-25
Indexed Assignment to Objects 17-26
Compound Indexed Assignments 17-27
endas ObjectIndex i, 17-28
Define end Indexing foran Object 17-28
Theend Method 17-28
Objects in Index Expressions 17-30
Objects INdeXeSo vt e 17-30
Ways to Implement Objects as Indices 17-30
subsindex Implementation 17-30
Class with Modified Indexing 17-32
How to Modify Class Indexing 17-32
Class Description i 17-32
Specialize Subscripted Reference —subsref 17-33
Specialize Subscripted Assignment — subsasgn 17-34
Implement Addition for Object Data — double and plus 17-35
MyDataClass.m ov it 17-36
Operator Overloading 17-38
Why Overload Operatorsc.uiiiiiineiinnennn. 17-38
How to Define Operatorsciiiiinn... 17-38
Sample Implementation — Addable Objects 17-39
MATLAB Operators and Associated Functions 17-40

Customizing Object Display

18

Custom Display Interface 18-2
Command Window Display 18-2
Default Object Displayccii i 18-2
CustomDisplay Classcov vttt e 18-3
Methods for Customizing Object Display 18-3

How CustomDisplayWorks 18-7
Steps to Displayan Object i 18-7
Methods Called for a Given Object State 18-7

xxiii

Role of size Function in Custom Displays 18-9

Howsize ISUSed 18-9
Precautions When Overloading size 18-9
Customize Display for Heterogeneous Arrays 18-10
Class with Default Object Display 18-11
The Employeelnfo Classt 18-11
Default Display — Scalar i, 18-11
Default Display — Nonscalar 18-12
Default Display — Empty ObjectArray 18-12
Default Display — Handle to Deleted Object 18-13
Default Display — Detailed Display, 18-13
Choose a Technique for Display Customization 18-15
Ways to Implement a Custom Display 18-15
Sample Approaches Using the Interface 18-15
Customize Property Display 18-18
Objective . .. oot e 18-18
Change the Property Order 18-18
Change the Values Displayed for Properties 18-18
Customize Header, Property List, and Footer 18-21
Objective . .. oo e 18-21
Designof Custom Display 18-21
getHeader Method Override 18-22
getPropertyGroups Override i iiiiiinnenennn. 18-23
getFooter Override it e 18-23
Customize Display of Scalar Objects 18-26
Objective . .. oot e 18-26
Design Of Custom Display 18-26
displayScalarObject Method Override 18-27
getPropertyGroups Override i, 18-27
Customize Display of Object Arrays 18-30
Objective . .. o e 18-30
Design of Custom Displayo ... 18-30
The displayNonScalarObject Override 18-31
The displayEmptyObject Override 18-32
Overloading the disp Function 18-34
Display Methods i 18-34
Overloaded disp i e 18-34
Relationship Between dispand display 18-34

19]

Representing Polynomials with Classes 19-2
Object Requirementst 19-2

xxiv Contents

20

DocPolynom Class Membersttt 19-2
DocPolynom Class SYnopsSiS oo v i it et e 19-4
The DocPolynom Constructor 19-10
Remove Irrelevant Coefficients 19-11
Convert DocPolynom Objects to Other Types 19-11
Overload disp for DocPolynom 19-13
Display Evaluated Expression 00t 19-13
Redefine Indexed Reference 19-14
Define Arithmetic Operators 19-16
Designing Related Classes

A Class Hierarchy for Heterogeneous Arrays 20-2
Interfaces Based on Heterogeneous Arrayscouu.... 20-2
Define Heterogeneous Hierarchy 20-2
Assets Class 20-4
StOCKkS Class . . v v 20-5
Bonds Class vttt 20-6
Cash Class ...t 20-8
Default Object e 20-9
Operating on an AsSetS ATTay oo v ittt e 20-11

Using Object-Oriented Design in
MATLAB

* “Why Use Object-Oriented Design” on page 1-2
+ “Handle Object Behavior” on page 1-7

1 Using Object-Oriented Design in MATLAB

Why Use Object-Oriented Design

1-2

In this section...

“Approaches to Writing MATLAB Programs” on page 1-2
“When Should You Create Object-Oriented Programs” on page 1-2

Approaches to Writing MATLAB Programs

Creating software applications typically involves designing the application data and implementing
operations performed on that data. Procedural programs pass data to functions, which perform the
necessary operations on the data. Object-oriented software encapsulates data and operations in
objects that interact with each other via the object's interface.

The MATLAB language enables you to create programs using both procedural and object-oriented
techniques and to use objects and ordinary functions together in your programs.

Procedural Program Design

In procedural programming, your design focuses on the steps that must execute to achieve a desired
state. Typically, you represent data as individual variables or fields of a structure. You implement
operations as functions that take the variables as arguments. Programs usually call a sequence of
functions, each one of which is passed data, and then returns modified data. Each function performs
an operation or many operations on the data.

Object-Oriented Program Design
The object-oriented program design involves:

* Identifying the components of the system or application that you want to build

* Analyzing and identifying patterns to determine what components are used repeatedly or share
characteristics

* Classifying components based on similarities and differences
After performing this analysis, you define classes that describe the objects your application uses.
Classes and Objects

A class describes a set of objects with common characteristics. Objects are specific instances of a
class. The values contained in an object's properties are what make an object different from other
objects of the same class. The functions defined by the class (called methods) are what implement
object behaviors that are common to all objects of a class.

When Should You Create Object-Oriented Programs

You can implement simple programming tasks as simple functions. However, as the magnitude and
complexity of your tasks increase, functions become more complex and difficult to manage.

As functions become too large, you can break them into smaller functions and pass data from one to
function to another. However, as the number of functions becomes large, designing, and managing
the data passed to functions becomes difficult and error prone. At this point, consider moving your
MATLAB programming tasks to object-oriented designs.

Why Use Object-Oriented Design

Understand a Problem in Terms of Its Objects

Thinking in terms of objects is simpler and more natural for some problems. Think of the nouns in
your problem statement as the objects to define and the verbs as the operations to perform.

Consider the design of classes to represent money lending institutions (banks, mortgage companies,
individual money lenders, and so on). It is difficult to represent the various types of lenders as
procedures. However, you can represent each one as an object that performs certain actions and
contains certain data. The process of designing the objects involves identifying the characteristics of
a lender that are important to your application.

Identify Commonalities

What do all money lenders have in common? All MoneyLender objects can have a Loan method and
an InterestRate property, for example.

Identify Differences

How does each money lender differ? One can provide loans to businesses while another provides
loans only to individuals. Therefore, the Loan operation might need to be different for different types
of lending institutions. Subclasses of a base MoneyLender class can specialize the subclass versions
of the Loan method. Each lender can have a different value for its InterestRate property.

Factor out commonalities into a superclass and implement what is specific to each type of lender in
the subclass.

Add Only What Is Necessary

These institutions might engage in activities that are not of interest to your application. During the
design phase, determine what operations and data an object must contain based on your problem
definition.

Objects Manage Internal State

Objects provide several useful features not available from structures and cell arrays. For example,
objects can:

* Constrain the data values assigned to any given property

* Calculate the value of a property only when it is queried

* Broadcast notices when any property value is queried or changed

* Restrict access to properties and methods

Reducing Redundancy

As the complexity of your program increases, the benefits of an object-oriented design become more
apparent. For example, suppose that you implement the following procedure as part of your
application:

Check inputs

Perform computation on the first input argument

3 Transform the result of step 2 based on the second input argument

N =

4 Check validity of outputs and return values

You can implement this procedure as an ordinary function. But suppose that you use this procedure
again somewhere in your application, except that step 2 must perform a different computation. You

1-3

1 Using Object-Oriented Design in MATLAB

1-4

could copy and paste the first implementation, and then rewrite step 2. Or you could create a function
that accepted an option indicating which computation to make, and so on. However, these options
lead to more complicated code.

An object-oriented design can factor out the common code into what is called a base class. The base
class would define the algorithm used and implement whatever is common to all cases that use this
code. Step 2 could be defined syntactically, but not implemented, leaving the specialized
implementation to the classes that you then derive from this base class.

Step 1
function checkInputs()

% actual implementation
end

Step 2

function results = computeOnFirstArg()
% specify syntax only

end

Step 3

function transformResults()
% actual implementation

end

Step 4
function out = checkOutputs()

% actual implementation
end

The code in the base class is not copied or modified. Classes you derive from the base class inherit
this code. Inheritance reduces the amount of code to be tested, and isolates your program from
changes to the basic procedure.

Defining Consistent Interfaces
The use of a class as the basis for similar, but more specialized classes is a useful technique in object-
oriented programming. This class defines a common interface. Incorporating this kind of class into

your program design enables you to:

* Identify the requirements of a particular objective
* Encode requirements into your program as an interface class

Reducing Complexity

Objects reduce complexity by reducing what you must know to use a component or system:

* Objects provide an interface that hides implementation details.
* Objects enforce rules that control how objects interact.

To illustrate these advantages, consider the implementation of a data structure called a doubly linked
list. See “Implementing Linked Lists with Classes” on page 3-23 for the actual implementation.

Here is a diagram of a three-element list:

Why Use Object-Oriented Design

-ll-..,
PmperM Pro pert ies Pmpertles \
Mext MNext

Prev F*reu Prewv

n2Prev na na. Mext

To add a node to the list, disconnect the existing nodes in the list, insert the new node, and reconnect
the nodes appropriately. Here are the basic steps:

First disconnect the nodes:

1 Unlink n2.Prev from nl
2 Unlink n1.Next from n2

Now create the new node, connect it, and renumber the original nodes:

Link new.Prev to nl

Link new.Next to n3 (was n2)
Link n1.Next to new (will be n2)
Link n3.Prev to new (will be n2)

A W N R

The details of how methods perform these steps are encapsulated in the class design. Each node
object contains the functionality to insert itself into or remove itself from the list.

For example, in this class, every node object has an insertAfter method. To add a node to a list,
create the node object and then call its insertAfter method:

nnew = NodeConstructor;
nnew.insertAfter(nl)

Because the node class defines the code that implements these operations, this code is:

* Implemented in an optimal way by the class author

» Always up to date with the current version of the class

* Properly tested

* Can automatically update old-versions of the objects when they are loaded from MAT-files.

The object methods enforce the rules for how the nodes interact. This design removes the
responsibility for enforcing rules from the applications that use the objects. It also means that the
application is less likely to generate errors in its own implementation of the process.

Fostering Modularity

As you decompose a system into objects (car -> engine -> fuel system -> oxygen sensor), you form
modules around natural boundaries. Classes provide three levels of control over code modularity:

* Public — Any code can access this particular property or call this method.

1-5

1 Using Object-Oriented Design in MATLAB

1-6

* Protected — Only this object's methods and methods of objects derived from this object's class can
access this property or call this method.

* Private — Only the object's own methods can access this property or call this method.

Overloaded Functions and Operators

When you define a class, you can overload existing MATLAB functions to work with your new object.
For example, the MATLAB serial port class overloads the fread function to read data from the device
connected to the port represented by this object. You can define various operations, such as equality
(eq) or addition (plus), for a class you have defined to represent your data.

See Also

More About
. “Role of Classes in MATLAB” on page 3-2

Handle Object Behavior

Handle Object Behavior

In this section...
“What Is a Handle?” on page 1-7
“Copies of Handles” on page 1-7

“Handle Objects Modified in Functions” on page 1-8
“Determine If an Object Is a Handle” on page 1-9

“Deleted Handle Objects” on page 1-9

More than one variable can refer to the same handle object. Therefore, users interact with instances
of handle classes differently than instances of value classes. Understanding how handle objects
behave can help you determine whether to implement a handle or a value class. This topic illustrates
some of those interactions.

For more information on handle classes, see “Handle Classes”.

What Is a Handle?

Certain kinds of MATLAB objects are handles. When a variable holds a handle, it actually holds a
reference to the object.

Handle objects enable more than one variable to refer to the same object. Handle-object behavior
affects what happens when you copy handle objects and when you pass them to functions.

Copies of Handles

All copies of a handle object variable refer to the same underlying object. This reference behavior
means that if h identifies a handle object, then,

h2 = h;
Creates another variable, h2, that refers to the same object as h.

For example, the MATLAB audioplayer function creates a handle object that contains the audio
source data to reproduce a specific sound segment. The variable returned by the audioplayer
function identifies the audio data and enables you to access object functions to play the audio.

MATLAB software includes audio data that you can load and use to create an audioplayer object.
This sample load audio data, creates the audio player, and plays the audio:

load gong Fs y

gongSound = audioplayer(y,Fs);

play(gongSound)

Suppose that you copy the gongSound object handle to another variable (gongSound?2):
gongSound2 = gongSound;

The variables gongSound and gongSound?2 are copies of the same handle and, therefore, refer to the
same audio source. Access the audioplayer information using either variable.

1-7

1 Using Object-Oriented Design in MATLAB

For example, set the sample rate for the gong audio source by assigning a new value to the
SampleRate property. First get the current sample rate and then set a new sample rate:

sr = gongSound.SampleRate;
disp(sr)

8192

gongSound.SampleRate = sr*2;

You can use gongSound2 to access the same audio source:
disp(gongSound2.SampleRate)

16384

Play the gong sound with the new sample rate:

play(gongSound2)

Handle Objects Modified in Functions

When you pass an argument to a function, the function copies the variable from the workspace in
which you call the function into the parameter variable in the function’s workspace.

Passing a nonhandle variable to a function does not affect the original variable that is in the caller’s
workspace. For example, myFunc modifies a local variable called var, but when the function ends,
the local variable var no longer exists:

function myFunc(var)
var = var + 1;
end

Define a variable and pass it to myfunc:

x = 12;
myFunc(x)

The value of x has not changed after executing myFunc(x):
disp(x)
12

The myFunc function can return the modified value, which you could assign to the same variable
name (X) or another variable.

function out = myFunc(var)

out = var + 1;
end

Modify a value in myfunc:

X = 12;

X = myFunc(x);
disp(x)

13

1-8

Handle Object Behavior

When the argument is a handle variable, the function copies only the handle, not the object identified
by that handle. Both handles (original and local copy) refer to the same object.

When the function modifies the data referred to by the object handle, those changes are accessible
from the handle variable in the calling workspace without the need to return the modified object.

For example, the modifySampleRate function changes the audioplayer sample rate:
function modifySampleRate(audioObj,sr)

audioObj.SampleRate = sr;
end

Create an audioplayer object and pass it to the modifySampleRate function:
load gong Fs y

gongSound = audioplayer(y,Fs);

disp(gongSound.SampleRate)

8192

modifySampleRate(gongSound, 16384)
disp(gongSound.SampleRate)

16384

The modifySampleRate function does not need to return a modified gongSound object because
audioplayer objects are handle objects.

Determine If an Object Is a Handle

Handle objects are members of the handle class. Therefore, you can always identify an object as a
handle using the isa function. isa returns logical true (1) when testing for a handle variable:

load gong Fs y

gongSound = audioplayer(y,Fs);

isa(gongSound, 'handle")

To determine if a variable is a valid handle object, use isa and isvalid:
if isa(gongSound, 'handle') && isvalid(gongSound)

end

Deleted Handle Objects

When a handle object has been deleted, the handle variables that referenced the object can still exist.
These variables become invalid because the object they referred to no longer exists. Calling delete
on the object removes the object, but does not clear handle variables.

For example, create an audioplayer object:

load gong Fs y
gongSound = audioplayer(y,Fs);

The output argument, gongSound, is a handle variable. Calling delete deletes the object along with
the audio source information it contains:

1-9

1 Using Object-Oriented Design in MATLAB

1-10

delete(gongSound)

However, the handle variable still exists:
disp(gongSound)

handle to deleted audioplayer

The whos command shows gongSound as an audioplayer object:

whos
Name Size Bytes (lass Attributes
Fs 1x1 8 double
gongSound 1x1 0 audioplayer
y 42028x1 336224 double

Note The value for Bytes returned by the whos command does not include the data referenced by a
handle because many variables can reference the same data.

The handle gongSound no longer refers to a valid object, as shown by the isvalid handle method:
isvalid(gongSound)
ans =
logical
0

Calling delete on a deleted handle does nothing and does not cause an error. You can pass an array
containing both valid and invalid handles to delete. MATLAB deletes the valid handles, but does not
issue an error when encountering handles that are already invalid.

You cannot access properties with the invalid handle variable:
gongSound.SampleRate

Invalid or deleted object.

Functions and methods that access object properties cause an error:
play(gongSound)

Invalid or deleted object.

To remove the variable, gongSound, use clear:

clear gongSound

whos
Name Size Bytes C(lass Attributes
Fs 1x1 8 double
y 42028x1 336224 double

Handle Object Behavior

See Also

More About

. “Handle Class Destructor” on page 7-13
. “Comparison of Handle and Value Classes” on page 7-2

1-11

Basic Example

2 Basic Example

Create a Simple Class

2-2

In this section...

“Design Class” on page 2-2
“Create Object” on page 2-3
“Access Properties” on page 2-3
“Call Methods” on page 2-3

“Add Constructor” on page 2-4
“Vectorize Methods” on page 2-4
“Overload Functions” on page 2-5

“BasicClass Code Listing” on page 2-6

Design Class

The basic purpose of a class is to define an object that encapsulates data and the operations
performed on that data. For example, BasicClass defines a property and two methods that operate
on the data in that property:

* Value — Property that contains the numeric data stored in an object of the class
* roundOff — Method that rounds the value of the property to two decimal places
* multiplyBy — Method that multiplies the value of the property by the specified number

Here is the definition of BasicClass:

classdef BasicClass
properties
Value {mustBeNumeric}
end
methods
function r = roundOff(obj)
r = round([obj.Valuel,b2);
end
function r = multiplyBy(obj,n)
r = [obj.Value] * n;
end
end
end

For a summary of class syntax, see classdef.

To use the class:

* Save the class definition in a . m file with the same name as the class.
* Create an object of the class.
» Access the properties to assign data.

* Call methods to perform operation on the data.

Create a Simple Class

Create Object

Create an object of the class using the class name:

a BasicClass

a =
BasicClass with properties:
Value: []

Initially, the property value is empty.

Access Properties
Assign a value to the Value property using the object variable and a dot before the property name:
a.Value = pi/3;
To return a property value, use dot notation without the assignment:
a.Value
ans =
1.0472

For information on class properties, see “Class Properties” on page 5-10.

Call Methods

Call the roundOff method on object a:
round0ff(a)
ans =

1.0500

Pass the object as the first argument to a method that takes multiple arguments, as in this call to the
multiplyBy method:

multiplyBy(a,3)
ans =
3.1416
You can also call a method using dot notation:
a.multiplyBy(3)

It is not necessary to pass the object explicitly as an argument when using dot notation. The notation
uses the object to the left of the dot and method name.

For information on class methods, see “Define Class Methods and Functions” on page 5-13

2-3

2 Basic Example

2-4

Add Constructor

Classes can define a special method to create objects of the class, called a constructor. Constructor
methods enable you to pass arguments to the constructor, which you can assign as property values.
The BasicClass Value property restricts its possible values using the mustBeNumeric function.

Here is a constructor for the BasicClass class. When you call the constructor with an input
argument, it is assigned to the Value property. If you call the constructor without an input argument,
the Value property has a default value of empty ([1).

methods
function obj = BasicClass(val)
if nargin ==
obj.Value = val;
end
end
end

By adding this constructor to the class definition, you can create an object and set the property value
in one step:

a

BasicClass(pi/3)
a=
BasicClass with properties:
Value: 1.0472
The constructor can perform other operations related to creating objects of the class.

For information on constructors, see “Class Constructor Methods” on page 9-16

Vectorize Methods

MATLAB enables you to vectorize operations. For example, you can add a number to a vector:
[1 23] +2
ans =

3 4 5

MATLAB adds the number 2 to each of the elements in the array [1 2 3]. To vectorize the
arithmetic operator methods, enclose the obj .Value property reference in brackets.

[obj.Value] + 2

This syntax enables the method to work with arrays of object. For example, create an object array
using indexed assignment.

obj (1) = BasicClass(2.7984);
obj(2) = BasicClass(sin(pi/3));
obj(3) = BasicClass(7);

Then this expression:

Create a Simple Class

[obj.Value] + 2

Is equivalent to this expression:

[obj(1).Value obj(2).Value obj(3).Value] + 2

Because the roundOff method is vectorized, it can operate on arrays:
roundOff(obj)

ans =

2.8000 0.8700 7.0000

Overload Functions

Classes can implement existing functionality, such as addition, by defining a method with the same
name as the existing MATLAB function. For example, suppose that you want to add two BasicClass
objects. It makes sense to add the values of the Value properties of each object.

Here is an overloaded version of the MATLAB plus function. It defines addition for the BasicClass
class as adding the property values:

method
function r = plus(ol,o02)
r = [ol.Value] + [02.Value];
end
end

By implementing a method called plus, you can use the “+” operator with objects of BasicClass.
BasicClass(pi/3);

BasicClass(pi/4);
b

Q
+ 1 n

ans =
1.8326

By vectorizing the plus method, you can operate on object arrays.

a = BasicClass(pi/3);
b = BasicClass(pi/4);
c = BasicClass(pi/2);
ar = [a b];

ar + cC

ans =

2.6180 2.3562
Related Information

For information on overloading functions, see “Overload Functions in Class Definitions” on page 9-
26.

For information on overloading operators, see “Operator Overloading” on page 17-38.

2-5

2 Basic Example

2-6

BasicClass Code Listing

Here is the BasicClass definition after adding the features discussed in this topic:

classdef BasicClass
properties
Value {mustBeNumeric}
end
methods
function obj = BasicClass(val)
if nargin ==
obj.Value = val;
end
end
function r = roundOff(obj)
r = round([obj.Valuel],k2);
end
function r = multiplyBy(obj,n)
r = [obj.Value] * n;
end
function r = plus(ol,o02)
r = [ol.Value] + [02.Valuel;
end
end
end

See Also

Related Examples
. “Class Syntax Guide”
. “Validate Property Values” on page 8-19

MATLAB Classes Overview

* “Role of Classes in MATLAB” on page 3-2

* “Developing Classes — Typical Workflow” on page 3-6

* “Representing Structured Data with Classes” on page 3-14
* “Implementing Linked Lists with Classes” on page 3-23

3 MATLAB Classes Overview

Role of Classes in MATLAB

3-2

In this section...

“Classes” on page 3-2
“Some Basic Relationships” on page 3-3

Classes

In the MATLAB language, every value is assigned to a class. For example, creating a variable with an
assignment statement constructs a variable of the appropriate class:

a=717;
b = 'some text';
s.Name = 'Nancy';
s.Age = 64;
whos
whos
Name Size Bytes C(lass Attributes
a 1x1 8 double
b 1x9 18 char
S 1x1 370 struct

Basic commands like whos display the class of each value in the workspace. This information helps
MATLAB users recognize that some values are characters and display as text while other values are
double precision numbers, and so on. Some variables can contain different classes of values like
structures.

Predefined Classes

MATLAB defines fundamental classes that comprise the basic types used by the language. These
classes include numeric, logical, char, cell, struct, and function handle.

User-Defined Classes

You can create your own MATLAB classes. For example, you could define a class to represent
polynomials. This class could define the operations typically associated with MATLAB classes, like
addition, subtraction, indexing, displaying in the command window, and so on. These operations
would need to perform the equivalent of polynomial addition, polynomial subtraction, and so on. For
example, when you add two polynomial objects:

pl + p2

the plus operation must be able to add polynomial objects because the polynomial class defines this
operation.

When you define a class, you can overload special MATLAB functions (such as plus.m for the
addition operator). MATLAB calls these methods when users apply those operations to objects of your
class.

See “Representing Polynomials with Classes” on page 19-2 for an example that creates just such a
class.

Role of Classes in MATLAB

MATLAB Classes — Key Terms

MATLAB classes use the following words to describe different parts of a class definition and related
concepts.

* Class definition — Description of what is common to every instance of a class.
* Properties — Data storage for class instances

* Methods — Special functions that implement operations that are usually performed only on
instances of the class

* Events — Messages defined by classes and broadcast by class instances when some specific action
occurs

» Attributes — Values that modify the behavior of properties, methods, events, and classes

» Listeners — Objects that respond to a specific event by executing a callback function when the
event notice is broadcast

* Objects — Instances of classes, which contain actual data values stored in the objects' properties

* Subclasses — Classes that are derived from other classes and that inherit the methods, properties,
and events from those classes (subclasses facilitate the reuse of code defined in the superclass
from which they are derived).

* Superclasses — Classes that are used as a basis for the creation of more specifically defined
classes (that is, subclasses).

» Packages — Folders that define a scope for class and function naming

Some Basic Relationships
This section discusses some of the basic concepts used by MATLAB classes.
Classes

A class is a definition that specifies certain characteristics that all instances of the class share. These
characteristics are determined by the properties, methods, and events that define the class and the
values of attributes that modify the behavior of each of these class components. Class definitions
describe how objects of the class are created and destroyed, what data the objects contain, and how
you can manipulate this data.

Class Hierarchies

It sometimes makes sense to define a new class in terms of existing classes. This approach enables
you to reuse the designs and techniques in a new class that represents a similar entity. You
accomplish this reuse by creating a subclass. A subclass defines objects that are a subset of those
objects defined by the superclass. A subclass is more specific than its superclass and might add new
properties, methods, and events to those components inherited from the superclass.

Mathematical sets can help illustrate the relationships among classes. In the following diagram, the
set of Positive Integers is a subset of the set of Integers and a subset of Positives. All three sets are
subsets of Reals, which is a subset of All Numbers.

The definition of Positive Integers requires the additional specification that members of the set be
greater than zero. Positive Integers combine the definitions from both Integers and Positives. The
resulting subset is more specific, and therefore more narrowly defined, than the supersets, but still
shares all the characteristics that define the supersets.

3-3

3 MATLAB Classes Overview

3-4

The “is a” relationship is a good way to determine if it is appropriate to define a particular subset in
terms of existing supersets. For example, each of the following statements makes senses:

* A Positive Integer is an Integer
* A Positive Integer is a Positive number

If the “is a” relationship holds, then it is likely you can define a new class from a class or classes that
represent some more general case.

Reusing Solutions

Classes are usually organized into taxonomies to foster code reuse. For example, if you define a class
to implement an interface to the serial port of a computer, it would probably be similar to a class
designed to implement an interface to the parallel port. To reuse code, you could define a superclass
that contains everything that is common to the two types of ports, and then derive subclasses from
the superclass in which you implement only what is unique to each specific port. Then the subclasses
would inherit all the common functionality from the superclass.

Objects

A class is like a template for the creation of a specific instance of the class. This instance or object
contains actual data for a particular entity that is represented by the class. For example, an instance
of a bank account class is an object that represents a specific bank account, with an actual account
number and an actual balance. This object has built into it the ability to perform operations defined
by the class, such as making deposits to and withdrawals from the account balance.

Objects are not just passive data containers. Objects actively manage the data contained by allowing
only certain operations to be performed, by hiding data that does not need to be public, and by
preventing external clients from misusing data by performing operations for which the object was not
designed. Objects even control what happens when they are destroyed.

Encapsulating Information

An important aspect of objects is that you can write software that accesses the information stored in
the object via its properties and methods without knowing anything about how that information is
stored, or even whether it is stored or calculated when queried. The object isolates code that
accesses the object from the internal implementation of methods and properties. You can define
classes that hide both data and operations from any methods that are not part of the class. You can
then implement whatever interface is most appropriate for the intended use.

References

[1] Shalloway, A., J. R. Trott, Design Patterns Explained A New Perspective on Object-Oriented
Design.. Boston, MA: Addison-Wesley 2002.

[2] Gamma, E., R. Helm, R. Johnson,]. Vlissides, Design Patterns Elements of Reusable Object-
Oriented Software. Boston, MA: Addison-Wesley 1995.

[3] Freeman, E., Elisabeth Freeman, Kathy Sierra, Bert Bates, Head First Design Patterns.
Sebastopol, CA 2004.

Role of Classes in MATLAB

See Also

Related Examples

“Create a Simple Class” on page 2-2

“Developing Classes — Typical Workflow” on page 3-6
“Representing Structured Data with Classes” on page 3-14
“Implementing Linked Lists with Classes” on page 3-23

3 MATLAB Classes Overview

Developing Classes — Typical Workflow

In this section...

“Formulating a Class” on page 3-6

“Specifying Class Components” on page 3-7
“BankAccount Class Implementation” on page 3-7
“Formulating the AccountManager Class” on page 3-10
“Implementing the AccountManager Class” on page 3-11
“AccountManager Class Synopsis” on page 3-11

“Using BankAccount Objects” on page 3-12

Formulating a Class

This example discusses how to approach the design and implementation of a class. The objective of
this class is to represent a familiar concept (a bank account). However, you can apply the same
approach to most class designs.

To design a class that represents a bank account, first determine the elements of data and the
operations that form your abstraction of a bank account. For example, a bank account has:

* An account number
* An account balance
* A status (open, closed, etc.)

You must perform certain operations on a bank account:

* Create an object for each bank account
* Deposit money

* Withdraw money

* Generate a statement

* Save and load the BankAccount object

If the balance is too low and you attempt to withdraw money, the bank account broadcasts a notice.
When this event occurs, the bank account broadcasts a notice to other entities that are designed to
listen for these notices. In this example, a simplified version of an account manager program
performs this task.

In this example, an account manager program determines the status of all bank accounts. This
program monitors the account balance and assigns one of three values:

* open — Account balance is a positive value

* overdrawn — Account balance is overdrawn, but by $200 or less.

* closed — Account balance is overdrawn by more than $200.

These features define the requirements of the BankAccount and AccountManager classes. Include
only what functionality is required to meet your specific objectives. Support special types of accounts

by subclassing BankAccount and adding more specific features to the subclasses. Extend the
AccountManager as required to support new account types.

3-6

Developing Classes — Typical Workflow

Specifying Class Components

Classes store data in properties, implement operations with methods, and support notifications with
events and listeners. Here is how the BankAccount and AccountManager classes define these
components.

Class Data

The class defines these properties to store the account number, account balance, and the account
status:

* AccountNumber — A property to store the number identifying the specific account. MATLAB
assigns a value to this property when you create an instance of the class. Only BankAccount class
methods can set this property. The SetAccess attribute is private.

* AccountBalance — A property to store the current balance of the account. The class operation
of depositing and withdrawing money assigns values to this property. Only BankAccount class
methods can set this property. The SetAccess attribute is private.

* AccountStatus — The BankAccount class defines a default value for this property. The
AccountManager class methods change this value whenever the value of the AccountBalance
falls below 0. The Access attribute specifies that only the AccountManager and BankAccount
classes have access to this property.

* AccountListener — Storage for the InsufficentFunds event listener. Saving a BankAccount
object does not save this property because you must recreate the listener when loading the object.

Class Operations

These methods implement the operations defined in the class formulation:

* BankAccount — Accepts an account number and an initial balance to create an object that
represents an account.

* deposit — Updates the AccountBalance property when a deposit transaction occurs

* withdraw — Updates the AccountBalance property when a withdrawal transaction occurs

* getStatement — Displays information about the account

* Tloadobj — Recreates the account manager listener when you load the object from a MAT-file.

Class Events

The account manager program changes the status of bank accounts that have negative balances. To
implement this action, the BankAccount class triggers an event when a withdrawal results in a
negative balance. Therefore, the triggering of the InsufficientsFunds event occurs from within
the withdraw method.

To define an event, specify a name within an events block. Trigger the event by a call to the notify

handle class method. Because InsufficientsFunds is not a predefined event, you can name it with
any char vector and trigger it with any action.

BankAccount Class Implementation

It is important to ensure that there is only one set of data associated with any object of a
BankAccount class. You would not want independent copies of the object that could have, for

3 MATLAB Classes Overview

example, different values for the account balance. Therefore, implement the BankAccount class as a
handle class. All copies of a given handle object refer to the same data.

BankAccount Class Synopsis

BankAccount Class Discussion

classdef BankAccount < handle Handle class because there should be only one
copy of any instance of BankAccount.
“Comparison of Handle and Value Classes” on
page 7-2

properties (Access = ?AccountManager) AccountStatus contains the status of the
AccountStatus = 'open’ account determined by the current balance.

end Access is limited to the BankAccount and
AccountManager classes. “Class Members

Access” on page 12-24
proxertieiN(SgtAccess = private) AccountStatus property access by
ACcountBalance AccountManager class methods.
end
properties (Transient) AccountNumber and AccountBalance

endA“O””t"lste”er properties have private set access.

AccountListener property is transient so
the listener handle is not saved.

See “Specify Property Attributes” on page 8-
5.

eve;ts fficientFund Class defines event called
end | HCRenERUNGS InsufficentFunds. withdraw method
triggers event when account balance becomes

negative.

For information on events and listeners, see
“Events” .

methods Block of ordinary methods. See “Define Class
Methods and Functions” on page 5-13 for
syntax.

function BA = BankAccount(AccountNumber,InitialBala@ghstructor initializes property values with
BA.AccountNumber = AccountNumber;

BA.AccountBalance = InitialBalance; mPUt arguments'
BA.AccountListener = AccountManager.addAccount(BA);
end AccountManager.addAccount is static

method of AccountManager class. Creates
listener for InsufficientFunds event and
stores listener handle in AccountListener

property.
function deposit(BA,amt) deposit adjusts value of AccountBalance
BA.AccountBalance = BA.AccountBalance + amt;
if BA.AccountBalance > 0 property
BA.AccountStatus = 'open';
dend If AccountStatus is closed and subsequent
en

deposit brings AccountBalance into positive
range, then AccountStatus is reset to open.

Developing Classes — Typical Workflow

BankAccount Class

function withdraw(BA,amt)
if (strcmp(BA.AccountStatus, 'closed')&& ...
BA.AccountBalance < 0)

disp(['Account ',num2str(BA.AccountNumber), .

' has been closed.'])
return
end
newbal = BA.AccountBalance - amt;
BA.AccountBalance = newbal;
if newbal < 0
notify(BA, 'InsufficientFunds")
end
end

function getStatement(BA)
disp('------------mmmmie o ")
disp(['Account: ',num2str(BA.AccountNumber)])
ab = sprintf('%0.2f',BA.AccountBalance);
disp(['CurrentBalance: ',ab])
disp(['Account Status: ',BA.AccountStatus])
disp('------------mmmiiea o ")

end

end
methods (Static)

function obj = loadobj(s)
if isstruct(s)
accNum = s.AccountNumber;
initBal = s.AccountBalance;
obj = BankAccount(accNum,initBal);
else

Discussion

Updates AccountBalance property. If value
of account balance is negative as a result of

.the withdrawal, notify triggers

InsufficentFunds event.

For more information on listeners, see “Events
and Listeners Syntax” on page 11-17.

Display selected information about the
account.

End of ordinary methods block.

Beginning of static methods block. See “Static
Methods” on page 9-24

loadobj method:

+ If the load operation fails, create the object
from a struct.

obj.AccountListener = AccountManager.addAccourtt (skecreates the listener using the newly

end
end

end
end

Expand for Class Code

classdef BankAccount < handle
properties (Access = ?AccountManager)
AccountStatus = 'open'
end
properties (SetAccess = private)
AccountNumber
AccountBalance
end
properties (Transient)
AccountListener
end
events
InsufficientFunds
end
methods
function BA = BankAccount(accNum,initBal)
BA.AccountNumber = accNum;
BA.AccountBalance = initBal;
BA.AccountListener =

created BankAccount object as the
source.

For more information on saving and loading
objects, see “Save and Load Process for
Objects” on page 13-2

End of static methods block

End of classdef

AccountManager.addAccount (BA);

3-9

3 MATLAB Classes Overview

3-10

end
function deposit(BA,amt)
BA.AccountBalance = BA.AccountBalance + amt;
if BA.AccountBalance > 0
BA.AccountStatus = 'open';
end
end
function withdraw(BA,amt)
if (strcmp(BA.AccountStatus, 'closed')&& BA.AccountBalance <= 0)
disp(['Account ',num2str(BA.AccountNumber),' has been closed.'])
return
end
newbal = BA.AccountBalance - amt;
BA.AccountBalance = newbal;
if newbal < 0
notify(BA, 'InsufficientFunds")

end

end

function getStatement(BA)
disp('---------mm e ")
disp(['Account: ',num2str(BA.AccountNumber)])
ab = sprintf('%0.2f',BA.AccountBalance);
disp(['CurrentBalance: ',ab])
disp(['Account Status: ',BA.AccountStatus])
disp('--------mmim i ")

end

end
methods (Static)
function obj = loadobj(s)
if isstruct(s)
accNum = s.AccountNumber;
initBal = s.AccountBalance;
obj = BankAccount(accNum,initBal);
else
obj.AccountListener = AccountManager.addAccount(s);
end
end
end
end

Formulating the AccountManager Class

The purpose of the AccountManager class is to provide services to accounts. For the BankAccount
class, the AccountManager class listens for withdrawals that cause the balance to drop into the
negative range. When the BankAccount object triggers the InsufficientsFunds event, the
AccountManager resets the account status.

The AccountManager class stores no data so it does not need properties. The BankAccount object
stores the handle of the listener object.

The AccountManager performs two operations:

* Assign a status to each account as a result of a withdrawal

* Adds an account to the system by monitoring account balances.
Class Components

The AccountManager class implements two methods:

* assignStatus — Method that assigns a status to a BankAccount object. Serves as the listener
callback.

* addAccount — Method that creates the InsufficientFunds listener.

Developing Classes — Typical Workflow

Implementing the AccountManager Class

The AccountManager class implements both methods as static because there is no need for an
AccountManager object. These methods operate on BankAccount objects.

The AccountManager is not intended to be instantiated. Separating the functionality of the
AccountManager class from the BankAccount class provides greater flexibility and extensibility.

For example, doing so enables you to:

* Extend the AccountManager class to support other types of accounts while keeping the

individual account classes simple and specialized.

* Change the criteria for the account status without affecting the compatibility of saved and loaded

BankAccount objects.

* Develop an Account superclass that factors out what is common to all accounts without requiring
each subclass to implement the account management functionality

AccountManager Class Synopsis

AccountManager Class

Discussion

classdef AccountManager

This class defines the InsufficentFunds
event listener and the listener callback.

methods (Static)

There is no need to create an instance of this
class so the methods defined are static. See
“Static Methods” on page 9-24.

function assignStatus(BA)
if BA.AccountBalance < 0
if BA.AccountBalance < -200
BA.AccountStatus = 'closed';
else
BA.AccountStatus = 'overdrawn';
end
end
end

The assignStatus method is the callback for
the InsufficentFunds event listener. It
determines the value of a BankAccount object
AccountStatus property based on the value
of the AccountBalance property.

The BankAccount class constructor calls the
AccountManager addAccount method to
create and store this listener.

function 1h = addAccount(BA)
lh = addlistener(BA, 'InsufficientFunds', ...
@(src, ~)AccountManager.assignStatus(src));

addAccount creates the listener for the
InsufficentFunds event that the

end BankAccount class defines.
See “Control Listener Lifecycle” on page 11-
22
endend end statements for methods and for

classdef.

Expand for Class Code

classdef AccountManager
methods (Static)
function assignStatus(BA)
if BA.AccountBalance < 0
if BA.AccountBalance < -200

BA.AccountStatus = 'closed’;

else

3-11

3 MATLAB Classes Overview

BA.AccountStatus = 'overdrawn';
end
end
end
function 1h = addAccount(BA)
1lh = addlistener(BA, 'InsufficientFunds',
@(src, ~)AccountManager.assignStatus(src));
end
end
end

Using BankAccount Objects

The BankAccount class, while overly simple, demonstrates how MATLAB classes behave. For
example, create a BankAccount object with an account number and an initial deposit of $500:

BA BankAccount(1234567,500)

BA =
BankAccount with properties:

AccountNumber: 1234567
AccountBalance: 500
AccountListener: [1x1 event.listener]

Use the getStatement method to check the status:

getStatement (BA)

Account: 1234567
CurrentBalance: 500.00
Account Status: open

Make a withdrawal of $600, which results in a negative account balance:

withdraw(BA,600)
getStatement (BA)

Account: 1234567
CurrentBalance: -100.00
Account Status: overdrawn

The $600 withdrawal triggered the InsufficientsFunds event. The current criteria defined by the
AccountManager class results in a status of overdrawn.

Make another withdrawal of $200:

withdraw(BA,200)
getStatement (BA)

Account: 1234567
CurrentBalance: -300.00

3-12

Developing Classes — Typical Workflow

Account Status: closed

Now the AccountStatus has been set to closed by the listener and further attempts to make
withdrawals are blocked without triggering the event:

withdraw(BA, 100)

Account 1234567 has been closed.

If the AccountBalance is returned to a positive value by a deposit, then the AccountStatus is
returned to open and withdrawals are allowed again:

deposit(BA,700)
getStatement (BA)

Account: 1234567
CurrentBalance: 400.00
Account Status: open

3-13

3 MATLAB Classes Overview

Representing Structured Data with Classes

3-14

In this section...

“Objects as Data Structures” on page 3-14

“Structure of the Data” on page 3-14

“The TensileData Class” on page 3-15

“Create an Instance and Assign Data” on page 3-15
“Restrict Properties to Specific Values” on page 3-16
“Simplifying the Interface with a Constructor” on page 3-16
“Calculate Data on Demand” on page 3-17

“Displaying TensileData Objects” on page 3-18

“Method to Plot Stress vs. Strain” on page 3-18
“TensileData Class Synopsis” on page 3-19

Objects as Data Structures

This example defines a class for storing data with a specific structure. Using a consistent structure
for data storage makes it easier to create functions that operate on the data. A MATLAB struct with
field names describing the particular data element is a useful way to organize data. However, a class
can define both the data storage (properties) and operations that you can perform on that data
(methods). This example illustrates these advantages.

Background for the Example
For this example, the data represents tensile stress/strain measurements. These data are used to
calculate the elastic modulus of various materials. In simple terms, stress is the force applied to a

material and strain is the resulting deformation. Their ratio defines a characteristic of the material.
While this approach is an over simplification of the process, it suffices for this example.

Structure of the Data

This table describes the structure of the data.

Data Description

Material char vector identifying the type of material tested
SampleNumber Number of a particular test sample

Stress Vector of numbers representing the stress applied to the

sample during the test.

Strain Vector of numbers representing the strain at the
corresponding values of the applied stress.

Modulus Number defining an elastic modulus of the material under test,
which is calculated from the stress and strain data

Representing Structured Data with Classes

The TensileData Class

This example begins with a simple implementation of the class and builds on this implementation to
illustrate how features enhance the usefulness of the class.

The first version of the class provides only data storage. The class defines a property for each of the
required data elements.

classdef TensileData
properties
Material
SampleNumber
Stress
Strain
Modulus
end
end

Create an Instance and Assign Data

The following statements create a TensileData object and assign data to it:

td = TensileData;

td.Material = 'Carbon Steel';
td.SampleNumber = 001;

td.Stress [2e4 4e4 6ed 8ed];

td.Strain [.12 .20 .31 .40];
td.Modulus = mean(td.Stress./td.Strain);

Advantages of a Class vs. a Structure

Treat the TensileData object (td in the previous statements) much as you would any MATLAB
structure. However, defining a specialized data structure as a class has advantages over using a
general-purpose data structure, like a MATLAB struct:

» Users cannot accidentally misspell a field name without getting an error. For example, typing the
following:

td.Modulis = ...
would simply add a field to a structure. However, it returns an error when td is an instance of the
TensileData class.

* A class is easy to reuse. Once you have defined the class, you can easily extend it with subclasses
that add new properties.

* A class is easy to identify. A class has a name so that you can identify objects with the whos and
class functions and the Workspace browser. The class name makes it easy to refer to records
with a meaningful name.

* A class can validate individual field values when assigned, including class or value.

» A class can restrict access to fields, for example, allowing a particular field to be read, but not
changed.

3-15

3 MATLAB Classes Overview

3-16

Restrict Properties to Specific Values

Restrict properties to specific values by defining a property set access method. MATLAB calls the set
access method whenever setting a value for a property.

Material Property Set Function

The Material property set method restricts the assignment of the property to one of the following
strings: aluminum, stainless steel, or carbon steel.

Add this function definition to the methods block.

classdef TensileData
properties
Material
SampleNumber
Stress
Strain
Modulus
end
methods
function obj = set.Material(obj,material)
if (strcmpi(material, 'aluminum') |[]...
strcmpi(material, 'stainless steel') |[]...
strcmpi(material, 'carbon steel'))
obj.Material = material;
else
error('Invalid Material')
end
end
end
end

When there is an attempt to set the Material property, MATLAB calls the set.Material method
before setting the property value.

If the value matches the acceptable values, the function set the property to that value. The code
within set method can access the property directly to avoid calling the property set method
recursively.

For example:

td = TensileData;
td.Material = 'brass';

Error using TensileData/set.Material
Invalid Material

Simplifying the Interface with a Constructor

Simplify the interface to the TensileData class by adding a constructor that:

* Enables you to pass the data as arguments to the constructor
* Assigns values to properties

The constructor is a method having the same name as the class.

Representing Structured Data with Classes

methods
function td = TensileData(material,samplenum,stress,strain)
if nargin > 0
td.Material = material;
td.SampleNumber = samplenum;
td.Stress = stress;
td.Strain = strain;
end
end
end

Create a TensileData object fully populated with data using the following statement:

td = TensileData('carbon steel',1,...
[2e4 4e4 6e4 8ed], ...
[.12 .20 .31 .40]1);

Calculate Data on Demand

If the value of a property depends on the values of other properties, define that property using the
Dependent attribute. MATLAB does not store the values of dependent properties. The dependent
property get method determines the property value when the property is accessed. Access can occur
when displaying object properties or as the result of an explicit query.

Calculating Modulus

TensileData objects do not store the value of the Modulus property. The constructor does not have
an input argument for the value of the Modulus property. The value of the Modulus:

* Is calculated from the Stress and Strain property values

* Must change if the value of the Stress or Strain property changes

Therefore, it is better to calculate the value of the Modulus property only when its value is
requested. Use a property get access method to calculate the value of the Modulus.

Modulus Property Get Method

The Modulus property depends on Stress and Strain, so its Dependent attribute is true. Place
the Modulus property in a separate properties block and set the Dependent attribute.

The get.Modulus method calculates and returns the value of the Modulus property.

properties (Dependent)
Modulus
end

Define the property get method in a methods block using only default attributes.

methods
function modulus = get.Modulus(obj)
ind = find(obj.Strain > 0);
modulus = mean(obj.Stress(ind)./obj.Strain(ind));
end
end

This method calculates the average ratio of stress to strain data after eliminating zeros in the
denominator data.

3-17

3 MATLAB Classes Overview

3-18

MATLAB calls the get.Modulus method when the property is queried. For example,

td = TensileData('carbon steel',1,...
[2e4 4e4 6e4 8e4], ...
[.12 .20 .31 .40]1);

td.Modulus

ans =
1.9005e+005

Modulus Property Set Method

To set the value of a Dependent property, the class must implement a property set method. There is
no need to allow explicit setting of the Modulus property. However, a set method enables you to
provide a customized error message. The Modulus set method references the current property value
and then returns an error:

methods
function obj = set.Modulus(obj,~)
fprintf('%s%d\n', 'Modulus is: ',obj.Modulus)
error('You cannot set the Modulus property');
end
end

Displaying TensileData Objects

The TensileData class overloads the disp method. This method controls object display in the
command window.

The disp method displays the value of the Material, SampleNumber, and Modulus properties. It
does not display the Stress and Strain property data. These properties contain raw data that is not
easily viewed in the command window.

The disp method uses fprintf to display formatted text in the command window:

methods
function disp(td)
fprintf(1,...
'Material: %s\nSample Number: %g\nModulus: %1.5g\n',...
td.Material, td.SampleNumber, td.Modulus);
end
end

Method to Plot Stress vs. Strain

It is useful to view a graph of the stress/strain data to determine the behavior of the material over a
range of applied tension. The TensileData class overloads the MATLAB plot function.

The plot method creates a linear graph of the stress versus strain data and adds a title and axis
labels to produce a standardized graph for the tensile data records:

methods
function plot(td,varargin)
plot(td.Strain,td.Stress,varargin{:})
title(['Stress/Strain plot for Sample',...
num2str(td.SampleNumber)])
ylabel('Stress (psi)')

Representing Structured Data with Classes

xlabel('Strain %')
end
end

The first argument to this method is a TensileData object, which contains the data.

The method passes a variable list of arguments (varargin) directly to the built-in plot function. The
TensileData plot method allows you to pass line specifier arguments or property name-value
pairs.

For example:

td = TensileData('carbon steel',1,...
[2e4 4e4 6e4 8e4d],[.12 .20 .31 .40]);
plot(td,'-+b','LineWidth"',2)

<10 Stress/Strain plot for Sample 1
ﬂ- T T T T

2 1 1]
01 0.15 02 0.25 0.3 0.35 0.4

Strain %

TensileData Class Synopsis

Example Code Discussion

classdef TensileData Value class enables independent copies of
object. For more information, see “Comparison
of Handle and Value Classes” on page 7-2

3-19

3 MATLAB Classes Overview

Example Code

properties
Material
SampleNumber
Stress
Strain

end

properties (Dependent)
Modulus
end

methods

function td = TensileData(material, samplenum,...

stress,strain)

if nargin > 0
td.Material = material;
td.SampleNumber = samplenum;
td.Stress = stress;
td.Strain = strain;

end

end

function obj = set.Material(obj,material)
if (strcmpi(material, 'aluminum') |]|...
strcmpi(material, 'stainless steel') ||...
strcmpi(material, 'carbon steel'))
obj.Material = material;
else
error('Invalid Material')
end
end

function m = get.Modulus(obj)

ind = find(obj.Strain > 0);

m = mean(obj.Stress(ind)./obj.Strain(ind));
end

function obj = set.Modulus(obj,~)
fprintf('%s%d\n', '"Modulus is: ',obj.Modulus)
error('You cannot set Modulus property');
end

3-20

Discussion
See “Structure of the Data” on page 3-14

Calculate Modulus when queried. For
information about this code, see “Calculate
Data on Demand” on page 3-17.

For general information, see “Set and Get
Methods for Dependent Properties” on page 8-
50

For general information about methods, see
“Ordinary Methods” on page 9-6

For information about this code, see
“Simplifying the Interface with a Constructor”
on page 3-16.

For general information about constructors, see
“Class Constructor Methods” on page 9-16

Restrict possible values for Material property.

For information about this code, see “Restrict
Properties to Specific Values” on page 3-16.

For general information about property set
methods, see “Property Set Methods” on page
8-45.

Calculate Modulus property when queried.

For information about this code, see “Modulus
Property Get Method” on page 3-17.

For general information about property get
methods, see “Property Get Methods” on page
8-48.

Add set method for Dependent Modulus
property. For information about this code, see
“Modulus Property Set Method” on page 3-18.

For general information about property set
methods, see “Property Set Methods” on page
8-45.

Representing Structured Data with Classes

Example Code

function disp(td)
fprintf (1, 'Material: %s\nSample Number:

td.Material, td.SampleNumber, td.Modulus)

end

function plot(td,varargin)
plot(td.Strain,td.Stress,varargin{:})

title(['Stress/Strain plot for Sample',...

num2str(td.SampleNumber)])
ylabel('Stress (psi)')
xlabel('Strain %')
end

end
end

Expand for Class Code

classdef TensileData

properties
Material
SampleNumber
Stress
Strain

end

properties (Dependent)
Modulus

end

methods

Discussion
verload dlsp method to display certain

cg\nModulus 9 r%les

For information about this code, see
“Displaying TensileData Objects” on page 3-18

For general information about overloading disp,
see “Overloading the disp Function” on page
18-34

Overload plot function to accept
TensileData objects and graph stress vs.
strain.

“Method to Plot Stress vs. Strain” on page 3-18

end statements for methods and for
classdef.

function td = TensileData(material,samplenum,stress,strain)

if nargin > 0
td.Material = material;

td.SampleNumber = samplenum;

td.Stress = stress;
td.Strain = strain;
end
end

function obj = set.Material(obj,material)

if (strcmpi(material, 'aluminum')

strcmpi(material, 'stainless steel') |]...
strcmpi(material, 'carbon steel'))

obj.Material = material;
else

error('Invalid Material')

end
end

function m = get.Modulus(obj)
ind = find(obj.Strain > 0);

m = mean(obj.Stress(ind)./obj.Strain(ind));

end

3-21

3 MATLAB Classes Overview

function obj = set.Modulus(obj,~)
fprintf('%s%d\n', '"Modulus is: ',obj.Modulus)
error('You cannot set Modulus property');
end

function disp(td)
sprintf('Material: %s\nSample Number: %g\nModulus: %1.5g\n',...
td.Material, td.SampleNumber, td.Modulus)
end

function plot(td,varargin)
plot(td.Strain,td.Stress,varargin{:})
title(['Stress/Strain plot for Sample ', ...
num2str(td.SampleNumber)])
xlabel('Strain %')
(

ylabel('Stress (psi)')
end
end
end
See Also
More About
. “Class Components” on page 5-4

3-22

Implementing Linked Lists with Classes

Implementing Linked Lists with Classes

In this section...

“Class Definition Code” on page 3-23

“dlnode Class Design” on page 3-23

“Create Doubly Linked List” on page 3-24

“Why a Handle Class for Linked Lists?” on page 3-25
“dlnode Class Synopsis” on page 3-25

“Specialize the dlnode Class” on page 3-34

Class Definition Code

For the class definition code listing, see “dlnode Class Synopsis” on page 3-25.

To use the class, create a folder named @dlnode and save dlnode.m to this folder. The parent folder
of @dlnode must be on the MATLAB path. Alternatively, save dlnode.m to a path folder.

dinode Class Design

dlnode is a class for creating doubly linked lists in which each node contains:

* Data array
* Handle to the next node
* Handle to the previous node

Each node has methods that enable the node to be:

* Inserted before a specified node in a linked list
» Inserted after a specific node in a linked list
* Removed from a list

Class Properties
The dlnode class implements each node as a handle object with three properties:

* Data — Contains the data for this node
* Next — Contains the handle of the next node in the list (SetAccess = private)
* Prev — Contains the handle of the previous node in the list (SetAccess = private)

This diagram shows a list with three-nodes n1, n2, and n3. It also shows how the nodes reference the

next and previous nodes.
*:;_,.-a—-r i - 3 -
PmperM prﬂperM (- M I‘\
Mext MNext. MNext
Prev Prev

Prev

n2.Prev n2 nZ. Mext

3-23

3 MATLAB Classes Overview

3-24

Class Methods
The dlnode class implements the following methods:

* dlnode — Construct a node and assign the value passed as an input to the Data property
* insertAfter — Insert this node after the specified node

* insertBefore — Insert this node before the specified node

* removeNode — Remove this node from the list and reconnect the remaining nodes

* clearList — Remove large lists efficiently

* delete — Private method called by MATLAB when deleting the list.

Create Doubly Linked List

Create a node by passing the node's data to the dlnode class constructor. For example, these
statements create three nodes with data values 1, 2, and 3:

nl = dlnode(1);
n2 = dlnode(2);
n3 = dlnode(3);

Build these nodes into a doubly linked list using the class methods designed for this purpose:

)
“©

nsert n2 after nl
nsert n3 after n2

n2.insertAfter(nl)
n3.insertAfter(n2) %

I
I
Now the three nodes are linked:
nl.Next % Points to n2
ans =
dlnode with properties:

Data: 2

Next: [1x1 dlnode]

Prev: [1x1 dlnode]
n2.Next.Prev % Points back to n2
ans =

dlnode with properties:

Data: 2
Next: [1x1 dlnode]
Prev: [1x1 dlnode]

nl.Next.Next % Points to n3
ans =
dlnode with properties:
Data: 3

Next: []
Prev: [1x1 dlnode]

Implementing Linked Lists with Classes

n3.Prev.Prev % Points to nl
ans =
dlnode with properties:
Data: 1

Next: [1x1 dlnode]
Prev: []

Why a Handle Class for Linked Lists?

Each node is unique in that no two nodes can be previous to or next to the same node.

For example, a node object, node, contains in its Next property the handle of the next node object,
node.Next. Similarly, the Prev property contains the handle of the previous node, node.Prev.
Using the three-node linked list defined in the previous section, you can demonstrate that the
following statements are true:

nl.Next == n2
n2.Prev == nl

Now suppose that you assign n2 to x:
X = n2;
The following two equalities are then true:

X == nl.Next
X.Prev == nl

But each instance of a node is unique so there is only one node in the list that can satisfy the
conditions of being equal to n1.Next and having a Prev property that contains a handle to n1.
Therefore, X must point to the same node as n2.

There has to be a way for multiple variables to refer to the same object. The MATLAB handle class
provides a means for both x and n2 to refer to the same node.

The handle class defines the eq method (use methods ('handle') to list the handle class methods),
which enables the use of the == operator with all handle objects.

Related Information

For more information on handle classes, see “Comparison of Handle and Value Classes” on page 7-
2.

dinode Class Synopsis

This section describes the implementation of the dlnode class.

3-25

3 MATLAB Classes Overview

3-26

Example Code

Discussion

classdef dlnode < handle

“dlnode Class Design” on page 3-23

“Why a Handle Class for Linked Lists?” on page
3-25

“Comparison of Handle and Value Classes” on
page 7-2

properties
Data
end

“dlnode Class Design” on page 3-23

properties (SetAccess = private)

“Property Attributes” on page 8-6:

Next = dlnode.empty
Prev = dlnode.empty SetAccess.
end
Initialize these properties to empty dlnode
objects.
For general information about properties, see
“Property Syntax” on page 8-4
methods

For general information about methods,
see“Methods in Class Design” on page 9-2

function node = dlnode(Data)
if (margin > 0)
node.Data = Data;
end
end

Creating an individual node (not connected)
requires only the data.

For general information about constructors, see
“Guidelines for Constructors” on page 9-17

function insertAfter(newNode, nodeBefore)
removeNode (newNode) ;
newNode.Next = nodeBefore.Next;
newNode.Prev = nodeBefore;
if ~isempty(nodeBefore.Next)

nodeBefore.Next.Prev = newNode;

end
nodeBefore.Next = newNode;

end

Insert node into a doubly linked list after
specified node, or link the two specified nodes
if there is not already a list. Assigns the correct
values for Next and Prev properties.

“Insert Nodes” on page 3-29

function insertBefore(newNode, nodeAfter)
removeNode (newNode) ;
newNode.Next = nodeAfter;
newNode.Prev = nodeAfter.Prev;
if ~isempty(nodeAfter.Prev)
nodeAfter.Prev.Next = newNode;
end
nodeAfter.Prev = newNode;
end

Insert node into doubly linked list before
specified node, or link the two specified nodes
if there is not already a list. This method
assigns correct values for Next and Prev
properties.

See “Insert Nodes” on page 3-29

function removeNode(node)

if ~isscalar(node)
error('Nodes must be scalar')

end

prevNode = node.Prev;

nextNode = node.Next;

if ~isempty(prevNode)
prevNode.Next = nextNode;

end

if ~isempty(nextNode)
nextNode.Prev = prevNode;

end

node.Next = = dlnode.empty;

node.Prev = = dlnode.empty;
end

Remove node and fix the list so that remaining
nodes are properly connected. node argument
must be scalar.

Once there are no references to node, MATLAB
deletes it.

“Remove a Node” on page 3-30

Implementing Linked Lists with Classes

Example Code

Discussion

function clearList(node)
prev = node.Prev;
next = node.Next;
removeNode (node)
while ~isempty(next)
node = next;
next = node.Next;
removeNode (node) ;
end
while ~isempty(prev)
node = prev;
prev = node.Prev;
removeNode (node)
end
end

deleting it.

Avoid recursive calls to destructor as a result of
clearing the list variable. Loop through list to
disconnect each node. When there are no
references to a node, MATLAB calls the class
destructor (see the delete method) before

methods (Access = private)
function delete(node)
clearList (node)
end

Class destructor method. MATLAB calls the
delete method you delete a node that is still
connected to the list.

end
end

definition.

End of private methods and end of class

Expand for Class Code

classdef dlnode < handle

% dlnode A class to represent a doubly-linked node.

% Link multiple dlnode objects together to create linked lists.
properties
Data
end
properties(SetAccess = private)

Next = dlnode.empty
Prev = dlnode.empty

end

methods

function node = dlnode(Data)
% Construct a dlnode object
if nargin > 0
node.Data = Data;
end
end

function insertAfter(newNode, nodeBefore)
% Insert newNode after nodeBefore.
removeNode (newNode) ;
newNode.Next = nodeBefore.Next;
newNode.Prev = nodeBefore;
if ~isempty(nodeBefore.Next)

nodeBefore.Next.Prev = newNode;

end
nodeBefore.Next = newNode;

end

function insertBefore(newNode, nodeAfter)
% Insert newNode before nodeAfter.
removeNode (newNode) ;
newNode.Next nodeAfter;
newNode.Prev nodeAfter.Prev;

3-27

3 MATLAB Classes Overview

if ~isempty(nodeAfter.Prev)
nodeAfter.Prev.Next = newNode;
end
nodeAfter.Prev = newNode;
end

function removeNode(node)

% Remove a node from a linked list.

if ~isscalar(node)
error('Input must be scalar')

end

prevNode = node.Prev;

nextNode = node.Next;

if ~isempty(prevNode)
prevNode.Next = nextNode;

end

if ~isempty(nextNode)
nextNode.Prev = prevNode;

end

node.Next = dlnode.empty;

node.Prev = dlnode.empty;
end

function clearList(node)
% Clear the list before
% clearing list variable
prev = node.Prev;
next = node.Next;
removeNode (node)
while ~isempty(next)
node = next;
next = node.Next;
removeNode (node) ;
end
while ~isempty(prev)
node = prev;
prev = node.Prev;
removeNode (node)
end
end
end

methods (Access = private)
function delete(node)
clearList(node)
end
end
end

Class Properties

Only dlnode class methods can set the Next and Prev properties because these properties have
private set access (SetAccess = private). Using private set access prevents client code from
performing any incorrect operation with these properties. The dlnode class methods perform all the
operations that are allowed on these nodes.

The Data property has public set and get access, allowing you to query and modify the value of Data
as required.

3-28

Implementing Linked Lists with Classes

Here is how the dlnode class defines the properties:

properties
Data

end

properties(SetAccess = private)
Next dlnode.empty;
Prev = dlnode.empty;

end

Construct a Node Object

To create a node object, specify the node's data as an argument to the constructor:

function node = dlnode(Data)
if nargin > 0
node.Data = Data;
end
end

Insert Nodes

There are two methods for inserting nodes into the list — insertAfter and insertBefore. These
methods perform similar operations, so this section describes only insertAfter in detail.
function insertAfter(newNode, nodeBefore)

removeNode (newNode) ;

newNode.Next = nodeBefore.Next;

newNode.Prev = nodeBefore;

if ~isempty(nodeBefore.Next)

nodeBefore.Next.Prev = newNode;

end

nodeBefore.Next = newNode;
end

How insertAfter Works

First, insertAfter calls the removeNode method to ensure that the new node is not connected to
any other nodes. Then, insertAfter assigns the newNode Next and Prev properties to the handles
of the nodes that are after and before the newNode location in the list.

For example, suppose that you want to insert a new node, nnew, after an existing node, nl, in a list
containing n1-n2—n3.

First, create nnew:

nnew = dlnode(rand(3));

Next, call insertAfter to insert nnew into the list after n1:

nnew.insertAfter(nl)

The insertAfter method performs the following steps to insert nnew in the list between nl and n2:
e Set nnew.Next to nl.Next (nl.Next is n2):

nnew.Next = nl.Next;

3-29

3 MATLAB Classes Overview

3-30

e Setnnew.Prevtonl

nnew.Prev = nl;

* If nl.Next is not empty, then n1.Next is still n2, so n1.Next.Prev is n2.Prev, which is set to
nnew

nl.Next.Prev = nnew;
* nl.Next is now set to nnew

nl.Next = nnew;

na

Proporties _,_f"f " Propaities
Nest — f— et —
Ty Frew

E\P
)

SNenwly insartad node

Remove a Node

The removeNode method removes a node from a list and reconnects the remaining nodes. The
insertBefore and insertAfter methods always call removeNode on the node to insert before
attempting to connect it to a linked list.

Calling removeNode ensures that the node is in a known state before assigning it to the Next or
Prev property:

function removeNode(node)
if ~isscalar(node)
error('Input must be scalar')

end
prevNode = node.Prev;
nextNode = node.Next;

if ~isempty(prevNode)
prevNode.Next = nextNode;

end

if ~isempty(nextNode)
nextNode.Prev = prevNode;

end

node.Next = dlnode.empty;

node.Prev = dlnode.empty;
end

For example, suppose that you remove n2 from a three-node list (n1-n2—n3):

n2.removeNode;

Implementing Linked Lists with Classes

e a0 (s)=

| Properties Properties } Properties

Mext MNext
l Prev Pm»-ﬂ_Hﬁﬁ“\\

Dmﬁnnnectthenndes

removeNode removes n2 from the list and reconnects the remaining nodes with the following steps:

nl = n2.Prev;

n3 = n2.Next;
if nl exists, then
nl.Next = n3;

if n3 exists, then
n3.Prev = nl

The list is rejoined because n1 connects to n3 and n3 connects to n1. The final step is to ensure that
n2.Next and n2.Prev are both empty (that is, n2 is not connected):

n2.Next
n2.Prev

dlnode.empty;
dlnode.empty;

Removing a Node from a List

Suppose that you create a list with 10 nodes and save the handle to the head of the list:
head = dlnode(1);
for i = 10:-1:2

new = dlnode(i);

insertAfter(new, head);
end
Now remove the third node (Data property assigned the value 3):
removeNode (head.Next.Next)
Now the third node in the list has a data value of 4:
head.Next.Next
ans =

dlnode with properties:

Data: 4

Next: [1x1 dlnode]
Prev: [1x1 dlnode]

And the previous node has a Data value of 2:

head.Next

3-31

3 MATLAB Classes Overview

3-32

ans =
dlnode with properties:
Data: 2

Next: [1x1 dlnode]
Prev: [1x1 dlnode]

Delete a Node

To delete a node, call the removeNode method on that node. The removeNode method disconnects
the node and reconnects the list before allowing MATLAB to destroy the removed node. MATLAB
destroys the node once references to it by other nodes are removed and the list is reconnected.

(1

Properties Properties

Mext

== removeModeln?)

=)

Properties

Next
Prev

== cleann?)
MATLAB calls deletein?)

Delete the List

When you create a linked list and assign a variable that contains, for example, the head or tail of the
list, clearing that variable causes the destructor to recurse through the entire list. With large enough
list, clearing the list variable can result in MATLAB exceeding its recursion limit.

The clearList method avoids recursion and improves the performance of deleting large lists by
looping over the list and disconnecting each node. clearList accepts the handle of any node in the
list and removes the remaining nodes.

function clearlList(node)
if ~isscalar(node)
error('Input must be scalar')
end
prev = node.Prev;
next = node.Next;
removeNode (node)
while ~isempty(next)
node = next;
next = node.Next;

Implementing Linked Lists with Classes

removeNode (node) ;
end
while ~isempty(prev)
node = prev;
prev = node.Prev;
removeNode (node)
end
end

For example, suppose that you create a list with many nodes:

head = dlnode(1l);
for k = 100000:-1:2
nextNode = dlnode(k);
insertAfter(nextNode, head)
end

The variable head contains the handle to the node at the head of the list:
head
head =

dlnode with properties:

Data: 1
Next: [1x1 dlnode]
Prev: T[]

head.Next

ans =
dlnode with properties:

Data: 2
Next: [1x1 dlnode]
Prev: [1x1 dlnode]

You can call clearList to remove the whole list:
clearList (head)

The only nodes that have not been deleted by MATLAB are those nodes for which there exists an
explicit reference. In this case, those references are head and nextNode:

head
head =

dlnode with properties:

Data: 1

Next: []

Prev: []
nextNode
nextNode =

3-33

3 MATLAB Classes Overview

3-34

dlnode with properties:

Data: 2
Next: []
Prev: []
You can remove these nodes by clearing the variables:

clear head nextNode
The delete Method

The delete method simply calls the clearList method:

methods (Access = private)
function delete(node)
clearList(node)
end
end

The delete method has private access to prevent users from calling delete when intending to
delete a single node. MATLAB calls delete implicitly when the list is destroyed.

To delete a single node from the list, use the removeNode method.

Specialize the dinode Class

The dlnode class implements a doubly linked list and provides a convenient starting point for
creating more specialized types of linked lists. For example, suppose that you want to create a list in
which each node has a name.

Rather than copying the code used to implement the dlnode class, and then expanding upon it, you
can derive a new class from dlnode (that is, subclass dlnode). You can create a class that has all the
features of dlnode and also defines its own additional features. And because dlnode is a handle
class, this new class is a handle class too.

NamedNode Class Definition

To use the class, create a folder named @NamedNode and save NamedNode . m to this folder. The
parent folder of @NamedNode must be on the MATLAB path. Alternatively, save NamedNode.m to a
path folder.

The following class definition shows how to derive the NamedNode class from the dlnode class:

classdef NamedNode < dlnode
properties
Name = ''
end
methods
function n = NamedNode (name,data)
if nargin == 0
name "y
data [1;
end
n = n@dlnode(data);
n.Name = name;

Implementing Linked Lists with Classes

end
end
end
The NamedNode class adds a Name property to store the node name.

The constructor calls the class constructor for the dlnode class, and then assigns a value to the Name
property.

Use NamedNode to Create a Doubly Linked List

Use the NamedNode class like the dlnode class, except that you specify a name for each node object.
For example:

n(l) = NamedNode('First Node',b100);
n(2) = NamedNode('Second Node',b200);
n(3) = NamedNode('Third Node',b300);

Now use the insert methods inherited from dlnode to build the list:

n(2).insertAfter(n(1))
n(3).insertAfter(n(2))

A single node displays its name and data when you query its properties:
n(l).Next
ans =
NamedNode with properties:
Name: 'Second Node'
Data: 200
Next: [1x1 NamedNode]
Prev: [1x1 NamedNode]
n(1l).Next.Next
ans =
NamedNode with properties:
Name: 'Third Node'
Data: 300
Next: []
Prev: [1x1 NamedNode]
n(3).Prev.Prev
ans =

NamedNode with properties:

Name: 'First Node'

Data: 100
Next: [1x1 NamedNodel
Prev: []

3-35

3 MATLAB Classes Overview

See Also

More About
. “The Handle Superclass” on page 7-11

3-36

Static Data

4 Static Data

Static Data

4-2

In this section...

“What Is Static Data” on page 4-2
“Static Variable” on page 4-2
“Static Data Object” on page 4-3
“Constant Data” on page 4-4

What Is Static Data

Static data refers to data that all objects of the class share and that you can modify after creation.

Use static data to define counters used by class instances or other data that is shared among all
objects of a class. Unlike instance data, static data does not vary from one object to another. MATLAB
provides several ways to define static data, depending on your requirements.

Static Variable

Classes can use a persistent variable to store static data. Define a static method or local function in
which you create a persistent variable. The method or function provides access to this variable. Use
this technique when you want to store one or two variables.

Saving an object of the class defining the persistent variable does not save the static data associated
with the class. To save your static data in an object, or define more extensive data, use the static data
object technique “Static Data Object” on page 4-3

Implementation

The StoreData class defines a static method that declares a persistent variable Var. The
setgetVar method provides set and get access to the data in the persistent variable. Because the
setgetVar method has public access, you can set and get the data stored in the persistent variable
globally. Control the scope of access by setting the method Access attribute.

classdef StoreData
methods (Static)
function out = setgetVar(data)
persistent Var;
if nargin
Var = data;
end
out = Var;
end
end
end

Set the value of the variable by calling setgetVar with an input argument. The method assigns the
input value to the persistent variable:

StoreData.setgetVar(10);

Get the value of the variable by calling setgetVar with no input argument:

Static Data

Q
Il

StoreData.setgetVar

10

Clear the persistent variable by calling clear on the StoreData class:

clear StoreData
a = StoreData.setgetVar

a =
[]

Add a method like setgetVar to any class in which you want the behavior of a static property.

Static Data Object

To store more extensive data, define a handle class with public properties. Assign an object of the
class to a constant property of the class that uses the static data. This technique is useful when you
want to:

* Add more properties or methods that modify the data.
* Save objects of the data class and reload the static data.

Implementation

The SharedData class is a handle class, which enables you to reference the same object data from
multiple handle variables:

classdef SharedData < handle
properties
Datal
Data2
end
end

The UseData class is the stub of a class that uses the data stored in the SharedData class. The
UseData class stores the handle to a SharedData object in a constant property.

classdef UseData
properties (Constant)
Data = SharedData
end
% Class code here
end

The Data property contains the handle of the SharedData object. MATLAB constructs the
SharedData object when loading the UseData class. All subsequently created instances of the
UseData class refer to the same SharedData object.

To initialize the SharedData object properties, load theUseData class by referencing the constant
property.

h = UseData.Data

4-3

4 Static Data

4-4

h:
SharedData with properties:

Datal: []
Data2: []
Use the handle to the SharedData object to assign data to property values:

h.Datal
h.Data2

‘MyDatal';
'MyData2';

Each instance of the UseData class refers to the same handle object:

al
a2

UseData;
UseData;

Reference the data using the object variable:
al.Data.Datal

ans =

MyDatal

Assign a new value to the properties in the SharedData object:
al.Data.Datal = rand(3);

All new and existing objects of the UseData class share the same SharedData object. a2 now has
the rand(3) data that was assigned to al in the previous step:

a2.Data.Datal
ans =
0.8147 0.9134 0.2785

0.9058 0.6324 0.5469
0.1270 0.0975 0.9575

To reinitialize the constant property, clear all instances of the UseData class and then clear the class:
clear al a2

clear UseData

Constant Data

To store constant values that do not change, assign the data to a constant property. All instances of
the class share the same value for that property. Control the scope of access to constant properties by
setting the property Access attribute.

The only way to change the value of a constant property is to change the class definition. Use
constant properties like public final static fields in Java®.

See Also
clear | persistent

Static Data

Related Examples

. “Define Class Properties with Constant Values” on page 15-2
. “Static Methods” on page 9-24

More About

. “Method Attributes” on page 9-4
. “Property Attributes” on page 8-6
. “Static Properties” on page 5-53

Class Definition—Syntax Reference

* “Class Files and Folders” on page 5-2

* “Class Components” on page 5-4

* “Classdef Block” on page 5-8

* “Class Properties” on page 5-10

* “Define Class Methods and Functions” on page 5-13

* “Events and Listeners” on page 5-17

» “Attribute Specification” on page 5-18

» “Call Superclass Methods on Subclass Objects” on page 5-20
* “Representative Class Code” on page 5-22

* “MATLAB Code Analyzer Warnings” on page 5-27

* “Objects In Conditional Statements” on page 5-29

* “Operations on Objects” on page 5-34

* “Use of Editor and Debugger with Classes” on page 5-37

* “Automatic Updates for Modified Classes” on page 5-39

* “Compatibility with Previous Versions” on page 5-46

* “Comparison of MATLAB and Other OO Languages” on page 5-49

5 Class Definition—Syntax Reference

Class Files and Folders

5-2

In this section...

“Class Definition Files” on page 5-2

“Options for Class Folders” on page 5-2

“Options for Class Files” on page 5-2

“Group Classes with Package Folders” on page 5-3

Class Definition Files

Put class definition code in files that have the .m extension. The name of the file must be the same as
the name of the class followed by the .m extension.

For information on the code that defines a class, see “Class Components” on page 5-4.

Options for Class Folders

There are two ways to create folders that contain class-definition files:

* Path folder — a folder that is on the MATLAB path.

» Class folder — a folder that is in a path folder and is named with the @ character and the class
name. For example:

@yClass
Class folders are not directly on the MATLAB path. The path folder that contains the class folder is on
the MATLAB path.

Options for Class Files

There are two ways to specify classes with respect to files and folders:

* Create a single, self-contained class definition file in a path folder or a class folder
* Define a class in multiple files, which requires you to use a class folder inside a path folder

Create a Single, Self-Contained Class Definition File

Create a single, self-contained class definition file in a folder on the MATLAB® path. The name of the
file must match the class (and constructor) name and must have the .m extension. Define the class
entirely in this file. You can put other single-file classes in this folder.

The following diagram shows an example of this folder organization. pathfolder is a folder on the
MATLAB path.

Distribute the Class Definition to Multiple Files

If you use multiple files to define a class, put all the class-definition files (the file containing the
classdef and all class method files) in a single @ClassName folder. That class folder must be inside
a folder that is on the MATLAB path. You can define only one class in a class folder.

Class Files and Folders

A path folder can contain classes defined in both class folders and single files without a class folder.

Group Classes with Package Folders

The parent folder to a package folder is on the MATLAB path, but the package folder is not. Package
folders (which always begin with a + character) can contain multiple class definitions, package-
scoped functions, and other packages. A package folder defines a new name space in which you can
reuse class names. Use the package name to refer to classes and functions defined in package folders
(for example, packagefldl.ClassNameA(), packagefld2.packageFunction()).

See Also

More About

. “Folders Containing Class Definitions” on page 6-13
. “Packages Create Namespaces” on page 6-20

. “Methods in Separate Files” on page 9-8

5 Class Definition—Syntax Reference

Class Components

In this section...

“Class Building Blocks” on page 5-4
“Class Definition Block” on page 5-4
“Properties Block” on page 5-5
“Methods Block” on page 5-5
“Events Block” on page 5-5

“A Complete Class” on page 5-6
“Enumeration Classes” on page 5-6

“Related Information” on page 5-7

Class Building Blocks

MATLAB organizes class definition code into modular blocks, delimited by keywords. All keywords
have an associated end statement:

* classdef...end — Definition of all class components

* properties...end — Declaration of property names, specification of property attributes,
assignment of default values

* methods...end — Declaration of method signatures, method attributes, and function code
* events...end — Declaration of event name and attributes

* enumeration...end — Declaration of enumeration members and enumeration values for
enumeration classes.

properties, methods, events, and enumeration are keywords only within a classdef block.

Class Definition Block

The classdef block contains the class definition within a file that starts with the classdef keyword
and terminates with the end keyword.

classdef (ClassAttributes) ClassName < SuperClass

end

For example, this classdef defines a class called MyClass that subclasses the handle class, but
cannot be used to derive subclasses:

classdef (Sealed) MyClass < handle

end

See, “Classdef Block” on page 5-8 for more syntax information.

Class Components

Properties Block

The properties block (one for each unique set of attribute specifications) contains property
definitions, including optional initial values. The properties block starts with the properties
keyword and terminates with the end keyword.

classdef ClassName
properties (PropertyAttributes)

end
end

For example, this class defines a property called Propl that has private access and has a default
value equal to the output of the date function.

classdef MyClass
properties (SetAccess = private)
Propl = date
end
end

See “Property Definition” on page 8-12 for more information.

Methods Block

The methods block (one for each unique set of attribute specifications) contains function definitions
for the class methods. The methods block starts with the methods keyword and terminates with the
end keyword.

classdef ClassName
methods (MethodAttributes)

end
end
For example:

classdef MyClass

methods (Access = private)
function obj = myMethod(obj)
end

end

end

See “Define Class Methods and Functions” on page 5-13 for more information.

Events Block
The events block (one for each unique set of attribute specifications) contains the names of events

that this class declares. The events block starts with the events keyword and terminates with the
end keyword.

3-5

5 Class Definition—Syntax Reference

classdef ClassName
events (EventAttributes)
EventName
end

end

For example, this class defined an event called StateChange with a ListenAccess set to
protected:

classdef EventSource
events (ListenAccess = protected)
StateChanged
end
end

See “Events and Listeners” on page 5-17 for more information.

A Complete Class

A complete class definition contains any combination of properties, methods, and events code blocks.

classdef (Sealed) MyClass < handle
properties (SetAccess = private)
Propl = datenum(date)

end
properties
Prop2
end
methods
function obj = MyClass(x)
obj.Prop2 = x;
end
end

methods (Access = {?MyOtherClass})

function d = myMethod(obj)
d = obj.Propl + x;

end

end

events (ListenAccess = protected)
StateChanged

end

end

Enumeration Classes

Enumeration classes are specialized classes that define a fixed set of names representing a single
type of value. Enumeration classes use an enumeration block that contains the enumeration
members defined by the class.

The enumeration block starts with the enumeration keyword and terminates with the end keyword.

classdef ClassName < SuperClass
enumeration
EnumerationMember

Class Components

end
end

For example, this class defines two enumeration members that represent logical false and true:

classdef Boolean < logical
enumeration
No (0)
Yes (1)
end
end

See, “Define Enumeration Classes” on page 14-4 for more information.

Related Information

“Folders Containing Class Definitions” on page 6-13

5-7

5 Class Definition—Syntax Reference

Classdef Block

In this section...

“How to Specify Attributes and Superclasses” on page 5-8
“Class Attribute Syntax” on page 5-8
“Superclass Syntax” on page 5-8

“Local Functions in Class File” on page 5-9

How to Specify Attributes and Superclasses

The classdef block contains the class definition. The classdef line is where you specify:

* Class attributes
* Superclasses

The classdef block contains the properties, methods, and events subblocks.

Class Attribute Syntax

Class attributes modify class behavior in some way. Assign values to class attributes only when you
want to change their default value.

No change to default attribute values:

classdef ClassName

g

One or more attribute values assigned:

classdef (attributel = value,...) ClassName

end. .

For example, the TextString class specifies that it cannot be used to derive subclasses:
classdef (Sealed) TextString

end. .

See “Class Attributes” on page 6-5 for a list of attributes and a discussion of the behaviors they
control.

Superclass Syntax

Derive a class from one or more other classes by specifying the superclasses on the classdef line:
classdef ClassName < SuperclassName

end. .

For example, the LinkedList class inherits from classes called Array and handle:

Classdef Block

classdef LinkedList < Array & handle

end

Local Functions in Class File

You can define only one class per file. However, you can add local functions to a file containing the
classdef block. Local functions are scoped to the classdef file and have access to private and
protected class members.

classdef ClassName

end
function localFunction

end

See Also

Related Examples

. “User-Defined Classes” on page 6-2

. “Design Subclass Constructors” on page 12-7
. “Local Functions”

5-9

5 Class Definition—Syntax Reference

Class Properties

5-10

In this section...

“The Properties Block” on page 5-10

“Access to Property Values” on page 5-11

The Properties Block

Define class properties within a properties block:

classdef ClassName
properties (PropertyAttributes)
PropertyName size class {validation functions} = DefaultValue
end
end

Property attributes apply to all properties defined within the block. To define properties with different
attributes, use multiple properties blocks. All property attributes have default values. For a list of
property attributes, see “Property Attributes” on page 8-6.

Restrict the size, class, and other aspects of values assigned to properties in the property definition.
For more information, see “Validate Property Values” on page 8-19.

Optionally assign default values to the property in the properties block. MATLAB evaluates the
assignment statement when the class is first referenced or when loading a saved object. For more
information, see “Property Definition” on page 8-12.

Note Evaluation of property default values occurs only when the value is first needed, and only once
when MATLAB first initializes the class. MATLAB does not reevaluate the expression each time you
create an instance of the class.

For more information on the evaluation of expressions that you assign as property default values, see
“When MATLAB Evaluates Expressions” on page 6-10.

Properties with Different Attributes

The following class defines three properties. Model and Color use default attribute values, resulting
in public read and write access. SerialNumber has read-only access by object users. Assign the
SerialNumber property value from a class member function, such as the constructor or other class
method.

classdef NewCar

properties
Model
Color

end

properties (SetAccess = private)
SerialNumber

end

methods

Class Properties

end
end

Access to Property Values

Use dot notation to access property value.

NewCar

A
A:
NewCar with properties:
Model: []
Color: T[]
SerialNumber: []

Set the Model and Color properties:

A.Model
A.Color

'XGT7000';
'Red';

Add a constructor to the NewCar class to set property values:

classdef NewCar

properties
Model
Color
end
properties (SetAccess = private)
SerialNumber
end
methods
function obj = NewCar(model,color)
obj.Model = model;
obj.Color = color;
obj.SerialNumber = datenum(datetime('now'));
end
end
end
A = NewCar('XGT7000', 'Red")
A =

NewCar with properties:

Model: 'XGT7000'
Color: 'Red'
SerialNumber: 7.362456078531134e+05

See Also

Related Examples
. “Ways to Use Properties” on page 8-2

5-11

5 Class Definition—Syntax Reference

. “Validate Property Values” on page 8-19

5-12

Define Class Methods and Functions

Define Class Methods and Functions

In this section...
“The Methods Block” on page 5-13
“Method Calling Syntax” on page 5-13

“Private Methods” on page 5-14

“More Detailed Information on Methods” on page 5-14
“Class-Related Functions” on page 5-14

“How to Overload Functions and Operators” on page 5-15

“Rules for Defining Methods in Separate Files” on page 5-15

The Methods Block

Define methods as MATLAB functions within a methods block, inside the classdef block. The
constructor method has the same name as the class and returns an initialized object of the class. To
create an object with property values that are unique to that instance, assign values to properties in
the class constructor. Terminate all method functions with an end statement.

classdef ClassName
properties
PropertyName
end
methods
function obj = ClassName(argl,...)
obj.PropertyName = argl;

endl.
function ordinaryMethod(obj,argl,...)

end
end
methods (Static)
function staticMethod(argl,...)

end
end
end

Method Calling Syntax

MATLAB differs from languages like C++ and Java in that there is no special hidden class object
passed to all methods. You must pass an object of the class explicitly to the method. The leftmost
argument does not need to be the class object, and the argument list can have multiple objects.
MATLAB dispatches to the method defined by the class of the dominant argument. For more
information, see “Method Invocation” on page 9-11.

Methods must be on the MATLAB path when called. For example, if you create an object and then
change your current folder to a folder from which the method file is not visible, an error occurs when
you call that method.

Always use case-sensitive method names in your MATLAB code.

5-13

5 Class Definition—Syntax Reference

5-14

Ordinary Methods

Call ordinary methods using MATLAB function syntax or dot notation. For example, suppose that you
have a class that defines ordinaryMethod. Pass an object of the defining class and whatever
arguments are required.

classdef MyClass
methods
function out = ordinaryMethod(obj,argl)
end
end
end

Call ordinaryMethod using the object obj of the class and either syntax:

obj = MyClass;
r = ordinaryMethod(obj,argl);
r obj.ordinaryMethod(argl);

Static Methods

Static methods do not require an object of the class. To call a static method, prefix the method name
with the class name so that MATLAB can determine what class defines the method.

classdef MyClass
methods (Static)
function out = staticMethod(argl)
end
end
end
Call staticMethod using the syntax classname.methodname:
r = MyClass.staticMethod(argl);

See “Static Methods” on page 9-24 for information on methods that do not require objects of their
class.

Private Methods

Use the Access method attribute to create a private method. You do not need to use a private folder.

See “Method Attributes” on page 9-4 for a list of method attributes.

More Detailed Information on Methods

“Methods”

Class-Related Functions

You can define functions that are not class methods in the file that contains the class definition
(classdef). Define local functions outside of the classdef - end block, but in the same file as the
class definition. Functions defined in classdef files work like local functions. You can call these

Define Class Methods and Functions

functions from anywhere in the same file, but they are not visible outside of the file in which you
define them.

Local functions in classdef files are useful for utility functions that you use only within that file.
These functions can take or return arguments that are instances of the class but, it is not necessary,
as in the case of ordinary methods. For example, the following code defines myUtilityFcn outside
the classdef block:

classdef MyClass
properties
PropName
end
methods
function obj = MyClass(argl)
obj.PropName = argl;
end
end
end % End of classdef

function myUtilityFcn
end

You also can create package functions, which require the use of the package name when calling these
functions.

How to Overload Functions and Operators

Overload MATLAB functions for your class by defining a class method with the same name as the
function that you want to overload. MATLAB dispatches to the class method when the function is
called with an instance of the class.

You can overload MATLAB arithmetic, logical, relational, and indexing operators by defining class
methods with the appropriate names.

See the handle class for a list of operations defined for that class. All classes deriving from handle
inherit these methods.

Rules for Defining Methods in Separate Files

The following rules apply to methods defined in separate files:

» To specify attributes for a method defined in a separate file, declare this method in a methods
block in the classdef file. Specify the attribute values with the methods block.

* Match the syntax declared in the methods block (if used) to the method's function line.

* The separate file must be in the class (@) folder.

* The class constructor method must be defined in the classdef file. The constructor cannot be in
a separate file.

* Handle class delete methods must be defined in the classdef file. The delete method cannot
be in a separate file.

All functions that use dots in their names must be defined in the classdef file, including:

5-15

5 Class Definition—Syntax Reference

* Converter methods that must use the package name as part of the class name because the
class is contained in packages

* Property set and get access methods

For more information on defining methods in separate files, see “Methods in Separate Files” on page
9-8

See Also

More About
. “Methods in Class Design” on page 9-2

5-16

Events and Listeners

Events and Listeners

In this section...

“Define and Trigger Events” on page 5-17
“Listen for Events” on page 5-17

Define and Trigger Events

To define an event, declare a name for the event in an events block. Trigger the event using the
handle class notify method. Only classes derived from the handle class can define events.

For example, MyClass class:

* Subclasses handle
* Defines an event named StateChange
» Triggers the event using the inherited notify method in its upDateUI method.

classdef MyClass < handle

events
StateChange

end

methods
function upDateUI(obj)

notify(obj, 'StateChange');

end

end
end

Listen for Events

Any number of objects can listen to the StateChange event. When notify executes, MATLAB calls
all registered listener callbacks. MATLAB passes the handle of the object generating the event and
event data to the callback functions. To create a listener, use the addlistener method of the
handle class.

addlistener(event obj, 'StateChange',@myCallback)

To control the lifecycle of the listener, use the event.listener constructor to create the listener
object.

See Also
event.hasListener | event.listener | event.proplistener

Related Examples
. “Overview Events and Listeners” on page 11-2
. “Events and Listeners Syntax” on page 11-17

5-17

5 Class Definition—Syntax Reference

Attribute Specification

5-18

In this section...

“Attribute Syntax” on page 5-18
“Attribute Descriptions” on page 5-18
“Attribute Values” on page 5-18

“Simpler Syntax for true/false Attributes” on page 5-19

Attribute Syntax

Attributes modify the behavior of classes and class components (properties, methods, and events).
Attributes enable you to define useful behaviors without writing complicated code. For example, you
can create a read-only property by setting its SetAccess attribute to private, but leaving its
GetAccess attribute set to public:

properties (SetAccess = private)
ScreenSize = getScreenSize
end

All class definition blocks (classdef, properties, methods, and events) support specific
attributes. All attributes have default values. Specify attribute values only in cases where you want to
change from the default value to another predefined value.

Note Specify the value of a particular attribute only once in any component block.

Attribute Descriptions

For lists of supported attributes, see:

* “Class Attributes” on page 6-5

* “Property Attributes” on page 8-6
* “Method Attributes” on page 9-4
* “Event Attributes” on page 11-15

Attribute Values

When you specify attribute values, those values affect all the components defined within the defining
block. For example, the following property definition blocks set the:

* AccountBalance property SetObservable attribute to true

* SSNumber and CreditCardNumber properties' Hidden attribute to true and SetAccess
attribute to private.

Defining properties with different attribute settings requires multiple properties blocks.

properties (SetObservable = true)
AccountBalance

end

properties (SetAccess = private, Hidden = true)

Attribute Specification

SSNumber
CreditCardNumber
end

Specified multiple attributes in a comma-separated list, as shown in the previous example.
When specifying class attributes, place the attribute list directly after the classdef keyword:
classdef (AttributeName = attributeValue) ClassName

end

Simpler Syntax for true/false Attributes

You can use a simpler syntax for attributes whose values are true or false — the attribute name
alone implies true and adding the not operator (~) to the name implies false. For example:

methods (Static)

end. .

Is the same as:

methods (Static = true)
end. .

Use the not operator before an attribute name to define it as false:
methods (~Static)

end. .

Is the same as:

methods (Static = false)
end. .

All attributes that take a logical value (that is, true or false) have a default value of false.
Therefore, specify an attribute only if you want to set it to true.

See Also

Related Examples

. “Evaluation of Expressions in Class Definitions” on page 6-8

5-19

5 Class Definition—Syntax Reference

Call Superclass Methods on Subclass Objects

5-20

In this section...

“Superclass Relation to Subclass” on page 5-20
“How to Call Superclass Methods” on page 5-20

“How to Call Superclass Constructor” on page 5-20

Superclass Relation to Subclass

Subclasses can override superclass methods to support the greater specialization defined by the
subclass. Because of the relationship that a subclass object is a superclass object, it is often useful to
call the superclass version of the method before executing the specialized subclass code.

How to Call Superclass Methods

Subclass methods can call superclass methods if both methods have the same name. From the
subclass, reference the method name and superclass name with the @ symbol.

This diagram illustrates how to call the superMethod defined by MySuperClass.

For example, a subclass can call a superclass disp method to implement the display of the superclass
part of the object. Then the subclass adds code to display the subclass part of the object:

classdef MySub < MySuperClass
methods
function disp(obj)
disp@MySuperClass(obj)

end
end
end

How to Call Superclass Constructor

If you create a subclass object, MATLAB calls the superclass constructor to initialize the superclass
part of the subclass object. By default, MATLAB calls the superclass constructor without arguments.
If you want the superclass constructor called with specific arguments, explicitly call the superclass
constructor from the subclass constructor. The call to the superclass constructor must come before
any other references to the object.

The syntax for calling the superclass constructor uses an @ symbol:

In the following class, the MySub object is initialized by the MySuperClass constructor. The
superclass constructor constructs the MySuperClass part of the object using the specified
arguments.

classdef MySub < MySuperClass
methods

Call Superclass Methods on Subclass Objects

function obj = MySub(argl,arg2,...)
obj = obj@MySuperClass(SuperClassArguments);

end
end
end

See “Subclass Constructors” on page 9-19 for more information.

See Also

Related Examples
. “Modify Inherited Methods” on page 12-13

5-21

5 Class Definition—Syntax Reference

Representative Class Code

In this section...

“Class Calculates Area” on page 5-22
“Description of Class Definition” on page 5-24

Class Calculates Area

The CircleArea class shows the syntax of a typical class definition. This class stores a value for the
radius of a circle and calculates the area of the circle when you request this information.
CircleArea also implements methods to graph, display, and create objects of the class.

To use the CircleArea class, copy this code into a file named CircleArea.m and save this file in a
folder that is on the MATLAB path.

classdef CircleArea
properties
Radius
end
properties (Constant)
P =pi
end
properties (Dependent)
Area
end
methods
function obj = CircleArea(r)
if nargin > 0
obj.Radius = r;
end
end
function val = get.Area(obj)
val = obj.P*obj.Radius"2;

end
function obj = set.Radius(obj,val)
if val < 0
error('Radius must be positive')
end
obj.Radius = val;
end

function plot(obj)
r = obj.Radius;

d = r*2;
pos = [0 0 d d];
curv = [1 1];

rectangle('Position',pos, 'Curvature',curv,...
'"FaceColor',[.9 .9 .9])
line([0,r],[r,r])

text(r/2,r+.5,['r = ',num2str(r)])
title(['Area = ',num2str(obj.Area)])
axis equal

end

function disp(obj)
rad = obj.Radius;
disp(['Circle with radius: ',num2str(rad)])

5-22

Representative Class Code

end
end
methods (Static)
function obj = createObj
prompt = {'Enter the Radius'};
dlgTitle = 'Radius’;
rad = inputdlg(prompt,dlgTitle);
r = str2double(rad{:});
obj = CircleArea(r);
end
end
end

Use the CircleArea Class

Create an object using the dialog box:

ca = CircleArea.createObj

Add a value for radius and click OK.

il

Enter the Radius

[F23

OK Cancel

Query the area of the defined circle:
ca.Area
ans =
164.2202
Call the overloaded plot method:

plot(ca)

5-23

5 Class Definition—Syntax Reference

Area =164.2202

14 F

127

Description of Class Definition

Class definition code begins with the classdef keyword followed by the class name:
classdef CircleArea
Define the Radius property within the properties-end keywords. Use default attributes:

properties
Radius
end

Define the P property as Constant (“Define Class Properties with Constant Values” on page 15-
2). Call the pi function only once when class is initialized.
properties (Constant)
P =pi
end
Define the Area property as Dependent because its value depends on the Radius property.

properties (Dependent)
Area
end

methods % Begin defining methods

The CircleArea class constructor method has the same name as the class and accepts the value of
the circle radius as an argument. This method also allows no input arguments. (“Class Constructor
Methods” on page 9-16)

5-24

Representative Class Code

function obj = CircleArea(r)
if nargin > 0

obj.Radius = r;
else

obj.Radius = 0;
end

end

Because the Area property is Dependent, it does not store its value. The get.Area method
calculates the value of the Area property whenever it is queried. (“Set and Get Methods for
Dependent Properties” on page 8-50)

function val = get.Area(obj)

val = obj.P*obj.Radius"2;

end
The set.Radius method tests the value assigned to the Radius property to ensure that the value is
not less than zero. MATLAB calls set.Radius to assign a value to Radius. (“Property Set Methods”
on page 8-45.

function obj = set.Radius(obj,val)

if val < 0
error('Radius must be positive')
end
obj.Radius = val;
end

The CircleArea class overloads the plot function. The plot method uses the rectangle function
to create a circle and draws the radius. (“Overload Functions in Class Definitions” on page 9-26

function plot(obj)
r = obj.Radius;

d = r*2;
pos = [0 0 d d];
curv = [1 1];

rectangle('Position',pos, 'Curvature',curv)
line([O,r],[r,r])
text(r/2,r+.5,['r = ',num2str(r)])
axis equal
end

The CircleArea class overloads the disp function to change the way MATLAB displays objects in
the command window.

function disp(obj)

rad = obj.Radius;

disp(['Circle with radius: ',num2str(rad)])
end

end
methods (Static)

The CircleArea class defines a Static method that uses a dialog box to create an object. (“Static
Methods” on page 9-24

function obj = createObj
prompt = {'Enter the Radius'};
dlgTitle = 'Radius’;
rad = inputdlg(prompt,dlgTitle);
r = str2double(rad{:});
obj = CircleArea(r);

end

5-25

5 Class Definition—Syntax Reference

End of Static methods block and end of classdef block.

end
end

5-26

MATLAB Code Analyzer Warnings

MATLAB Code Analyzer Warnings

In this section...

“Syntax Warnings and Property Names” on page 5-27
“Variable/Property Name Conflict Warnings” on page 5-27

“Exception to Variable/Property Name Rule” on page 5-28

Syntax Warnings and Property Names

The MATLAB Code Analyzer helps you optimize your code and avoid syntax errors while you write
code. It is useful to understand some of the rules that the Code Analyzer applies in its analysis of
class definition code. This understanding helps you avoid situations in which MATLAB allows code
that is undesirable.

Variable/Property Name Conflict Warnings

The Code Analyzer warns about the use of variable names in methods that match the names of
properties. For example, suppose that a class defines a property called EmployeeName and in this
class, there is a method that uses EmployeeName as a variable:

properties
EmployeeName
end
methods
function someMethod(obj,n)
EmployeeName = n;
end
end

While the previous function is legal MATLAB code, it results in Code Analyzer warnings for two
reasons:

* The value of EmployeeName is never used
* EmployeeName is the name of a property that is used as a variable

If the function someMethod contained the following statement instead:
obj.EmployeeName = n;
The Code Analyzer generates no warnings.
If you change someMethod to:
function EN = someMethod(obj)
EN = EmployeeName;

end

The Code Analyzer returns only one warning, suggesting that you might actually want to refer to the
EmployeeName property.

While this version of someMethod is legal MATLAB code, it is confusing to give a property the same
name as a function. Therefore, the Code Analyzer provides a warning suggesting that you might have
intended the statement to be:

5-27

5 Class Definition—Syntax Reference

5-28

EN = obj.EmployeeName;

Exception to Variable/Property Name Rule

Suppose that you define a method that returns a value of a property and uses the name of the
property for the output variable name. For example:

function EmployeeName = someMethod(obj)

EmployeeName = obj.EmployeeName;
end

The Code Analyzer does not warn when a variable name is the same as a property name when the
variable is:

* An input or output variable
* A global or persistent variable

In these particular cases, the Code Analyzer does not warn you that you are using a variable name
that is also a property name. Therefore, a coding error like the following:

function EmployeeName = someMethod(obj)
EmployeeName = EmployeeName; % Forgot to include obj.
end

does not trigger a warning from the Code Analyzer.

See Also

Related Examples
. “Use of Editor and Debugger with Classes” on page 5-37

Objects In Conditional Statements

Objects In Conditional Statements

In this section...

“Enable Use of Objects in Conditional Statements” on page 5-29
“How MATLAB Evaluates Switch Statements” on page 5-29
“How to Define the eq Method” on page 5-30

“Enumerations in Switch Statements” on page 5-32

Enable Use of Objects in Conditional Statements

Enable the use of objects in conditional statements by defining relational operators for the class of
the object. Classes that derive from the handle class inherit relational operators. Value classes can
implement operators to support the use of conditional statements involving objects. For information
on defining operators for your class, see “Operator Overloading” on page 17-38.

How MATLAB Evaluates Switch Statements

MATLAB enables you to use objects in switch statements when the object’s class defines an eq
method. The eq method implements the == operation on objects of that class.

For objects, case expression == switch expression defines how MATLAB evaluates switch
and cases statements.

The values returned by the eq method must be of type Logical or convertible to Logical. MATLAB
attempts to convert the output of eq to a logical value if the output of the eq method is a nonlogical
value.

Note You do not need to define eq methods for enumeration classes. See “Enumerations in Switch
Statements” on page 5-32.

Handle Objects in Switch Statements

All classes derived from the handle class inherit an eq method. The expression,
hl == h2

is true if hl and h2 are handles for the same object.

For example, the BasicHandle class derives from handle:

classdef BasicHandle < handle
properties
Propl
end
methods
function obj = BasicHandle(val)
if nargin > 0
obj.Propl = val;
end
end

5-29

5 Class Definition—Syntax Reference

5-30

end
end

Create a BasicHandle object and use it in a switch statement:

hl
h2

BasicHandle('Handle Object');
hl;

Here is the switch statement code:

switch hl
case h2
disp('h2 is selected')
otherwise
disp('h2 not selected')
end

The result is:

h2 is selected
Object Must Be Scalar

The switch statements work only with scalar objects. For example:

h1(1l) = BasicHandle('Handle Object');
h1(2) = BasicHandle('Handle Object');
h1(3) = BasicHandle('Handle Object');
h2 = hl;
switch hl
case h2
disp('h2 is selected')
otherwise
disp('h2 not selected')

end
The result is:
SWITCH expression must be a scalar or string constant.

In this case, h1 is not scalar. Use isscalar to determine if an object is scalar before entering a
switch statement.

How to Define the eq Method

To enable the use of value-class objects in switch statements, implement an eq method for the class.
Use the eq method to determine what constitutes equality of two objects of the class.

Behave like a Built-in Type

Some MATLAB functions also use the built-in == operator in their implementation. Therefore, your
implementation of eq should be replaceable with the built-in eq to enable objects of your class work
like built-in types in MATLAB code.

Design of eq

Implement the eq method to return a logical array representing the result of the == comparison.

Objects In Conditional Statements

For example, the SwitchOnVer class implements an eq method that returns true for the ==
operation if the value of the Version property is the same for both objects. In addition, eq works
with arrays the same way as the built-in eq. For the following expression:

objl == obj2
The eq method works as follows:

» Ifboth objl and obj2 are scalar, eq returns a scalar value.

* Ifboth objl and obj2 are nonscalar arrays, then these arrays must have the same dimensions,
and eq returns an array of the same size.

* If one input argument is scalar and the other is a nonscalar array, then eq treats the scalar object
as if it is an array having the same dimensions as the nonscalar array.

Implementation of eq

Here is a class that implements an eq method. Ensure that your implementation contains appropriate
error checking for the intended use.

classdef SwitchOnVer
properties
Version
end
methods
function obj = SwitchOnVer(ver)
if nargin > 0
obj.Version = ver;
end
end
function bol = eq(objl,obj2)
if ~strcmp(class(objl),class(obj2))
error('Objects are not of the same class')
end
sl numel(objl);
s2 numel(obj2);
if sl == s2
bol = false(size(objl));
for k=1:sl
if objl(k).Version == obj2(k).Version
bol(k) = true;
else
bol(k) = false;
end
end
elseif sl == 1
bol = scalarExpEqg(obj2,0bjl);
elseif s2 == 1
bol = scalarExpEqg(objl,0bj2);
else
error('Dimension missmatch')
end
function ret = scalarExpEq(ns,s)
% ns is nonscalar array
% s 1s scalar array
ret = false(size(ns));
n = numel(ns);
for kk=1:n

5-31

5 Class Definition—Syntax Reference

if ns(kk).Version == s.Version
ret(kk) = true;

else
ret(kk) = false;

end

end
end
end
end
end

Use SwitchOnVer objects in switch statements:

% Create known versions of objects

ovl = SwitchOnVer(1.0);
ov2 = SwitchOnVer(2.0);
ov3 = SwitchOnVer(3.0);

if isscalar(objIn)

switch(objIn)
case ovl
disp('This is version 1.0')
case ov2
disp('This is version 2.0')
case ov3
disp('This is version 3.0')
otherwise
disp('There is no version')
end
else
error('Input object must be scalar')
end

Enumerations in Switch Statements

MATLAB enables you to use enumerations in switch statements without requiring an explicitly
defined eq method for the enumeration class.

For example, the WeeklyPlanner class defines enumerations for five days of the week. The switch/
case statements in the todaySchedule static method dispatch on the enumeration member
corresponding to the current day of the week. The date and datestr functions return a char vector
with the name of the current day.

classdef WeeklyPlanner
enumeration
Monday, Tuesday, Wednesday, Thursday, Friday
end
methods (Static)
function todaySchedule
dayName = datestr(date, 'dddd');
dayEnum = WeeklyPlanner. (dayName) ;
switch dayEnum
case WeeklyPlanner.Monday
disp('Monday schedule')
case WeeklyPlanner.Tuesday

5-32

Objects In Conditional Statements

disp('Tuesday schedule')

case WeeklyPlanner.Wednesday
disp('Wednesday schedule")

case WeeklyPlanner.Thursday
disp('Thursday schedule')

case WeeklyPlanner.Friday
disp('Friday schedule')

end
end
end
end

Call todaySchedule to display today’s schedule:

WeeklyPlanner.todaySchedule
Enumerations Derived from Built-In Types

Enumeration classes that derived from built-in types inherit the superclass eq method. For example,
the FlowRate class derives from int32:

classdef FlowRate < int32
enumeration
Low (10)
Medium (50)
High (100)
end
end

The switchEnum function switches on the input argument, which can be a FlowRate enumeration
value.

function switchEnum(inpt)
switch inpt

case 10
disp('Flow = 10 cfm')
case 50
disp('Flow = 50 cfm')
case 100
disp('Flow = 100 cfm')
end

end
Call switchEnum with an enumerated value:

switchEnum(FlowRate.Medium)

Flow = 50 cfm

5-33

5 Class Definition—Syntax Reference

Operations on Objects

In this section...

“Object Operations” on page 5-34

“Help on Objects” on page 5-35

“Functions to Test Objects” on page 5-36

“Functions to Query Class Components” on page 5-36

Object Operations

A fundamental purpose of objects is to contain data and facilitate ways to manipulate that data.
Objects often define their own version of ordinary MATLAB functions that work with the object. For
example, you can create a timeseries object and pass the object to plot:

ts = timeseries(rand(100,1),.01:.01:1, 'Name', 'Datal');
plot(ts)

Time Series Plot:Data1

1 I I 1 1 L I I 1 1

ﬂ| | | | -

| | ! ’ 1

0.8 |

0.6 F | ‘ | ‘ | h

Data1
-]
[
_—

mil

0.2 | |l ' || ‘ L‘ ‘J
01 |'/ |

D 1
0 0.1 02 0.3 04 0.5 0.6 0.7 0.8 09 1

Time (seconds)

However, MATLAB does not call the standard plot function. MATLAB calls the timeseries plot
method, which can extract the data from the timeseries object and create a customized graph.

5-34

Operations on Objects

Help on Objects

Suppose that you use an audioplayer object to play audio with MATLAB. To play audio, load audio
data into MATLAB and create an audioplayer:

load('handel','Fs','y")
chorus = audioplayer(y,Fs);

The audioplayer function creates an object that you access using the object variable chorus.
MATLAB stores the audio source and other information in the object properties.

Here are the properties and values for the chorus instance of the audioplayer:
chorus

chorus =

Click the link to get the documentation on audioplayer objects.

it'n properties:

SampleBRate: 81892
BitsPerSample: 16
HumberOfChannels:
DeviceIDl: -1
CurrentSample: 1
TotalSamples: 73113
Bunning: 'off'
StartFecn: []
StopFen: []
TimerFcm: []
TimerPeriod: 0.0500
Tag: '°'
UserData: []
Type: 'audioplayer!'

The object’s documentation discusses the purpose of the object and describes the properties and
methods that you use when working with objects of that class.

You can also list the methods to see what operations you can perform. Pass the object to the methods
function to see the list:

methods (chorus)

Methods for class audioplayer:

audioplayer getdisp pause resume stop
delete horzcat play set vertcat
get isplaying playblocking setdisp

To play the audio, use the play method:
play(chorus)

5-35

5 Class Definition—Syntax Reference

5-36

Functions to Test Objects

These functions provide logical tests, which are useful when using objects in ordinary functions.

Function Description

isa Determine whether an argument is an ohject of specific class.

isequal Determine if two objects are equal, which means both objects are of the
same class and size and their corresponding property values are equal.

a==Db(eq) Determine if handle variable a refers to the same object as handle variable b.

isobject Determine whether input is a MATLAB object

Functions to Query Class Components

These functions provide information about object class components.

Function Description

class Return class of object.

enumeration Display class enumeration members and names.
events List event names defined by the class.

methods List methods implemented by the class.
methodsview List methods in separate window.

properties List class property names.

See Also

Related Examples
. “Class Syntax Guide”

Use of Editor and Debugger with Classes

Use of Editor and Debugger with Classes

In this section...
“Write Class Code in the Editor” on page 5-37
“How to Refer to Class Files” on page 5-37

“How to Debug Class Files” on page 5-37

Write Class Code in the Editor

The MATLAB code editor provides an effective environment for class development. The Code
Analyzer, which is built into the editor, check code for problems and provides information on fixing
these problems. For information on editor use and features, see edit.

How to Refer to Class Files

Define classes in files just like scripts and functions. To use the editor or debugger with a class file,
use the full class name. For example, suppose the file for a class, myclass.mis in the following
location:

+PackFld1l/+PackFld2/@myclass/myclass.m

To open myclass.m in the MATLAB editor, you could reference the file using dot-separated package
names:

edit PackFldl.PackFld2.myclass

You could also use path notation:

edit +PackFldl/+PackFld2/@myclass/myclass

If myclass.mis not in a class folder, then enter:

edit +PackFldl/+PackFld2/myclass

To refer to functions inside a package folder, use dot or path separators:

edit PackFldl.PackFld2.packFunction
edit +PackFldl/+PackFld2/packFunction

To refer to a method defined in its own file inside a class folder, use:

edit +PackFldl/+PackFld2/@myclass/myMethod

How to Debug Class Files

For debugging, dbstop enables you to set breakpoints in the class constructor by specifying the fully
qualified class file name. To set a breakpoint at a method defined in the class file, specify the line
number of the method with the dbstop command. For example, if the method begins on line 14 in the
classdef file, myclass.m, use this command to put a breakpoint on the first executable line of the
method.

dbstop in myclass at 14

5-37

5 Class Definition—Syntax Reference

See “Automatic Updates for Modified Classes” on page 5-39 for information about clearing class
after modification.

See Also
dbstop

Related Examples

. “MATLAB Code Analyzer Warnings” on page 5-27
. “Debug a MATLAB Program”

5-38

Automatic Updates for Modified Classes

Automatic Updates for Modified Classes

In this section...
“When MATLAB Loads Class Definitions” on page 5-39
“Consequences of Automatic Update” on page 5-39

“What Happens When Class Definitions Change” on page 5-40
“Ensure Defining Folder Remains in Scope” on page 5-40
“Actions That Do Not Trigger Updates” on page 5-41
“Multiple Updates to Class Definitions” on page 5-41
“Object Validity with Deleted Class File” on page 5-41
“When Updates Are Not Possible” on page 5-41
“Potential Consequences of Class Updates” on page 5-41
“Interactions with the Debugger” on page 5-42

“Updates to Class Attributes” on page 5-42

“Updates to Property Definitions” on page 5-42

“Updates to Method Definitions” on page 5-43

“Updates to Event Definitions” on page 5-44

When MATLAB Loads Class Definitions

MATLAB loads a class definition:

» The first time the class is referenced, such as creating an instance, accessing a constant property,
or calling a static method of the class.

* Whenever the definition of a loaded class changes and MATLAB returns to the command prompt.

* When you change the MATLAB path and cause a different definition of the class to be used. The
change takes effect after MATLAB returns to the command prompt.

* Whenever you access the class metadata.
MATLAB allows only one definition for a class to exist at any time. Therefore, MATLAB attempts to

update all existing objects of a class automatically to conform to the new class definition. You do not
need to call clear classes to remove existing objects when you change their defining class.

Note Using an editor other than the MATLAB editor or using MATLAB Online™ can result in delays
to automatic updating.

Consequences of Automatic Update

MATLAB follows a set of basic rules when updating existing objects. An automatic update can result
in:

+ Existing objects being updated to the new class definition.

* An error if MATLAB cannot convert the objects to the new class definition or if there is an error in
the class definition itself.

5-39

5 Class Definition—Syntax Reference

5-40

Here is an example of what happens when you create an instance of a concrete class edit the class
definition to make the class abstract.

a = My(Class;
% Edit MyClass to make it Abstract

a

Error using MyClass/display
Cannot update object because the class 'MyClass' is now abstract.

Note MATLAB does not update metaclass instances when you change the definition of a class. You
must get new metaclass data after updating a class definition.

What Happens When Class Definitions Change

MATLAB updates existing objects when a class definition changes, including the following situations:

* Value change to handle — Existing objects become independent handles referring to different
objects.

* Enumeration member added — Existing objects preserve the enumeration members they had
previously, even if the underlying values have changed.

* Enumeration member removed — Existing objects that are not using the removed member have
the same enumeration members that they had previously. Existing objects that use the removed
member replace the removed member with the default member of the enumeration.

* Enumeration block removed — Enumeration members are taken out of use.

* Superclass definition changed — Changes applied to all subclasses in the hierarchy of that
superclass.

* Superclass added or removed — Change of superclass applied to all existing objects.

Ensure Defining Folder Remains in Scope

Changes to the MATLAB path that result in removing the class definition file from the path, even
temporarily, can produce side effects. If a function changes from the current folder, which contains
the class definition, and that folder is not on the path, then the function cannot call methods of the
class that is now out of scope. To avoid potential problems, add the class defining folder to the path
before changing to another folder.

For example, suppose the class of the input obj is defined in the current folder, which is not on the
path. Before changing the current folder to another folder, add the current folder to the path using
the addpath function.

function runFromTempFolder(obj)
% Add current folder to path
addpath(pwd)
definingFolder = cd('myTempFolder');
obj.myMethod;
cd(definingFolder)

end

Automatic Updates for Modified Classes

Actions That Do Not Trigger Updates

These actions do not update existing objects:

* Calling the class function on an out-of-date object

* Assigning an out-of-date object to a variable

* Calling a method that does not access class data

* Changing property validation in the class definition (“Validate Property Values” on page 8-19)

Objects do not update until referenced in a way that exposes the change, such as invoking the object
display or assigning to a property.

Multiple Updates to Class Definitions

Updates do not occur incrementally. Updates conform to the latest version of the class.

Object Validity with Deleted Class File

Deleting a class definition file does not make instances of that class invalid. However, you cannot call
methods on existing objects of that class.

When Updates Are Not Possible

Some class updates result in an invalid class definition. In these cases, objects do not update until the
error is resolved:
* Adding a superclass can result in a property or method being defined twice.

* Changing a superclass to be Sealed when objects of one of its subclasses exists results in an
invalid subclass definition.

Some class updates cause situations in which MATLAB cannot update existing objects to conform to a
modified class definition. These cases result in errors until you delete the objects:

* Adding an enumeration block to a non-enumeration class

* Redefining a class to be abstract

* Removing a class from a heterogeneous hierarchy that results in there being no default object to
replace existing objects in a heterogeneous array

» Updating a class to restrict array formation behavior, such as overloading array indexing and
concatenation.

* Inheriting a subsref, subsasgn, cat, vertcat, or horzcat method
* Redefining a handle class to be a value class.

Potential Consequences of Class Updates

* Following an update, existing objects can be incompatible with the new class definition. For
example, a newly added property can require execution of the constructor to be valid.

* Removing or renaming properties can lose the data held in the property. For example, if a
property holds the only reference to another object and you remove that property from the class,
the MATLAB deletes the object because there are no longer any references to it.

5-41

5 Class Definition—Syntax Reference

5-42

* Removing a class from a heterogeneous class hierarchy can result in invalid heterogeneous array
elements. In this case, the default object for the heterogeneous hierarchy replaces these array
elements.

Interactions with the Debugger

Since R2021a.

MATLAB disables the debugger during class updates. Before R2021a, a breakpoint could potentially
interrupt the class update process and allow for the introduction of errors when the update resumes.

For example, this class defines a property validation function:

classdef ClassWithBreakpoint
properties (Constant)
Propl (1,1) {myPropertyValidator}
end
end

function myPropertyValidator(~)
end % Add breakpoint here

Create an instance of this class. Then add a breakpoint where indicated, and update the definition of
Propl to include an initial value:

Propl (1,1) {myPropertyValidator} = 32

In version R2020b and earlier, MATLAB hits the breakpoint, and the class update is interrupted. In
R20214a, the debugger is disabled, and the breakpoint does not interrupt the update.

Updates to Class Attributes

Changing class attributes can change existing object behavior or make the objects invalid. MATLAB
returns an error when you access the invalid objects.

Change Effect

Make Abstract = true Accessing existing objects returns an error.

Change AllowedSubclasses Newly created objects can inherit from different superclasses
than existing objects.

Change ConstructOnLoad Loading classes obeys the current value of ConstructOnLoad.

Change HandleCompatible Newly created objects can have different class hierarchy than
existing objects.

Change Hidden Appearance of class in list of superclasses and access by help
function can change

Change InferiorClasses Method dispatching for existing objects can change.

Make Sealed = true Existing subclass objects return errors when accessed.

Updates to Property Definitions

When you change the definition of class properties, MATLAB applies the changes to existing objects
of the class.

Automatic Updates for Modified Classes

Change

Effect

Add property

Adds the new property to existing objects of the class. Sets the
property values to the default value (which is [] if the class
definition does not specify a default).

Remove property

Removes the property from existing objects of the class.
Attempts to access the removed property fail.

Change property default value

Does not apply the new default value to existing objects of the
class.

Move property between subclass
and superclass

Does not apply different default value when property definition
moves between superclass and subclass.

Change property attribute value

Applies changes to existing objects of the class.
Some cases require transitional steps:

* Abstract — Existing objects of a class that becomes
abstract cannot be updated. Delete these objects.

* Access — Changes to the public, protected, or private
property access settings affect access to existing objects.

Changes to the access lists do not change existing objects.
However, if you add classes to the access list, instances of
those classes have access to this property. If you remove
classes from the access list, objects of those classes no
longer have access to this property.

* Dependent — If changed to true, existing objects no longer
store property values. If you want to query the property
value, add a property get method for the property.

* Transient — If changed to true, objects already saved,
reload this property value. If changed to false, objects
already saved reload this property using the default value.

Updates to Method Definitions

When you change the definition of class methods, MATLAB changes the affected class member in

existing objects as follows.

Change Effect
Add method You can call the new method on existing objects of the class.
Modify method Modifications are available to existing objects.

Remove method

You can on longer call deleted method on existing objects.

5-43

5 Class Definition—Syntax Reference

5-44

Change

Effect

Change method attribute value

Apply changes to existing objects of the class.
Some cases require transitional steps:

* Abstract — Existing objects of a class that becomes
abstract cannot be updated. Delete these objects.

* Access — Changes to method public, protected, or
private access settings affect access to existing objects.

Changes to the access lists do not change existing instances.
However, if you add classes to the access list, instances of
those classes have access to this method. If you remove
classes from the access list, objects of those classes no
longer have access to this method.

* Sealed — If changed to true and existing subclasses
already have defined the method, MATLAB returns an error
because the new class definition cannot be applied to

existing subclasses.

Updates to Event Definitions

Change

Effect

Add event

Existing objects of the class support the new event.

Change event name

New event name is visible to existing objects of the class.
MATLAB:

* Does not update existing metaclass objects

* Does update newly acquired metaclass objects

* Does not update listeners to use new event name

Remove event

Existing objects no longer support deleted event.

Automatic Updates for Modified Classes

Change Effect
Change event attribute value Apply changes to existing objects of the class.

Some cases require transitional steps:

* ListenAccess — Changes to event public, protected,
or private listen access settings affect access to existing
objects.

Changes to the access list do not change existing objects.
However, if you add classes to the access list, objects of
those classes can create listeners for this event. If you
remove classes from the access list, objects of those classes
are not allowed to create listeners for this event.

* NotifyAccess — Changes to event public, protected,
or private notify access settings affect access to existing
objects.

Changes to the access list do not change existing objects.
However, if you add classes to the access list, instances of
those classes can trigger this event. If you remove classes,
objects of those classes are not able to trigger this event.

See Also

Related Examples
. “Use of Editor and Debugger with Classes” on page 5-37

5-45

5 Class Definition—Syntax Reference

Compatibility with Previous Versions

5-46

In this section...

“New Class-Definition Syntax Introduced with MATLAB Software Version 7.6” on page 5-46
“Changes to Class Constructors” on page 5-46

“New Features Introduced with Version 7.6” on page 5-47

“Examples of Old and New” on page 5-47

New Class-Definition Syntax Introduced with MATLAB Software
Version 7.6

MATLAB software Version 7.6 introduces a new syntax for defining classes. This new syntax includes:

* The classdef keyword begins a block of class-definitions code. An end statement terminates the
class definition.

* Within the classdef code block, properties, methods, and events are also keywords
delineating where you define the respective class members.

Cannot Mix Class Hierarchy

It is not possible to create class hierarchies that mix classes defined before Version 7.6 and current
class definitions that use classdef. Therefore, you cannot subclass an old class to create a version
of the new class.

Only One “@"” Class Folder Per Class

For classes defined using the new classdef keyword, a class folder shadows all class folders that
occur after it on the MATLAB path. Classes defined in class folders must locate all class files in that
single folder. However, classes defined in class folders continue to take precedence over functions
and scripts having the same name, even those functions and scripts that come before them on the
path.

Private Methods

You do not need to define private folders in class folders in Version 7.6. You can set the method's
Access attribute to private instead.

Changes to Class Constructors

Class constructor methods have two major differences. Class constructors:

* Do not use the class function.

* Must call the superclass constructor only if you want to pass arguments to its constructor.
Otherwise, no call to the superclass constructor is necessary.

Example of Old and New Syntax

Compare the following two Stock constructor methods. The Stock class is a subclass of the Asset
class, which requires arguments passed to its constructor.

Constructor Function Before Version 7.6

Compatibility with Previous Versions

function s = Stock(description,num shares,share price)
s.NumShares = num_shares;
s.SharePrice = share price;
% Construct Asset object
a = Asset(description, 'stock',share price*num_shares);
% Use the class function to define the stock object
s = class(s, 'Stock',a);

Write the same Stock class constructor as shown here. Define the inheritance on the classdef line
and define the constructor within a methods block.

Constructor Function for Version 7.6
classdef Stock < Asset
methods
function s = Stock(description,num _shares,share price)
% Call superclass constructor to pass arguments
s = s@Asset(description, 'stock',share _price*num_shares);
s.NumShares = num_shares;

s.SharePrice = share price;
end % End of function

end % End of methods block
end % End of classdef block

New Features Introduced with Version 7.6

* Properties: “Ways to Use Properties” on page 8-2

* Handle classes: “Comparison of Handle and Value Classes” on page 7-2

* Events and listeners: “Event and Listener Concepts” on page 11-12

* Class member attributes: “Attribute Specification” on page 5-18

» Abstract classes: “Abstract Classes and Class Members” on page 12-70

* Dynamic properties: “Dynamic Properties — Adding Properties to an Instance” on page 8-55
* Ability to subclass MATLAB built-in classes: “Design Subclass Constructors” on page 12-7

» Packages for scoping functions and classes: “Packages Create Namespaces” on page 6-20.
MATLAB does not support packages for classes created before MATLAB Version 7.6 (that is,
classes that do not use classdef).

* The JIT/Accelerator supports objects defined only by classes using classdef.

Examples of Old and New

The MATLAB Version 7.6 implementation of classes uses different syntax from previous releases.
However, classes written in previous versions continue to work. Most of the code you use to
implement the methods is likely to remain the same, except where you take advantage of new
features.

The following sections reimplement examples using the latest syntax. The original MATLAB Classes

and Objects documentation implemented these same examples and provide a comparison of old and
new syntax.

5-47

5 Class Definition—Syntax Reference

“Representing Polynomials with Classes” on page 19-2

“A Class Hierarchy for Heterogeneous Arrays” on page 20-2

5-48

Comparison of MATLAB and Other OO Languages

Comparison of MATLAB and Other OO Languages

In this section...

“Some Differences from C++ and Java Code” on page 5-49
“Object Modification” on page 5-50
“Static Properties” on page 5-53

“Common Object-Oriented Techniques” on page 5-53

Some Differences from C++ and Java Code

The MATLAB programming language differs from other object-oriented languages, such as C++ or
Java in some important ways.

Public Properties

Unlike fields in C++ or the Java language, you can use MATLAB properties to define a public
interface separate from the implementation of data storage. You can provide public access to
properties because you can define set and get access methods that execute automatically when
assigning or querying property values. For example, the following statement:

myobj.Material = 'plastic’;

assigns the char vector plastic to the Material property of myobj. Before making the actual
assignment, myobj executes a method called set.Material (assuming the class of myobj defines
this method), which can perform any necessary operations. See “Property Access Methods” on page
8-40 for more information on property access methods.

You can also control access to properties by setting attributes, which enable public, protected , or
private access. See “Property Attributes” on page 8-6 for a full list of property attributes.

No Implicit Parameters

In some languages, one object parameter to a method is always implicit. In MATLAB, objects are
explicit parameters to the methods that act on them.

Dispatching

In MATLAB classes, method dispatching is not based on method signature, as it is in C++ and Java
code. When the argument list contains objects of equal precedence, MATLAB uses the leftmost object
to select the method to call.

However, if the class of an argument is superior to the class of the other arguments, MATLAB
dispatches to the method of the superior argument, regardless of its position within the argument
list.

See “Class Precedence” on page 6-18 for more information.

Calling Superclass Method

* In C++, you call a superclass method using the scoping operator: superclass: :method
* InJava code, you use: superclass.method

5-49

5 Class Definition—Syntax Reference

5-50

The equivalent MATLAB operation is method@superclass.
Other Differences

In MATLAB classes, there is no equivalent to C++ templates or Java generics. However, MATLAB is
weakly typed and it is possible to write functions and classes that work with different types of data.

MATLAB classes do not support overloading functions using different signatures for the same
function name.

Object Modification

MATLAB classes can define public properties, which you can modify by explicitly assigning values to
those properties on a given instance of the class. However, only classes derived from the handle
class exhibit reference behavior. Modifying a property value on an instance of a value classes (classes
not derived from handle), changes the value only within the context in which the modification is
made.

The sections that follow describe this behavior in more detail.
Objects Passed to Functions

MATLAB passes all variables by value. When you pass an object to a function, MATLAB copies the
value from the caller into the parameter variable in the called function.

However, MATLAB supports two kinds of classes that behave differently when copied:

* Handle classes — a handle class instance variable refers to an object. A copy of a handle class
instance variable refers to the same object as the original variable. If a function modifies a handle
object passed as an input argument, the modification affects the object referenced by both the
original and copied handles.

* Value classes — the property data in an instance of a value class are independent of the property
data in copies of that instance (although, a value class property could contain a handle). A
function can modify a value object that is passed as an input argument, but this modification does
not affect the original object.

See “Comparison of Handle and Value Classes” on page 7-2 for more information on the behavior
and use of both kinds of classes.

Passing Value Objects

When you pass a value object to a function, the function creates a local copy of the argument
variable. The function can modify only the copy. If you want to modify the original object, return the
modified object and assign it to the original variable name. For example, consider the value class,
SimpleClass:

classdef SimpleClass
properties
Color
end
methods
function obj = SimpleClass(c)
if nargin > 0
obj.Color = c;
end

Comparison of MATLAB and Other OO Languages

end
end
end
Create an instance of SimpleClass, assigning a value of red to its Color property:
obj = SimpleClass('red');

Pass the object to the function g, which assigns blue to the Color property:

function y = g(x)
x.Color = 'blue';
y = X;

end

y = g(obj);

The function g modifies its copy of the input object and returns that copy, but does not change the
original object.

y.Color
ans =
blue
obj.Color
ans =
red

If the function g did not return a value, the modification of the object Color property would have
occurred only on the copy of obj within the function workspace. This copy would have gone out of
scope when the function execution ended.

Overwriting the original variable actually replaces it with a new object:
obj = g(obj);
Passing Handle Objects

When you pass a handle to a function, the function makes a copy of the handle variable, just like
when passing a value object. However, because a copy of a handle object refers to the same object as
the original handle, the function can modify the object without having to return the modified object.

For example, suppose that you modify the SimpleClass class definition to make a class derived from
the handle class:

classdef SimpleHandleClass < handle
properties
Color
end
methods
function obj = SimpleHandleClass(c)
if nargin > 0
obj.Color = c;
end
end

5-51

5 Class Definition—Syntax Reference

end
end

Create an instance of SimpleHandleClass, assigning a value of red to its Color property:
obj = SimpleHandleClass('red');

Pass the object to the function g, which assigns blue to the Color property:

y = g(obj);

The function g sets the Color property of the object referred to by both the returned handle and the
original handle:

y.Color
ans =
blue
obj.Color
ans =
blue

The variables y and obj refer to the same object:

y.Color = 'yellow';
obj.Color

ans =

yellow

The function g modified the object referred to by the input argument (obj) and returned a handle to
that object in y.

MATLAB Passes Handles by Value

A handle variable is a reference to an object. MATLAB passes this reference by value.

Handles do not behave like references in C++. If you pass an object handle to a function and that
function assigns a different object to that handle variable, the variable in the caller is not affected.
For example, suppose you define a function g2:

function y = g2(x)
X SimpleHandleClass('green');
y = X;

end

Pass a handle object to g2:

obj = SimpleHandleClass('red');
y = g2(obj);

y.Color

ans =

green

5-52

Comparison of MATLAB and Other OO Languages

obj.Color

ans =
red

The function overwrites the handle passed in as an argument, but does not overwrite the object
referred to by the handle. The original handle obj still references the original object.

Static Properties

In MATLAB, classes can define constant properties, but not "static" properties in the sense of other
languages like C++. You cannot change constant properties from the initial value specified in the
class definition.

MATLAB has long-standing rules that variables always take precedence over the names of functions
and classes. Assignment statements introduce a variable if one does not exist.

Expressions of this form
A.B =C

Introduce a new variable, A, that is a struct containing a field B whose value is C. IfA.B = C could
refer to a static property of class A, then class A would take precedence over variable A.

This behavior would be a significant incompatibility with prior releases of MATLAB. For example, the
introduction of a class named A on the MATLAB path could change the meaning of an assignment
statement like A.B = Cinside a .m code file.

In other languages, classes rarely use static data, except as private data within the class or as public
constants. In MATLAB, you can use constant properties the same way you use public final static
fields in Java. To use data that is internal to a class in MATLAB, create persistent variables in private
or protected methods or local functions used privately by the class.

Avoid static data in MATLAB. If a class has static data, using the same class in multiple applications
causes conflicts among applications. Conflicts are less of an issue in some other languages. These
languages compile applications into executables that run in different processes. Each process has its
own copy of the class static data. MATLAB, frequently runs many different applications in the same
process and environment with a single copy of each class.

For ways to define and use static data in MATLAB, see “Static Data” on page 4-2.

Common Object-Oriented Techniques

This table provides links to sections that discuss object-oriented techniques commonly used by other
object-oriented languages.

Technique How to Use in MATLAB

Operator overloading “Operator Overloading” on page 17-38
Multiple inheritance “Subclassing Multiple Classes” on page 12-19
Subclassing “Design Subclass Constructors” on page 12-7
Destructor “Handle Class Destructor” on page 7-13

5-53

5 Class Definition—Syntax Reference

5-54

Technique

How to Use in MATLAB

Data member scoping

“Property Attributes” on page 8-6

Packages (scoping classes)

“Packages Create Namespaces” on page 6-20

Named constants

See “Define Class Properties with Constant Values” on page 15-2
and “Named Values” on page 14-2

Enumerations

“Define Enumeration Classes” on page 14-4

Static methods

“Static Methods” on page 9-24

Static properties

Not supported. See persistent variables. For the equivalent of Java
static final or C++ static const properties, use Constant
properties. See “Define Class Properties with Constant Values” on
page 15-2

For mutable static data, see “Static Data” on page 4-2

Constructor

“Class Constructor Methods” on page 9-16

Copy constructor

No direct equivalent

Reference/reference classes

“Comparison of Handle and Value Classes” on page 7-2

Abstract class/Interface

“Abstract Classes and Class Members” on page 12-70

Garbage collection

“Object Lifecycle” on page 7-16

Instance properties

“Dynamic Properties — Adding Properties to an Instance” on page 8-
55

Importing classes

“Import Classes” on page 6-24

Events and Listeners

“Event and Listener Concepts” on page 11-12

Defining and Organizing Classes

* “User-Defined Classes” on page 6-2

* “Class Attributes” on page 6-5

+ “Evaluation of Expressions in Class Definitions” on page 6-8
* “Folders Containing Class Definitions” on page 6-13

* “Class Precedence” on page 6-18

* “Packages Create Namespaces” on page 6-20

* “Import Classes” on page 6-24

6 Defining and Organizing Classes

User-Defined Classes

6-2

In this section...

“What Is a Class Definition” on page 6-2
“Attributes for Class Members” on page 6-2
“Kinds of Classes” on page 6-2
“Constructing Objects” on page 6-3

“Class Hierarchies” on page 6-3

“classdef Syntax” on page 6-3

“Class Code” on page 6-3

What Is a Class Definition

A MATLAB class definition is a template whose purpose is to provide a description of all the elements
that are common to all instances of the class. Class members are the properties, methods, and events
that define the class.

Define MATLAB classes in code blocks, with subblocks delineating the definitions of various class
members. For syntax information on these blocks, see “Class Components” on page 5-4.

Attributes for Class Members

Attributes modify the behavior of classes and the members defined in the class-definition block. For
example, you can specify that methods are static or that properties are private. The following sections
describe these attributes:

* “Class Attributes” on page 6-5

* “Method Attributes” on page 9-4

* “Property Attributes” on page 8-6

* “Event Attributes” on page 11-15

Class definitions can provide information, such as inheritance relationships or the names of class
members without actually constructing the class. See “Class Metadata” on page 16-2.

See “Specifying Attributes” on page 6-7 for more on attribute syntax.

Kinds of Classes

There are two kinds of MATLAB classes—handle classes and value classes.

» Value classes represent independent values. Value objects contain the object data and do not
share this data with copies of the object. MATLAB numeric types are value classes. Values objects
passed to and modified by functions must return a modified object to the caller.

* Handle classes create objects that reference the object data. Copies of the instance variable refer
to the same object. Handle objects passed to and modified by functions affect the object in the
caller’s workspace without returning the object.

For more information, see “Comparison of Handle and Value Classes” on page 7-2.

User-Defined Classes

classdef (ConstructOnLoad = true) PositivelIntegers < Integers & Positives

Constructing Objects
For information on class constructors, see “Class Constructor Methods” on page 9-16.

For information on creating arrays of objects, see “Construct Object Arrays” on page 10-2.

Class Hierarchies

For more information on how to define class hierarchies, see “Hierarchies of Classes — Concepts” on
page 12-2.

classdef Syntax

Class definitions are blocks of code that are delineated by the classdef keyword at the beginning
and the end keyword at the end. Files can contain only one class definition.

The following diagram shows the syntax of a classdef block. Only comments and blank lines can
precede the classdef keyword.

classdet keyword begins definition block.

/-

classdef block

Class attribute Attribute value Classname Super classes
{logical true}

end keyword terminates definition block.

Class Code

Here is a simple class definition with one property and a constructor method that sets the value of the
property when there is an input argument supplied.

classdef MyClass
properties
Prop
end
methods
function obj = MyClass(val)
if nargin > 0
obj.Prop = val;
end
end

6-3

6 Defining and Organizing Classes

end
end

To create an object of MyClass, save the class definition in a .m file having the same name as the
class and call the constructor with any necessary arguments:

d
o

datestr(now);
MyClass(d);

Use dot notation to access the property value:
o.Prop
ans =

10-Nov-2005 10:38:14

The constructor should support a no argument syntax so MATLAB can create default objects. For
more information, see “No Input Argument Constructor Requirement” on page 9-19.

For more information on the components of a class definition, see “Class Components” on page 5-4

See Also

Related Examples

. “Create a Simple Class” on page 2-2

. “Developing Classes — Typical Workflow” on page 3-6

. “Representing Structured Data with Classes” on page 3-14

6-4

Class Attributes

Class Attributes

In this section...

“Specifying Class Attributes” on page 6-5
“Specifying Attributes” on page 6-7
“Class-Specific Attributes” on page 6-7

Specifying Class Attributes

All classes support the attributes listed in the following table. Attributes enable you to modify the
behavior of class. Attribute values apply to the class defined within the classdef block.

classdef (Attributel = valuel, Attribute2 = value2,...) ClassName
end

For more information on attribute syntax, see “Attribute Specification” on page 5-18.

6 Defining and Organizing Classes

Class Attributes

Attribute Name Class Description
Abstract logical If specified as true, this class is an abstract class (cannot be
instantiated).
(default =
false) See “Abstract Classes and Class Members” on page 12-70 for more
information.

AllowedSubclasses |meta.class |List classes that can subclass this class. Specify subclasses as
object or cell |meta.class objects in the form:
array of _)
objects * Acell array of meta. class objects. An empty cell array, {}, is

the same as a Sealed class (no subclasses).
Specify meta.class objects using the ?ClassName syntax only.
See “Specify Allowed Subclasses” on page 12-21 for more
information.

ConstructOnLoad logical If true, MATLAB calls the class constructor when loading an object

from a MAT-file. Therefore, implement the constructor so it can be
(default = called with no arguments without producing an error.
false)
See “Initialize Ohjects When Loading” on page 13-22 for more
information.
HandleCompatible logical If specified as true, this class can be used as a superclass for
handle classes. All handle classes are HandleCompatible by
(default = definition. See “Handle Compatible Classes” on page 12-33 for
false) for more information.
value classes
Hidden logical If true, this class does not appear in the output of the
superclasses or help functions.
(default =
false)

InferiorClasses meta.class |Use this attribute to establish a precedence relationship among
object or cell |classes. Specify a cell array of meta.class objects using the ?
array of operator.
meta.class
objects The fundamental classes are always inferior to user-defined classes

and do not show up in this list.
See “Class Precedence” on page 6-18 and “Dominant Argument in
Overloaded Graphics Functions” on page 9-38.
Sealed logical If true, this class cannot be subclassed.
(default =
false)

Framework attributes

Classes that use

certain framework base classes have framework-specific attributes.

See the documentation for the specific base class you are using for information on

these attributes.

6-6

Class Attributes

Specifying Attributes

Attributes are specified for class members in the classdef, properties, methods, and events
definition blocks. The particular attribute setting applies to all members defined within that
particular block. You can use multiple properties, methods, and events definition blocks to apply
different attribute setting to different class members.

Superclass Attribute Values Are Not Inherited
Class attributes settings are not inherited, so superclass attribute values do not affect subclasses.
Attribute Syntax

Specify class attribute values in parentheses, separating each attribute name/attribute value pair
with a comma. The attribute list always follows the classdef or class member keyword, as shown:

classdef (attribute-name = expression, ...) ClassName
properties (attribute-name = expression, ...)
end...
methods (attribute-name = expression, ...)
end...

events (attribute-name = expression, ...)

end...
end

Class-Specific Attributes
Some MATLAB classes define additional attributes that you can use only with the class hierarchies

that define these attributes. See the specific documentation for the classes you are using for
information on any additional attributes supported by those classes.

See Also

More About

. “Expressions in Attribute Specifications” on page 6-9

6 Defining and Organizing Classes

Evaluation of Expressions in Class Definitions

6-8

In this section...

“Why Use Expressions” on page 6-8

“Where to Use Expressions in Class Definitions” on page 6-8
“How MATLAB Evaluates Expressions” on page 6-10

“When MATLAB Evaluates Expressions” on page 6-10

“Expression Evaluation in Handle and Value Classes” on page 6-10

Why Use Expressions

An expression used in a class definition can be any valid MATLAB statement that evaluates to a single
array. Use expressions to define property default values and in attribute specifications. Expressions
are useful to derive values in terms of other values. For example, suppose that you want to define a
constant property with the full precision value of 2m. You can assign the property the value returned
by the expression 2*pi. MATLAB evaluates the function when first loading the class.

For information on assign property default values and attribute values, see the following topics:

* “Property Definition” on page 8-12
» “Attribute Specification” on page 5-18

Where to Use Expressions in Class Definitions

Here are some examples of expressions used in a class definition:

classdef MyClass

% Some attributes are set to logical values

properties (Constant = true)
CnstProp = 2*pi

end

properties
% Static method of this class
Propl = MyClass.setupAccount
% Constant property from this class
Prop2 = MyClass.CnstProp
% Function that returns a value
Prop3 = datestr(now)
% A class constructor
Prop4 = AccountManager

end

methods (Static)
function accNum = setupAccount

accNum = randi(9,[1,12]);

end

end

end

MATLAB does not call property set methods when assigning the result of default value expressions to
properties. (See “Property Access Methods” on page 8-40 for information about these special
methods.)

Evaluation of Expressions in Class Definitions

Enumerations that derived from MATLAB types can use expression to assign a value:

classdef FlowRate < int32
enumeration
Low (10)
Medium (FlowRate.Low*5)
High (FlowRate.Low*10)
end
end

MATLAB evaluates these expressions only once when enumeration members are first accessed.
Expressions in Attribute Specifications

For attributes values that are logical true or false, class definitions can specify attribute values
using expressions. For example, this assignment makes MyClass sealed (cannot be subclassed) for
versions of MATLAB before R2014b (verLessThan)

classdef (Sealed = verLessThan('matlab','8.4')) MyClass

The expression on the right side of the equal sign (=) must evaluate to true or false. You cannot
use any definitions from the class file in this expression, including any constant properties, static
methods, and local functions.

While you can use conditional expression to set attribute values, doing so can cause the class
definition to change based on external conditions. Ensure that this behavior is consistent with your
class design.

Note The AllowedSubclasses and the InferiorClasses attributes require an explicit
specification of a cell array of meta.class objects as their values. You cannot use expressions to
return these values.

See “Attribute Specification” on page 5-18 for more information on attribute syntax.
Expressions That Specify Default Property Values

Property definitions allow you to specify default values for properties using any expression that has
no reference to variables. For example, VectorAngle defines a constant property (Rad2Deg) and
uses it in an expression that defines the default value of another property (Angle). The default value
expression also uses a static method (getAngle) defined by the class:

classdef VectorAngle
properties (Constant)
Rad2Deg = 180/pi

end
properties

Angle = VectorAngle.Rad2Deg*VectorAngle.getAngle([1 0],[0 1])
end
methods

function obj = VectorAngle(vx,vy)

obj.Angle = VectorAngle.getAngle(vx,vy);

end

end

methods (Static)
function r = getAngle(vx,vy)

6-9

6 Defining and Organizing Classes

6-10

% Calculate angle between 2D vectors
cr = vx(1)*vy(1l) + vx(2)*vy(2)/sqrt(vx(1)"2 + vx(2)72) * ...
sqrt(vy(1)°2 + vy(2)~2);
r = acos(cr);
end
end
end

You cannot use the input variables to the constructor to define the default value of the Angle
property. For example, this definition for the Angle property is not valid:

properties
Angle = VectorAngle.Rad2Deg*VectorAngle.getAngle(vx,vy)
end

Attempting to create an instance causes an error:

a = VectorAngle([1,0],[0,1])

Error using VectorAngle

Unable to update the class 'VectorAngle' because the new definition contains an

error:
Undefined function or variable 'vx'.

Expressions in Class Methods

Expression in class methods execute like expressions in any function. MATLAB evaluates an
expression within the function workspace when the method executes. Therefore, expressions used in
class methods are not considered part of the class definition and are not discussed in this section.

How MATLAB Evaluates Expressions

MATLAB evaluates the expressions used in the class definition without any workspace. Therefore,
these expressions cannot reference variables of any kind.

MATLAB evaluates expressions in the context of the class file, so these expressions can access any
functions, static methods, and constant properties of other classes that are on your path at the time
MATLAB initializes the class. Expressions defining property default values can access constant
properties defined in their own class.

When MATLAB Evaluates Expressions

MATLAB evaluates the expressions in class definitions only when initializing the class. Initialization
occurs before the first use of the class.

After initialization, the values returned by these expressions are part of the class definition and are
constant for all instances of the class. Each instance of the class uses the results of the initial
evaluation of the expressions without re-evaluation.

If you clear a class, then MATLAB reinitializes the class by reevaluating the expressions that are part
of the class definition. (see “Automatic Updates for Modified Classes” on page 5-39)

Expression Evaluation in Handle and Value Classes

The following example shows how value and handle object behave when assigned to properties as
default values. Suppose that you have the following classes.

Evaluation of Expressions in Class Definitions

Expressions in Value Classes

The ClassExp class has a property that contains a ContClass object:

classdef ContClass
properties
% Assign current date and time
TimeProp = datestr(now)
end
end

classdef ClassExp
properties
ObjProp = ContClass

end
end

When you first use the ClassExp class, MATLAB creates an instance of the ContClass class.
MATLAB initializes both classes at this time. All instances of ClassExp include a copy of this same
instance of ContClass.

a = ClassExp;
a.0bjProp.TimeProp

ans =

08-0ct-2003 17:16:08

The TimeProp property of the ContClass object contains the date and time when MATLAB
initialized the class. Creating additional instances of the ClassExp class shows that the date string
has not changed:

= ClassExp;
ObjProp.TimeProp

b
b.
ans =

08-0ct-2003 17:16:08

Because this example uses a value class for the contained object, each instance of the ClassExp has
its own copy of the object. For example, suppose that you change the value of the TimeProp property
on the object contained by ClassExp objectb:

b.0bjProp.TimeProp = datestr(now)

ans =

08-0ct-2003 17:22:49

The copy of the object contained by object a is unchanged:
a.0bjProp.TimeProp

ans =

08-0ct-2003 17:16:08

6-11

6 Defining and Organizing Classes

Expressions in Handle Classes

Now consider the behavior if the contained object is a handle object:
classdef ContClass < handle
properties
TimeProp = datestr(now)

end
end

Creating two instances of the ClassExp class shows that MATLAB created an object when it
initialized the ContClass. MATLAB used a copy of the object’s handle for each instance of the
ClassExp class. Therefore, there is one ContClass object and the ObjProp property of each
ClassExp object contains a copy of its handle.

Create an instance of the ClassExp class and note the time of creation:

a = ClassExp;
a.0bjProp.TimeProp

ans =
08-0ct-2003 17:46:01

Create a second instance of the ClassExp class. The ObjProp contains the handle of the same
object:

b = ClassExp;
b.0bjProp.TimeProp

ans =
08-0ct-2003 17:46:01
Reassign the value of the contained object TimeProp property:

b.0bjProp.TimeProp = datestr(now);
b.0bjProp.TimeProp

ans =
08-0ct-2003 17:47:34

The ObjProp property of object b contains a handle to the same object as the ObjProp property of
object a. The value of the TimeProp property has changed on this object as well:

a.0bjProp.TimeProp
ans =

08-0ct-2003 17:47:34
See Also

More About

. “Comparison of Handle and Value Classes” on page 7-2

6-12

Folders Containing Class Definitions

Folders Containing Class Definitions

In this section...

“Class Definitions on the Path” on page 6-13

“Class and Path Folders” on page 6-13

“Using Path Folders” on page 6-13

“Using Class Folders” on page 6-14

“Functions in Private Folders Within Class Folders” on page 6-14
“Class Precedence and MATLAB Path” on page 6-15

“Changing Path to Update Class Definition” on page 6-16

Class Definitions on the Path

To call a class method, the class definition must be on the MATLAB path, as described in the next
sections.

Class and Path Folders

There are two types of folders that can contain class definition files.

» Path folders — The folder is on the MATLAB path and the folder name does not begin with an @
character. Use this type of folder when you want multiple classes and functions in one folder. The
entire class definition must be contained in one file.

* Class folders — The folder name begins with an @ character followed by the class name. The
folder is not on the MATLAB path, but its parent folder is on the path. Use this type of folder when
you want to use multiple files for one class definition.

See the path function for information about the MATLAB path.

Using Path Folders

The folders that contain class definition files are on the MATLAB path. Therefore, class definitions
placed in path folders behave like any ordinary function with respect to precedence—the first
occurrence of a name on the MATLAB path takes precedence over all subsequent occurrences of the
same name.

The name of each class definition file must match the name of the class that is specified with the
classdef keyword. Using a path folder eliminates the need to create a separate class folder for each
class. However, the entire class definition, including all methods, must be contained within a single
file.

Suppose that you have three classes defined in a single folder:
.../path_folder/MyClassl.m
.../path_folder/MyClass2.m
.../path_folder/MyClass3.m

To use these classes, add path folder to your MATLAB path:

6-13

6 Defining and Organizing Classes

6-14

addpath path folder

Using Class Folders

The name of a class folder always begins with the @ character followed by the class name for the
folder name. A class folder must be contained in a path folder, but the class folder is not on the
MATLAB path. Place the class definition file inside the class folder, which also can contain separate
method files. The class definition file must have the same name as the class folder (without the @
character).

.../parent_folder/@MyClass/MyClass.m
.../parent_folder/@MyClass/myMethodl.m
.../parent_folder/@MyClass/myMethod2.m

Define only one class per folder. All files have a .m or . p extension. For MATLAB versions R2018a and
later, standalone methods can be live functions with a . mlx extension.

Use a class folder when you want to use more than one file for your class definition. MATLAB treats
any function file in the class folder as a method of the class. Function files can be MATLAB code (.m),
Live Code file format (.m1lx), MEX functions (platform dependent extensions), and P-code files (. p).

MATLAB explicitly identifies any file in a class folder as a method of that class. This enables you to
use a more modular approach to authoring methods of your class.

The base name of each file must be a valid MATLAB function name. Valid function names begin with
an alphabetic character and can contain letters, numbers, or underscores. For more information, see
“Methods in Separate Files” on page 9-8.

Functions in Private Folders Within Class Folders

Private folders contain functions that are accessible only from functions defined in folders
immediately above the private folder. Any functions defined in a private folder inside a class
folder can only be called from the methods of the class. The functions have access to the private
members of the class but are not themselves methods. They do not require an object to be passed as
an input and can only be called using function notation. Use functions in private folders when you
need helper functions that can be called from multiple methods of your class.

If a class folder contains a private folder, only the class defined in that folder can access functions
defined in the private folder. Subclasses do not have access to superclass private functions. For
more information on private folders, see “Private Functions”.

If you want a subclass to have access to the private functions of the superclass, define the functions
as protected methods of the superclass. Specify the methods with the Access attribute set to
protected.

Dispatching to Methods in Private Folders

If a class defines functions in a private folder that is in a class folder, then MATLAB follows these
precedence rules when dispatching to the private functions versus the methods of the classdef file:

* Using dot notation (obj.methodName), a function in a private folder takes precedence over a
method defined in the classdef file.

» Using function notation (methodName (obj)), a method defined in the classdef file takes
precedence over the function in the private folder.

Folders Containing Class Definitions

No Class Definitions in Private Folders

You cannot put class definitions (classdef file) in private folders because doing so would not meet
the requirements for class or path folders.

Class Precedence and MATLAB Path

When there are multiple class definitions with the same name, the file location on the MATLAB path
determines precedence. The class definition in the folder that comes first on the MATLAB path always
takes precedence over any classes that are later on the path, whether or not the definitions are
contained in a class folder.

A function with the same name as a class in a path folder takes precedence over the class if the
function is in a folder that is earlier on the path. However, a class defined in a class folder (@-folder)
takes precedence over a function of the same name, even if the function is defined in a folder that is
earlier on the path.

For example, consider a path with the following folders and files.

Order in Path Folder and File File Defines
1 fldrl/Foo.m Class Foo

2 fldr2/Foo.m Function Foo
3 fldr3/@Foo/Foo.m Class Foo

4 fldr4/@Foo/bar.m Method bar
5 fldr5/Foo.m Class Foo

MATLAB applies this logic to determine which version of Foo to call:
Class fldrl/Foo.m takes precedence over the class fldr3/@Foo because:
» fldrlis before f1dr3 on the path, and fldrl/Foo.mis a class.
Class fldr3/@Foo takes precedence over function fldr2/Foo.m because:

« fldr3/@Foo is a class in a class folder.
+ fldr2/Foo.mis not a class.
» Classes in class folders take precedence over functions.

Function fldr2/Foo.m takes precedence over class fldr5/Foo.m because:

* fldr2 comes before class T1dr5 on the path.
* fldr5/Foo.mis not in a class folder.
* Classes that are not defined in class folders obey the path order with respect to functions.

Class fldr3/@Foo takes precedence over fldr4/@Foo because:
* fldr3 comes before fldr4 on the path.

If f1dr3/@Foo/Foo.m contains a MATLAB class created before Version 7.6 (that is, the class does
not use the classdef keyword), then fldr4/@Foo/bar.m becomes a method of the Foo class
defined in fldr3/@Foo.

6-15

6 Defining and Organizing Classes

6-16

Previous Behavior of Classes Defined in Class Folders

In MATLAB Versions 5 through 7, class folders do not shadow other class folders having the same
name, but residing in later path folders. Instead, the class uses the combination of methods from all
class folders having the same name to define the class. This behavior is no longer supported.

For backward compatibility, classes defined in class folders always take precedence over functions
and scripts having the same name. This precedence applies to functions and scripts that come before
these classes on the path.

Changing Path to Update Class Definition

MATLAB can only recognize one definition of a class as the current definition. Changing your
MATLAB path can change the definition file for a class (see path). If no instances of the old definition
exist (that is, the definition that is no longer first on the path), MATLAB immediately recognizes the
new folder as the current definition. If, however, you have an existing instance of the class before
changing the path, whether MATLAB uses the definition in the new folder depends on how the new
class has been defined. If the new definition is defined in a class folder, MATLAB immediately
recognizes the new folder as the current class definition. However, for classes that are defined in path
folders (that is, not in class @ folders), you must clear the class before MATLAB recognizes the new
folder as the current class definition.

Class Definitions in Class Folders
Suppose that you define two versions of a class named Foo in two folders, f1dA and f1dB.

fl1dA/@Foo/Foo.m
f1dB/@Foo/Foo.m

Add folder f1dA to the top of the path.

addpath fldA

Create an instance of class Foo. MATLAB uses fldA/@Foo/Foo.m as the class definition.
a = Foo;

Change the current folder to f1dB.

cd fldB

The current folder is always first on the path. Therefore, MATLAB finds fldB/@Foo/Fo0.m as the
definition for class Foo.

b = Foo;
MATLAB automatically updates the existing instance, a, to use the new class definition in f1dB.
Class Definitions in Path Folders

Suppose that you define two versions of a class named Foo in two folders, f1dA and f1dB, but do not
use a class folder.

fldA/Foo.m
fldB/Foo.m

Add folder f1dA to the top of the path.

Folders Containing Class Definitions

addpath fldA

Create an instance of class Foo. MATLAB uses fldA/Foo.m as the class definition.
a = Foo;

Change the current folder to f1dB.

cd fldB

The current folder is effectively the top of the path. However, MATLAB does not identify fldB/Foo.m
as the definition for class Foo. MATLAB continues to use the original class definition until you clear
the class.

To use the definition of Foo in foldB, clear Foo.

clear Foo

MATLAB automatically updates the existing objects to conform to the class definition in f1dB.
Usually, clearing instance variables is unnecessary.

See Also

More About

. “Packages Create Namespaces” on page 6-20

. “Automatic Updates for Modified Classes” on page 5-39
. “Live Code File Format (.mlx)”

. “MEX File Functions”
. “Using MEX Functions for MATLAB Class Methods”
. “Protect Your Source Code”

6-17

6 Defining and Organizing Classes

Class Precedence

6-18

In this section...

“Use of Class Precedence” on page 6-18
“Why Mark Classes as Inferior” on page 6-18

“InferiorClasses Attribute” on page 6-18

Use of Class Precedence

MATLAB uses class precedence to determine which method to call when multiple classes have the
same method. You can specify the relative precedence of user-defined classes with the class
InferiorClasses attribute.

The material presented in this topic builds on an understanding of the following information:

* “Class Metadata” on page 16-2
+ “Attribute Specification” on page 5-18

Why Mark Classes as Inferior

When more than one class defines methods with the same name or when classes overload functions,
MATLAB determines which method or function to call based on the dominant argument. Here is how
MATLAB determines the dominant argument:

Determine the dominant argument based on the class of arguments.
If there is a dominant argument, call the method of the dominant class.

If arguments are of equal precedence, use the leftmost argument as the dominant argument.

If the class of the dominant argument does not define a method with the name of the called
function, call the first function on the path with that name.

A W N R

InferiorClasses Attribute

Specify the relative precedence of user-defined classes using the class InferiorClasses attribute.
To specify classes that are inferior to the class you are defining, assign a cell array of class
meta.class objects to this attribute.

For example, the following classdef declares that MyClass is dominant over ClassNamel and
ClassName?2.

classdef (InferiorClasses = {?ClassNamel,?ClassName2}) MyClass
end
The ? operator combined with a class name creates a meta. class object. See metaclass.

The following MATLAB classes are always inferior to classes defined using the classdef syntax and
cannot be used in this list.

double, single, int64, uint64, int32, uint32, int16, uintl6, int8, uint8, char, string,
logical, cell, struct, and function handle.

Class Precedence

Dominant Class

MATLAB uses class dominance when evaluating expressions involving objects of more than one class.
The dominant class determines:

* Which class method to call when more than one class defines methods with the same names.

* The class of arrays that are formed by combining objects of different classes, assuming MATLAB
can convert the inferior objects to the dominant class.

No Attribute Inheritance

Subclasses do not inherit a superclass InferiorClasses attribute. Only classes specified in the
subclass InferiorClasses attribute are inferior to subclass objects.

See Also

More About
. “Class Precedence and MATLAB Path” on page 6-15
. “Dominant Argument in Overloaded Graphics Functions” on page 9-38

6-19

6 Defining and Organizing Classes

Packages Create Namespaces

6-20

In this section...

“Package Folders” on page 6-20

“Internal Packages” on page 6-20

“Referencing Package Members Within Packages” on page 6-21
“Referencing Package Members from Outside the Package” on page 6-21
“Packages and the MATLAB Path” on page 6-22

Package Folders

Packages are special folders that can contain class folders, function, and class definition files, and
other packages. The names of classes and functions are scoped to the package folder. A package is a
namespace within which names must be unique. Function and class names must be unique only
within the package. Using a package provides a means to organize classes and functions. Packages
also enable you to reuse the names of classes and functions in different packages.

Note Packages are not supported for classes created before MATLAB Version 7.6 (that is, classes
that do not use classdef).

Package folders always begin with the + character. For example,

+mypack
+mypack/pkfcn.m % a package function
+mypack/@myClass % class folder in a package

The parent of the top-level package folder must be on the MATLAB path.
Listing the Contents of a Package

List the contents of a package using the help command:

help event

Contents of event:

EventData - event.EVENTDATA Base class for event data

PropertyEvent - event.PROPERTYEVENT Event data for object property events
listener - event.LISTENER Listener object
proplistener - event.PROPLISTENER Listener object for property events

You can also use the what command:
what event

Classes in directory Y:xxx\matlab\toolbox\matlab\lang\+event

EventData PropertyEvent listener proplistener

Internal Packages

MathWorks® reserves the use of packages named internal for utility functions used by internal
MATLAB code. Functions that belong to an internal package are intended for MathWorks use only.

Packages Create Namespaces

Using functions or classes that belong to an internal package is discouraged. These functions and
classes are not guaranteed to work in a consistent manner from one release to the next. Any of these
functions and classes might be removed from the MATLAB software in any subsequent release
without notice and without documentation in the product release notes.

Referencing Package Members Within Packages

All references to packages, functions, and classes in the package must use the package name prefix,
unless you import the package. (See “Import Classes” on page 6-24.) For example, call this package
function:

+mypack/pkfcn.m
With this syntax:
z = mypack.pkfcn(x,y);

Definitions do not use the package prefix. For example, the function definition line of the pkfcn.m
function would include only the function name:

function z = pkfcn(x,y)

Define a package class with only the class name:
classdef myClass

but call it with the package prefix:

obj = mypack.myClass(argl,arg2,...);

Calling class methods does not require the package name because you have an object of the class.
You can use dot or function notation:

obj.myMethod(arg)
myMethod(obj,arg)

A static method requires the full class name, which includes the package name:

mypack.myClass.stMethod(arg)

Referencing Package Members from Outside the Package

Functions, classes, and other packages contained in a package are scoped to that package. To
reference any of the package members, prefix the package name to the member name, separated by
a dot. For example, the following statement creates an instance of MyClass, which is contained in
mypack package.

obj = mypack.MyClass;
Accessing Class Members — Various Scenarios

This section shows you how to access various package members from outside a package. Suppose
that you have a package mypack with the following contents:

+mypack
+mypack/myFcn.m

6-21

6 Defining and Organizing Classes

6-22

+mypack/@MyFirstClass
+mypack/@MyFirstClass/myFcn.m
+mypack/@MyFirstClass/otherFcn.m
+mypack/@MyFirstClass/MyFirstClass.m
+mypack/@MySecondClass
+mypack/@MySecondClass/MySecondClass.m
+mypack/+mysubpack
+mypack/+mysubpack/myFcn.m

Invoke the myFcn function in mypack:
mypack.myFcn(arg)
Create an instance of each class in mypack:

objl
obj2

mypack.MyFirstClass;
mypack.MySecondClass(arg);

Invoke the myFcn function that is in the package mysubpack:
mypack.mysubpack.myFcn(argl,arg2);
If mypack.MyFirstClass has a method called myFcn, call it like any method call on an object:

obj = mypack.MyFirstClass;
myFcn(obj,arg);

If mypack.MyFirstClass has a property called MyProp, assign it using dot notation and the object:
obj = mypack.MyFirstClass;
obj.MyProp = Xx;

Packages and the MATLAB Path

You cannot add package folders to the MATLAB path, but you must add the package parent folder to
the MATLAB path. Package members are not accessible if the package parent folder is not on the
MATLAB path, even if the package folder is the current folder. Making the package folder the current
folder is not sufficient to add the package parent folder to the path.

Package members remain scoped to the package. Always refer to the package members using the
package name. Alternatively, import the package into the function in which you call the package
member, see “Import Classes” on page 6-24.

Package folders do not shadow other package folders that are positioned later on the path, unlike
classes, which do shadow other classes. If two or more packages have the same name, MATLAB
treats them all as one package. If redundantly named packages in different path folders define the
same function name, then MATLAB finds only one of these functions.

Resolving Redundant Names

Suppose a package and a class have the same name. For example:

fldr_1/+foo
fldr_2/@foo/foo.m

A call to which foo returns the path to the executable class constructor:

Packages Create Namespaces

>> which foo
fldr 2/@foo/foo.m

A function and a package can have the same name. However, a package name by itself is not an
identifier. Therefore, if a redundant name occurs alone, it identifies the function. Executing a package
name alone returns an error.

Package Functions vs. Static Methods

In cases where a package and a class have the same name, a package function takes precedence over
a static method. For example, path folder fldrA contains a package function and path folder fl1drB
contains a class static method:

fldrA/+foo/bar.m
fldrB/@foo/bar.m

ar is a function in package foo
ar is a static method of class foo

% b
% b
A call to which foo.bar returns the path to the package function:
which foo.bar

fldrA\+foo\bar.m % package function
In cases where the same path folder contains both package and class folders with the same name, the
package function takes precedence over the static method.

fldr/@foo/bar.m
fldr/+foo/bar.m

ar is a static method of class foo
ar is a function in package foo

% b
% b
A call to which foo.bar returns the path to the package function:
which foo.bar

fldr/+foo/bar.m
If a path folder fldr contains a classdef file foo that defines a static method bar and the same
folder contains a package +foo that contains a package function bar.

fldr/foo.m
fldr/+foo/bar.m

ar is a static method of class foo

% b
% bar is a function in package foo

A call to which foo.bar returns the path to the package function:

which foo.bar

fldr/+foo/bar.m

See Also

More About

. “Folders Containing Class Definitions” on page 6-13
. “Class Precedence” on page 6-18

6-23

6 Defining and Organizing Classes

Import Classes

In this section...

“Syntax for Importing Classes” on page 6-24

“Import Static Methods” on page 6-24

“Import Package Functions” on page 6-24

“Package Function and Class Method Name Conflict” on page 6-25

“Clearing Import List” on page 6-25

Syntax for Importing Classes

Import classes into a function to simplify access to class members. For example, suppose that there is
a package that contains several classes and you will use only one of these classes or a static method
in your function. Use the import command to simplify code. Once you have imported the class, you
do not need to reference the package name:
function myFunc

import pkg.MyClass

obj = MyClass(arg,...); % call MyClass constructor

obj.Prop = MyClass.staticMethod(arg,...); % call MyClass static method
end

Import all classes in a package using the syntax pkg. *:

function myFunc
import pkg.*
objl = MyClassl(arg,...); % call pkg.MyClassl constructor
obj2 = MyClass2(arg,...); % call pkg.MyClass2 constructor
a = pkgFunction(); % call package function named pkgFunction
end

Import Static Methods

Use import to import a static method so that you can call this method without using the class name.
Call import with the full class name, including any packages, and the static method name.

function myFunc
import pkg.MyClass.MyStaticMethod
MyStaticMethod(arg,...); % call static method
end

Import Package Functions

Use import to import package functions so that you can call these functions without using the
package name. Call import with the package and function name.

function myFunc

import pkg.pkgFunction

pkgFunction(arg,...); % call imported package function
end

6-24

Import Classes

Package Function and Class Method Name Conflict

Avoid importing an entire package using the * wildcard syntax. Doing so imports an unspecified set of
names into the local scope. For example, suppose that you have the following folder organization:

+pkg/timedata.m
+pkg/@MyClass/MyClass.m
+pkg/@MyClass/timedata.m

package function
class definition file
class method

o o o°

Import the package and call timedata on an instance of MyClass:
import pkg.*

myobj = pkg.MyClass;

timedata(myobj)

A call to timedata finds the package function, not the class method because MATLAB applies the
import and finds pkg.timedata first. Do not use a package in cases where you have name conflicts
and plan to import the package.

Clearing Import List

You cannot clear the import list from a function workspace. To clear the base workspace only, use:

clear import

See Also
import

More About

. “Packages Create Namespaces” on page 6-20

6-25

Value or Handle Class — Which to Use

* “Comparison of Handle and Value Classes” on page 7-2

* “Which Kind of Class to Use” on page 7-9

* “The Handle Superclass” on page 7-11

+ “Handle Class Destructor” on page 7-13

* “Find Handle Objects and Properties” on page 7-21

* “Implement Set/Get Interface for Properties” on page 7-22
* “Implement Copy for Handle Classes” on page 7-30

7 Value or Handle Class — Which to Use

Comparison of Handle and Value Classes

7-2

In this section...

“Basic Difference” on page 7-2

“Behavior of MATLAB Built-In Classes” on page 7-2
“User-Defined Value Classes” on page 7-3

“User-Defined Handle Classes” on page 7-4
“Determining Equality of Objects” on page 7-6
“Functionality Supported by Handle Classes” on page 7-7

Basic Difference

A value class constructor returns an object that is associated with the variable to which it is assigned.
If you reassign this variable, MATLAB creates an independent copy of the original object. If you pass
this variable to a function to modify it, the function must return the modified object as an output
argument. For information on value-class behavior, see “Avoid Unnecessary Copies of Data”.

A handle class constructor returns a handle object that is a reference to the object created. You can
assign the handle object to multiple variables or pass it to functions without causing MATLAB to
make a copy of the original object. A function that modifies a handle object passed as an input
argument does not need to return the object.

All handle classes are derived from the abstract handle class.
Create a Value Class

By default, MATLAB classes are value classes. The following definition creates a value class named
MyValueClass:

classdef MyValueClass

end. .

Create a Handle Class

To create a handle class, derive the class from the handle class.
classdef MyHandleClass < handle

end

Behavior of MATLAB Built-In Classes

MATLAB fundamental classes are value classes (numeric, Llogical, char, cell, struct, and
function handle). For example, if you create an object of the class int32 and make a copy of this
object, the result is two independent objects. When you change the value of a, the value of b does not
change. This behavior is typical of classes that represent values.

a = int32(7);
b = a;
a = a™4;

Comparison of Handle and Value Classes

7

MATLAB graphics objects are implemented as handle objects because they represent visual elements.
For example, create a graphics line object and copy its handle to another variable. Both variables
refer to the same line object.

X = 1:10; y = sin(x);
11 line(x,y);
12 11;

Set the properties of the line object using either copy of the handle.

set(12, 'Color','red")
set(ll, 'Color', 'green')

get (12, 'Color')
ans =
0 1 0

Calling the delete function on the 12 handle destroys the line object. If you attempt to set the
Color property on the line 11, the set function returns an error.

delete(12)
set(11, 'Color', 'blue")

Error using matlab.graphics.primitive.Line/set
Invalid or deleted object.

If you delete the object by deleting any one of the existing handles, all copies are now invalid because
you deleted the single object to which all handles refer.

Deleting a handle object is not the same as clearing the handle variable. In the gr